
Masterarbeit

Concept-By-Example
in EL Knowledge Bases

Maurice Funk
mfunk@uni-bremen.de

18. Juli 2019

Erstgutachter: Dr. Jean C. Jung
Zweitgutachter: Prof. Dr. Sebastian Maneth

Abstract

In dieser Arbeit wird das Concept-by-Example-Problem in Wissensbasen, die in der
Beschreibungslogik EL formuliert sind, untersucht. Bei diesem Problem gibt der
Benutzer positive und negative Individuen als Beispiele an. Daraufhin soll ein EL
Konzept gelernt werden, welches die positiven Beispiele beschreibt, aber nicht die
negativen. Automatisches Lernen von Konzepten unterstützt Benutzer beim Entwickeln
von Wissensbasen sowie beim Schreiben von Konzeptanfragen und wird bereits mit ver-
schiedenen Ansätzen umgesetzt. Wir zeigen erstmals, dass zu entscheiden ob ein solches
Konzept existiert, ExpTime-vollständig ist und dass ein Algorithmus, der ein solches
Konzept lernt doppelt exponentielle Laufzeit haben muss. Wenn man das zu lernende
Konzept auf eine bestimmte Rollentiefe beschränkt, zeigen wir NP-Vollständigkeit des
Entscheidungsproblems und geben einen Exponentialzeit-Algorithmus, der das Konzept
lernt, an.

In this thesis, we look at the concept-by-example problem in EL knowledge bases. The
problem consists of automatically learning an EL concept that describes user provided
positive examples, but does not describe user provided negative examples with regard
to a given EL knowledge base. Concept learning supports the user during knowledge
base engineering and concept query writing, and is actively pursued with multiple
approaches. We show that deciding, if such a concept exists, is ExpTime-complete and
that an algorithm that learns such a concept must take double exponential time in the
worst case. If one restricts the concept that is learned to a fixed role depth, we show that
the decision problem is only NP-complete and give an exponential time algorithm to
learn it.

iii

I’ve heard it said that a computer scientist is a mathematician who only knows how to prove things by
induction.

— Steven S. Skiena, The Algorithm Design Manual

vii

Contents

List of Figures xi

1 Introduction 1
1.1 Contributions . 3
1.2 Overview . 4

2 Related Work 5
2.1 Ontology Learning . 5
2.2 Learning Queries in Databases . 5
2.3 Least Common Subsumer and Most Specific Concept 6
2.4 Inductive Logic Programming . 6
2.5 Other Approaches . 7

3 Preliminaries 9
3.1 The Description Logic EL . 9
3.2 Simulations and Interpretations . 13
3.3 The Canonical Model of a Knowledge Base 15
3.4 Concepts as Interpretations . 18

4 Concept-by-Example for EL 21
4.1 Characterization of Separability . 22
4.2 Deciding Separability is ExpTime-complete 23
4.3 Restrictions . 30
4.4 Size of the Learned Concept . 32

5 Concept-by-Example for EL with Bounded Concept Depth k 37
5.1 Characterization of Separability . 38
5.2 Deciding Separability is NP-complete . 39
5.3 Learning Role Depth Bounded Concepts 44

6 Conclusion and Future Questions 47

Bibliography 49

ix

List of Figures

3.1 A model of the example knowledge base 11
3.2 The canonical model GK of the example knowledge base 16
3.3 Example of a tree-shaped concept interpretation 19

4.1 Algorithm for deciding CBE in exponential time 24
4.2 Illustration of the modification of the reduction 31
4.3 Product model of theA part of the ABox used in the reduction for n � 2 bits 33
4.4 B part of the ABox used in the reduction 34
4.5 Algorithm for concept learning in double exponential time 36

5.1 Description of a NTM for deciding CBEk 41
5.2 Algorithm for deciding CBE0 in polynomial time 44

xi

1 Introduction

The importance of machine processable knowledge representation rises together with
the spread of computers and the internet into more aspects of human life. In recent
years, a prominent knowledge representation language has been the Web Ontology
Language (OWL), which was first recommended as a standard for modeling knowledge
bases by the World Wide Web Consortium in 2004.1 OWL has since been used to
create knowledge bases for applications in many fields like biology, medicine, software
engineering, knowledge management and cognitive systems [35, 38, 21]. OWL is
employed in thousands of knowledge bases that contain billions of facts [14].

From a theoretical point of view, the basis of OWL are description logics [5]. Description
logics are a family of logics that are decidable fragments of first-order logic, commonly
written in a variable-free syntax. They are closely related to modal logic. One such
description logic is called EL. Description logics talk about the relationships of concept
descriptions that represent important notions of an application domain. Adescription logic
knowledge base could contain the following terminological knowledge about concepts
(“Student”, “Human”, “Professor”, “Lecture”) and their relationships in the form of
concept inclusions:

Student v Human u ∃attends.Lecture
Professor v Human u ∃gives.Lecture

This expresses that a student is a human who attends at least one lecture and that
a professor is a human who gives at least one lecture. Here “Student”, “Human”,
“Professor”, and “Lecture” are simple concept names. These can be combined into more
complicated concepts like “Student u Professor” (all things that are both students and
professors). This terminological part of a knowledge base is called TBox. The formal
semantics of concepts of the description logic EL are introduced later in Section 3.1.

Furthermore, a description logic knowledge base contains assertional knowledge about
specific objects or individuals:

Student(alice), Student(bob), Lecture(logic),
attends(bob, logic), ∃attends.Seminar(alice)

This expresses that the individuals Alice and Bob are students, Logic is a lecture, Bob
attends the lecture Logic and Alice attends something that is described by the concept
name Seminar. This assertional part of a knowledge base is called ABox.
The different description logics vary in their expressiveness, that is what kind of

knowledge they can express. In this thesis, we consider knowledge bases and concepts
1http://www.w3.org/OWL

1

http://www.w3.org/OWL

1 Introduction

written in the inexpressive description logic EL, which forms the basis of the OWL 2
EL profile. EL was first introduced by Baader, Küsters, and Molitor [6] as a description
logic that only allows conjunctions (u) and existential restrictions (∃). Later it was
shown that important reasoning problems with general terminological knowledge can
be decided in polynomial time in EL knowledge bases [13]. This differentiates EL from
more expressive description logics, where subsumption checking and other reasoning
problems lie in intractable complexity classes.

Although EL has restricted expressive power, there are large knowledge bases like
SNOMEDCT2 orGALEN [34] that contain ten-thousands of concepts and their inclusions,
which can be expressed in EL or slight extensions thereof. In order to automatically
reason in knowledge bases of this size, efficient polynomial time reasoners like CEL [7]
or ELK [24] were developed. These often only support terminological reasoning without
any assertional knowledge.

Common reasoning tasks that these solvers and knowledge base enhanced systems in
general perform, are:

• subsumption checking: does the terminological knowledge imply that every “A” is
also a “B”? In our example assertional and terminological knowledge, this is true
for “Student” and “Human”, since every student is a human, but not for “Human”
and “Professor”, since there could be humans that are not professors.

• instance retrieval: which individuals are described by a concept? Here the concept
is a query posed to the reasoner, similar to a query to a traditional database
system. For the concept query ∃attends.Lecture the answer would be {alice, bob}
for our example assertional and terminological knowledge.. Bob is included since
the assertional knowledge contains that he attends the “Lecture” logic. Alice is
included since the assertional knowledge contains that she is a student and the
terminological knowledge contains that every student attends a lecture.

In this thesis, we consider the reasoning task of concept-by-example, which can be
considered the opposite of instance retrieval. One problem of instance retrieval is that
users have difficulty formulating queries in large and complicated knowledge bases.
Giving examples of what the answer to a query should contain and examples of what it
should not contain, however, is easy. Thus a system might support the user by learning a
concept from positive and negative examples provided by the user. The examples are
individual names that are already known to the knowledge base. In the example from
above, the user could select Alice and Bob as positive examples and Logic as a negative
example. A concept that applies to the positive examples but not the negative examples
would be “Human”. Thus, the learned concept in this case could be “Human”. The
idea is that the learned concept generalizes the knowledge about the positive examples
and can be used as a query to retrieve similar individuals in the future. Some reasoning
settings are only interested in a set of positive examples, others consider both positive and
negative examples. Note that it is not always required for the learned concept to exactly

2http://www.snomed.org

2

http://www.snomed.org

1.1 Contributions

cover or not cover all examples, some definitions allow a certain degree of approximation,
especially in settings where computing an exact concept may be infeasible [6].
This approach to engineering queries originates in the field of relational databases,

there called query-by-example and was first introduced in a slightly different very early
variant by Zloof [41]. Motivated by non-expert users and unfamiliar database schemata,
query-by-example learns a database query that produces all positive examples but none
of the negative ones. For relational databases, Query-by-example is a traditionally studied
problem. Its idea has been extended to knowledge bases that contain terminological
background knowledge in addition to relational data as concept-by-example.

Learning concepts from sets of examples has been the topic of some research effort in
the past, as it allows for a different approach to knowledge base engineering. Instead
of designing it top-down, by first declaring the abstract concepts of a domain and then
classifying the relevant objects, one can go bottom-up and find the general concepts that
describe relevant sets of objects. Thus it can be said that concept-by-example supports
the user both in writing queries and in engineering knowledge bases.

There already are multiple approaches to learning concepts in knowledge bases. One
of the most prominent ones is an approach based on refinement operators and inductive
logic programming, which resulted in learning algorithms like DL-Learner [14] and
DL-Foil [17]. Another important approach applies the least-common-subsumer and
most-specific-concept operations [6]. However, although implementations of learning
algorithms exist, no formal investigation of the complexity of concept learning in EL
knowledge bases or the condition of existence of a separating concept has been done yet,
as far as we are aware.

In this thesis, the following questions are considered for EL knowledge bases and EL
concepts:

• Separability: Is there a concept that separates the positive from the negative examples?
Or is it impossible to do so, given only the knowledge in the knowledge base? Is
there a fast algorithm to decide this?

• Concept Learning: What is the concept that separates the positive from the negative
examples? How large could it be? Is there a fast algorithm to learn a separating
concept?

As anadditional examplewe can consider the assertional and terminological knowledge
from earlier and select Alice as a positive and Bob as a negative example. They are
separated by the concept ∃attends.Seminar since only Alice attends a seminar, Bob does
not.

1.1 Contributions

The first result of this thesis is a model-theoretic characterization of EL concept separability
in EL knowledge bases. Based on this characterization we show an ExpTime lower and
upper bound on the time complexity of deciding if there is a concept that separates the

3

1.2 Overview

positive and negative examples. Furthermore, we show that the separating EL concept
can be of double exponential size. It follows that an algorithm that learns a separating
concept must take at least double exponential time, since it has to output the concept in
its entirety.
Considering that EL is an inexpressive description logic, this is a negative result

since such high complexity was not expected. Motivated by the high complexity we
look at restrictions of concept-by-example and argue that a lot of them do not improve
the lower bound. However, restricting the role depth of the separating concept does
improve it. Since concepts of lower role depth are easier to understand in the application
domain, and thus we are interested in learning them, this seems like a natural restriction.
Furthermore, real life EL knowledge bases often do not have enough role depth to lead
to very deep concepts in the common case.
We define a variant of concept-by-example where the separating concept may be at

most of a fixed role depth and provide a characterization of it. We show that deciding
separability for this problem is only NP-complete. Furthermore, there is an exponential
time algorithm for learning a separating concept given this restriction.

These results can help understand the behavior of existing concept learning algorithms
and hint at the reasons for their time complexity. New algorithms could potentially be
based on the characterization of separability given in this thesis.

Parts of this thesis were already published in Funk et al. [18].

1.2 Overview

The chapters of this thesis are structured as follows:

• Chapter 2 discusses previous work that is related to the goal of concept learning in
general and concept learning for EL knowledge bases in particular.

• Chapter 3 formally introduces the description logic EL and its important properties,
including standard constructions and theorems that are needed in the following
chapters.

• In Chapter 4 we investigate the concept-by-example problem for EL with an
unbounded concept role depth and establish matching upper and lower bounds
for separability and learning.

• In Chapter 5 we examine the variant of concept-by-example with bounded role-
depth.

• Chapter 6 discusses the results obtained in this thesis and poses possible future
research questions and directions.

4

2 Related Work

In this chapter we examine work that is related to concept learning in knowledge bases.
First we look at the distantly related field of ontology learning, where learning focuses
on general concept inclusions instead of single concepts. Then we discuss learning
queries in databases, where no background knowledge in the form of a TBox needs to
be considered. Next comes the approach to learn concepts via techniques taken from
inductive logic programming, which is implemented in multiple software tools. Finally
we look at an approximating approach and consider the complexity results related to
concept learning which have already been shown.

2.1 Ontology Learning

While concept learning only learns a single concept from positive and negative examples,
ontology learning learns new general concept inclusions from data. Its goal is to (partially)
automate the effort of writing the background terminological knowledge of a knowledge
base. Sazonau [37] introduces and motivates this problem. They present and evaluate
an algorithm, called DL-Miner, that learns additional TBox axioms conceptualizing the
data in the ABox.

Another approach is to learn knowledge bases by querying an oracle. In applications,
this oracle represents a domain expert, who answers questions posed by the learning
algorithm, which thus learns the domain by constructing concept inclusions. Konev
et al. [25] give an overview over this setting and show that an EL knowledge base cannot
be learned with a polynomial amount of queries to the oracle.

2.2 Learning Queries in Databases

The problem of reverse engineering queries for relational databases has received some
attention in the past. An important variant of this is query-by-example: Given a relational
database D, a set of positive examples and a set of negative examples, it asks if there is a
query q in some query language such that the evaluation of q on D contains all positive
examples but none of the negative examples. Zloof [41] proposed this approach to make
query engineering for non-expert users easier.

A common query language for this are conjunctive queries [9], however other settings
like SPARQL queries over RDF data [2], path queries over graph databases [11] or
full first order queries [1] have been investigated. Applications of this problem are
similar to concept-by-example, it allows non-expert users to engineer queries and explore
data in an unknown data set. For conjunctive queries and relational databases, the

5

2.4 Inductive Logic Programming

query-by-example problem is known to be coNExpTime-complete [39]. Barceló and
Romero [9] introduce several relaxations that make the problem tractable.
In many ways, query-by-example is very similar to the problem considered in this

thesis, concept-by-example. The main differences lie in the choice of an EL knowledge
base instead of a relational database and EL concepts as a “query language” instead of
for example conjunctive queries.

2.3 Least Common Subsumer and Most Specific Concept

The description logic EL was first mentioned in the setting of learning concepts that
describe positive examples. Baader, Küsters, and Molitor [6] investigate the problem of,
given a set of positive examples, finding the most specific concept that describes all of
them. This task can be split in two sub tasks:

• computing the most specific concept of a single individual, and

• computing the least common subsumer of a number of concepts.

Since this learning problem asks for a concept that describes a number of individuals,
it seems similar to concept-for-example with no negative examples. However, concept-
by-example does not result in the most specific concept, but any concept that describes
the positive examples. In the absence of negative examples this could always be >, the
concept that is interpreted as all individuals. In fact, the least common subsumer and
most specific concept with regard to an EL knowledge base do not always exist under
usual semantics [3]. Zarrieß and Turhan [40] give a necessary and sufficient condition on
the existence of the least common subsumer as well as an algorithm for computing it if it
exists. This approach always yields a concept that generalizes all examples, if the most
specific concept and least common subsumer exist.
Unfortunately this approach results in overly specific learned concepts in expressive

description logics [8]. If a description logic allows concept disjunction (t), the least
common subsumer of two concepts C1 and C2 simply becomes their disjunction C1 t C2.
The least common subsumer thus still applies to all positive examples but does not
generalize the properties of the positive examples in any meaningful way.

2.4 Inductive Logic Programming

In order to avoid the mentioned shortcomings of the most specific concept and least
common subsumer approach, Badea andNienhuys-Cheng [8] apply a learning technique
from inductive logic programming to description logics. For an introduction to inductive
logic programming, see Nienhuys-Cheng and DeWolf [33]. The idea is to use downward
and upward refinement operators to search the space of possible concepts and find a
concept that separates the positive and negative examples.
Here, a refinement operator is a function from concepts to sets of concepts. A

downward refinement operator constructs a number of more specialized concepts (that

6

2.5 Other Approaches

cover fewer individuals). A upward refinement operator constructs a number of more
general concepts (that cover more individuals). A refinement operator is finite if it only
produces a finite number of concepts. It is called complete if any more specialized (or
more general) concept can be reached by repeated application of the operator to one of
its results. A refinement operator is proper if one cannot reach its initial input by repeated
application of the operator. An operator is ideal if it is finite, complete and proper [28].
Badea and Nienhuys-Cheng give specific refinement operators for the description

logic ALER (EL extended with the bottom concept ⊥, negation of atoms ¬A, and value
restrictions ∀) and describe how to search for a separating concept. They discuss that
learning in their framework is at least NP-hard [8].
Inspired by this approach is DL-Learner, a framework for learning problems in

description logics. It implements several algorithms that support many features of
OWL [14, 26]. For EL concept learning from positive and negative examples, DL-Learner
implements an algorithm called EL Tree Learner that is optimized for the properties of
EL. It is based on an ideal downward refinement operator, which was shown to not exist
for more expressive description logics than EL [28, 29]. The algorithm searches the space
of all possible concepts by applying the operator in each step and evaluating the resulting
more specific concepts. Since the refinement operator is complete, it eventually arrives
at a separating concept, if one exists. In practice however, the algorithm is limited by a
maximum run time and might not arrive at a separating concept, even if one exists [27].
No formal analysis of the time complexity of the EL Tree Learner algorithm is given.
Another similar approach that is closer to the classical learning in inductive logic

programming is DL-Foil, which adapts the classical Foil algorithm for description logic.
The algorithm computes generalizations for subsets of the positive examples that do
not cover any negative examples via a downward refinement operator and joins them
together via a disjunction to cover all positive examples [17]. Since EL does not allow
disjunctions of concepts, the DL-Foil approach cannot be applied to the setting of this
thesis.

2.5 Other Approaches

Sarker and Hitzler [36] present a different approach to concept learning that aims to
reduce the number of calls to an external description logic reasoner since these can lead
to performance bottlenecks for expressive description logics. To achieve this, it does not
use refinement operators but precomputes the extensions of a number of heuristically
chosen concept expressions. It then tries to combine the precomputed concepts using
only negation, conjunction and disjunction to cover all examples. This approach is
approximate, as it may not find an exact cover of the examples, but is sufficiently precise
for the specific type of knowledge base onwhich the authors aim to improve performance
of concept learning. This demonstrates that fast concept learning is of interest and that
sacrificing completeness to achieve it may be a possibility.

Jung et al. [22] investigate concept learning in first-order structures for the description
logic horn-ALC, which is a restriction of ALC to a fragment of Horn first order logic.

7

2.5 Other Approaches

Since first-order structures can be seen as ABoxes, their results apply to concept learning
in knowledge bases without a TBox. They give a characterization of concept separability
based on Horn simulations and show that deciding separability for horn-ALC is ExpTime-
complete. This does not change if one restricts the depth of the separating horn-ALC
concept to l as part of the input. The variant of this problem that restricts the depth
of the separating horn-ALC concept to l is still ExpTime-complete if l is given in binary
encoding as part of the input.
Gutiérrez-Basulto, Jung, and Sabellek [19] extend the approach of ten Cate and

Dalmau [39] from relational databases to ontology-enriched systems, that is knowledge
bases with a TBox, and consider (unions of) conjunctive queries as a query language.
For the description logic Horn-ALC as a knowledge base language they show that the
problem of deciding if a separating conjunctive query exists is coNExpTime-complete.

Beyond the results concerning EL in this thesis, Funk et al. [18] study concept
separability for more expressive description logics, in combinations of knowledge base
language and concept language.

The relevant results can be summarized as

• EL-concept separability is ExpTime-complete in EL and ELI knowledge bases,

• ELI-concept separability is undecidable in EL and more expressive knowledge
bases,

• ALC-concept separability is NExpTime-complete,

• ALCQI-concept separability is ExpTime-complete.

Note that this is, as far as we are aware, the first publication that investigates the
complexity of deciding concept separability in description logic knowledge bases with
general TBoxes.

8

3 Preliminaries
In this chapter we give definitions, constructions, and important theorems needed for
the following chapters. The following topics are covered:

• the description logic EL,

• simulation relations between interpretations,

• canonical models for EL knowledge bases,

• and constructing interpretations from concepts and vice versa.

3.1 The Description Logic EL

Concepts Description logics describe knowledge of adomainwith concepts. EL concepts
are defined using a set of concept names NC and a set of role names NR. Generally
throughout this thesis, we will use A and B as some concept names from NC, while we
use r for role names from NR. All concept names A ∈ NC and > are EL concepts. If C
and D are EL concepts, then

• C u D (conjunction) and

• ∃r.C for all role names r ∈ NR (existential restriction)
are also EL concepts. We will use C and D if we want to refer to these complex concepts.

The semantics of an EL concept is defined in terms of interpretations I � (∆I , ·I). The
domain ∆I of an interpretation I is a non empty set of individuals and the interpretation
function ·I maps concept names A ∈ NC to sets of individuals AI ⊆ ∆I and role names
r ∈ NR to relations rI ⊆ ∆I ×∆I . It can be inductively extended to complex EL concepts
as follows:

>I
� ∆I

(C u D)I � CI ∩ DI

(∃r.C)I � {d ∈ ∆I | (d , e) ∈ rI ∧ e ∈ CI}
We call CI the extension of C.

The depth of the nesting of existential restrictions in an EL concept C is called its role
depth. We define the role depth depth(C) inductively by

depth(A) � depth(>) � 0
depth(C u D) � max(depth(C), depth(D))
depth(∃r.C) � depth(C) + 1.

9

3.1 The Description Logic EL

Another important property of an EL concept C is its size |C |. It roughly corresponds
to the number of symbols that are needed to write a concept down and can serve as an
upper bound for, for example, the number of conjunctions in a concept. We can define it
inductively in a similar way:

|A| � |>| � 1
|C u D | � |C | + |D | + 1
|∃r.C | � |C | + 3

In a given interpretation I, we call the individual e ∈ ∆I an r-successor of another
individual d ∈ ∆I if (d , e) ∈ rI for some role name r ∈ NR. The r-predecessors of an
individual are defined analogously. The outdegree deg(e) of an individual e ∈ ∆I is the
total number of its successors:

deg(e) � |{e′ ∈ ∆I | (e , e′) ∈ rI for all r ∈ Nr}|.
Themaximum outdegree deg(I) of an interpretation I is the maximum of the outdegrees
of its individuals:

deg(I) � max{deg(e) | e ∈ ∆I}.

Knowledge bases An EL knowledge base K � (T ,A) consists of an EL TBox T and an
ABox A. A TBox is a finite set of concept inclusions C v D that represent terminological
knowledge about a domain by stating the relationship of the EL concepts C and D. An
interpretation I satisfies the concept inclusion C v D, written I |� C v D, if CI ⊆ DI .
An ABox is a finite set of concept assertions and role assertions that are defined over
a set of individual names NI . Concept assertions are of the form C(a), where C is an EL
concept and a ∈ NI is an individual name. In order to interpret concept assertions, we
extend the interpretation function ·I of an interpretation I to map individual names a to
individuals aI ∈ ∆I . An interpretation I then satisfies a concept assertion C(a), written
I |� C(a) if aI ∈ CI . Role assertions are of the form r(a , b), where r is a role name and
a , b ∈ NI are individual names. An interpretation I satisfies the role assertion r(a , b),
written I |� r(a , b) if (aI , bI) ∈ rI . We use ind(A) ⊂ NI to denote the finite set of all
individual names that are used in an ABox A. Note that in some situations in this thesis,
the mapping from individual names to individuals is injective and the explicit mapping
of the name a to the individual aI is left out, if I is clear from context.

An interpretation that satisfies all concept inclusions of a TBox T is called a model of T .
Similarly, an interpretation that satisfies all assertions of an ABox A is called a model of A.
If I is a model of T and A, it is also called a model of the knowledge base K � (T ,A). If
a concept inclusion C v D is satisfied in all models of a TBox T (or a knowledge base K),
we write T |� C v D (or K |� C v D). Similarly, if a concept assertion C(a) is satisfied in
all models of a knowledge base K, we write K |� C(a).
Again, it can be useful to talk about the size |K| of a knowledge base K � (T ,A) since

it can serve as an upper bound for other properties. It is simply the sum of the sizes of
its components, the ABox and TBox:

|K| � |T | + |A|.

10

3.1 The Description Logic EL

alice boblogic

Human
Student

Human
Student

Lecture
Seminar

attends attendsattends

T � {Student v Human u ∃attends.Lecture}
A � {Student(alice), Student(bob), Lecture(logic),

attends(bob, logic), ∃attends.Seminar(alice)}

Figure 3.1: A model of the example knowledge base

The size of an ABox |A| is the number of role assertions and the sum of the size of its
concept assertions:

|A| �
∑

r(a ,b)∈A
1 +

∑
C(a)∈A

(1 + |C |).

The size of a TBox |T | is the size of all the concept inclusions it contains:

|T | �
∑

CvD∈T
|C | + |D | + 1.

Figure 3.1 shows an example knowledge base similar to the one from the introduction
and an interpretation that is a model of that knowledge base. The example TBox contains
one concept inclusions and the ABox consists of four concept assertions and one role
assertion. The interpretation is represented as a directed graph, where the individuals
are nodes, roles are labeled edges and concept names are written next to a node if its
extension contains the corresponding individual. Note how Alice and Bob fulfill the
concept inclusion by being Human and attending the Lecture logic.
A signature Σ is a finite set of concept names and role names Σ ⊆ NC ∪ NR. The

signature sig(K) of a knowledge base K is the set of concept and role names that are used
in K. The interpretation I′ is the Σ-restriction of an interpretation I, if

AI′
� AI for all A ∈ Σ

rI
′
� rI for all r ∈ Σ

AI′
� ∅ for all A < Σ

rI
′
� ∅ for all r < Σ.

Normal form Someproofs and constructions regarding an EL knowledge baseK become
simpler if one considers it to be in normal form:

11

3.1 The Description Logic EL

Definition 3.1. An EL knowledge base K � (T ,A) is in normal form if all concept inclusions
in T have one of the following forms

A1 u A2 vB
A1 v∃r.B

∃r.A1 vB

where A1 ,A2 , B ∈ NC ∪ {>}, and all concept assertions in A are of the form

A(a)

where A ∈ NC.

Baader, Brandt, and Lutz [4] give six normalization rules that transform am EL TBox
into its normal form T̂ by introducing new concept names from NC that do not occur in
sig(K). Furthermore a concept assertion C(a) from A can be transformed into normal
form by introducing a new concept name A ∈ NC that does not occur in sig(K) for the
assertion A(a) and adding the concept inclusion A v C to the TBox.
Since every knowledge base can be transformed into normal form, this requirement

does not limit the expressiveness of EL. The normalized knowledge base K̂ is a conservative
extension of K, meaning that every model of K̂ is also a model of K, and every model of K
can be extended to a model of K̂ by adding extensions of the newly introduced concept
names [4].

Reasoning The most important reasoning problem for EL knowledge bases, that is
examined in previous literature is concept subsumption:

Input: An EL TBox T , concepts C and D

Question: Does T |� C v D?

While this problem is intractable for more expressive description logics, EL allows for
efficient subsumption checking:

Theorem 3.2. (Brandt [13]) Let T be an EL TBox, C and D be EL concepts. Then subsumption
T |� C v D can be decided in polynomial time.

Another relevant reasoning problem is instance checking, which checks whether a given
knowledge base K implies that an individual is an instance of a concept:

Input: An EL knowledge base K, concept C and individual name a

Question: Does K |� C(a)?

Instance checking can also be decided in polynomial time for EL knowledge bases [12].

12

3.2 Simulations and Interpretations

3.2 Simulations and Interpretations

We use simulation relations between interpretations to show properties of the concept-by-
example problem in later chapters:

Definition 3.3. A relation σ ⊆ ∆I ×∆J between two interpretations I and J is a Σ-simulation
for a signature Σ if for all (c , d) ∈ σ:

• [Atom] c ∈ AI �⇒ d ∈ AJ for all A ∈ Σ

• [Forth] (c , c′) ∈ rI �⇒ ∃d′ ∈ ∆J .(d , d′) ∈ rJ and (c′, d′) ∈ σ for all r ∈ Σ.

Some properties of simulations are:

• The union σ � σ1 ∪ σ2 of two simulations σ1 and σ2 is also a simulation.

• The concatenation

σ � σ1 · σ2 � {(c , e) | (c , d) ∈ σ1 ∧ (d , e) ∈ σ2}

of two simulations σ1 and σ2 is also a simulation.

We write I -Σ J if there exists a Σ-simulation between the interpretations I and J .
Additionally wewrite (I , a) -Σ (J , b) for a ∈ ∆I and b ∈ ∆J if there exists aΣ-simulation
σ between I and J and (a , b) ∈ σ. If Σ includes all relevant names, we omit it and just
write I - J . Since the concatenation of simulations is also a simulation, we know that
-Σ is transitive.
Simulations are a useful tool for showing properties of EL, since they “capture” the

expressiveness of EL concepts, as expressed in the following theorem:

Theorem 3.4. (Lutz and Wolter [32]) Let I and J be interpretations and C be an EL concept.
If (I , c) - (J , d), then c ∈ CI �⇒ d ∈ CJ . Conversely, if I and J are finite and
c ∈ CI �⇒ d ∈ CJ , then (I , c) - (J , d).

Lutz and Wolter refer to Clarke and Schlingloff [16] for a proof of this theorem in the
setting of model checking.

Clarke and Schlingloff [16] give an algorithm to compute a Σ-simulation between two
finite interpretations I and J . It computes a sequence of relations σ0 , σ1 , . . . ⊆ ∆I × ∆J
as follows:

• [Init] (c , d) ∈ σ0 if and only if for all A ∈ Σ it holds that c ∈ AI ⇐⇒ d ∈ AJ .

• [Step] (c , d) ∈ σn+1 if and only if (c , d) ∈ σn and for all r ∈ NR and c′ ∈ ∆I such
that (c , c′) ∈ rI , there is a d′ ∈ ∆J such that (d , d′) ∈ rJ and (c′, d′) ∈ σn .

13

3.2 Simulations and Interpretations

If σn � σn+1 the construction terminates and σ � σn is the largest Σ-simulation between
I and J . That is (I , a) -Σ (J , b) if and only if (a , b) ∈ σ. The initial relation σ0 contains
at most |∆I × ∆J | many elements and each step from σn to σn+1 must remove at least
one element from it, otherwise the algorithm would terminate. This means that the
algorithm runs at most for |∆I × ∆J | steps. Each step can be performed in polynomial
time in the size of I and J . Thus the algorithm terminates in polynomial time.

Theorem 3.5. (Clarke and Schlingloff [16]) Let I and J be finite interpretations. AΣ-simulation
between I and J can be computed in polynomial time in |I | + |J |.

Furthermore we need some properties and operations of interpretations for the
following chapters. First, we say that an interpretation I is tree-shaped, if every individual
a ∈ ∆I has at most a single predecessor over all r ∈ NR:

|{a′ | (a′, a) ∈ rI ∧ r ∈ NR}| � 1

For each interpretation I, there is an equivalent tree-shaped interpretation Î:
Let I be an interpretation and d ∈ ∆I . A d-path in I is a finite sequence d0 , d1 , . . . dn−1

of n ≥ 1 elements such that

• d0 � d,

• for all 1 ≤ i < n there is a role ri ∈ NR such that (di−1 , di) ∈ rIi .

The end node of a d-path p � d0 , d1 , . . . , dn−1 is end(p) � dn−1.

Definition 3.6. The unravelling of an interpretation I is the following interpretation Î:

∆Î � {p | p is a d-path in I for any d ∈ ∆I},

AÎ
� {p ∈ ∆Î | end(p) ∈ AI} for all A ∈ NC ,

rÎ � {(p , p′) ∈ ∆Î × ∆Î | p′ � (p , end(p′)) ∧ (end(p), end(p′)) ∈ rI} for all r ∈ NR .

The unravelling of an interpretation is equivalent to the original interpretation in the
sense that EL concepts cannot distinguish between them:

Lemma 3.7. For all interpretations I, EL concepts C and a ∈ ∆I

I |� C(a) if and only if Î |� C(a)

Proof. Follows from the fact that

σ � {(end(p), p) | p ∈ ∆Î}

is a simulation in both directions [32] and Theorem 3.4. �

14

3.3 The Canonical Model of a Knowledge Base

Another operation that is important for the following chapters is the product of two
interpretations I and J .

Definition 3.8. Let I and J be interpretations. Their product interpretation I × J is

∆I×J � ∆I × ∆J

AI×J
� {(d , e) ∈ ∆I×J | d ∈ AI ∧ e ∈ AJ } for all A ∈ NC

rI×J � {((d , e), (d′, e′)) ∈ ∆I×J × ∆I×J | (d , d′) ∈ rI ∧ (e , e′) ∈ rJ } for all r ∈ NR .

The product (I , a) × (J , b), a ∈ ∆I and b ∈ ∆J is defined as (I × J , (a , b)). We write

n∏
i�1
(Ii , ai) � (I1 , a1) × · · · × (In , an)

as a shorthand for the product of multiple interpretations I1 , . . . , In . Furthermore it is
important to note that the number of individuals of

∏n
i�1(Ii , ai) is exponential in n.

3.3 The Canonical Model of a Knowledge Base

A useful tool for working with an EL knowledge base K is its canonical model GK. It is an
interpretation that has the important property that it is universal, that is

K |� C(a) if and only if GK |� C(a)

for all EL concepts C and all individuals a. In the following section we will show how
to construct GK from K and give a proof that GK indeed has this property. Lutz and
Wolter [31] describe a similar canonical model for EL TBoxes and show its property. Lutz,
Toman, and Wolter [30] give a slightly more complicated canonical model for ELHdr

⊥
knowledge bases. The following construction is based on the latter, modified for EL
knowledge bases.

Definition 3.9. The canonical model of an EL knowledge base K � (T ,A) in normal form is the
interpretation GK with

N �{xA | A is a concept name in sig(K)}
∆GK � ind(A) ∪ N

AGK �{a ∈ ind(A) | K |� A(a)} ∪ {xB ∈ N | T |� B v A}
rGK �{(a , b) ∈ ind(A)2 | r(a , b) ∈ A}

∪ {(a , xA) ∈ ind(A) × N | K |� ∃r.A(a)}
∪ {(xA , xB) ∈ N2 | T |� A v ∃r.B}

for all A and r in sig(K):

15

3.3 The Canonical Model of a Knowledge Base

alice bob logic

xHumanxStudentxLecturexSeminar

Human
Student

Human
Student

Lecture

HumanHuman
Student

LectureSeminar

attendsattends

attends

attends

attends

T � {Student v Human u ∃attends.Lecture}
A � {Student(alice), Student(bob), Lecture(logic),

attends(bob, logic), ∃attends.Seminar(alice)}

Figure 3.2: The canonical model GK of the example knowledge base

Note that the size of GK, i.e. |∆GK | is bounded by |K|. Since concept subsumption and
instance checking can be decided in polynomial time [13], the canonical model GK can be
constructed in polynomial time in |K|. Figure 3.2 shows the canonical model GK for an
example knowledge base.

Since the canonical model differs in some details from the model of Lutz, Toman, and
Wolter [30], we first show that it is indeed a model of K and then that it is universal.

Lemma 3.10. Let K � (T ,A) be an EL knowledge base in normal form. Then GK is a model of
K.

Proof. GK is a model of A since all individuals, concept assertions and role assertions
are contained in GK by construction. It remains to be shown, that GK fulfills all concept
inclusions in T . We only consider concept inclusions in EL normal form:

Case A1 u A2 v B: Consider the two possible kinds of elements in (A1 u A2)GK

1. Let a ∈ ind(A) ∩ (A1 u A2)GK . This means by construction that K |� A1(a) and
K |� A2(a), but since A1 u A2 v B ∈ T it also follows that K |� B(a). Thus, by
construction, a ∈ BGK .

2. Let xA ∈ N ∩ (A1 u A2)GK , by construction this means that T |� A v A1 and
T |� A v A2 for the concept name A of xA, but since A1 u A2 v B ∈ T , this
also means that T |� A v B and thus xA ∈ BGK by construction.

Case B v ∃r.B′: Consider the two possible kinds of elements in BGK

16

3.3 The Canonical Model of a Knowledge Base

1. Let a ∈ ind(A) ∩ BGK . Since B v ∃r.B′ ∈ T it follows that K |� ∃r.B′(a) holds
and thus (a , xB′) ∈ rGK . By construction of B′GK we have that xB′ ∈ B′GK . Thus
a ∈ (∃r.B′)GK .

2. Let xA ∈ N ∩ BGK . Since xA ∈ BGK , we have that T |� A v B. Since
B v ∃r.B′ ∈ T it also follows that T |� A v ∃r.B′. Thus there is xB′ ∈ B′GK

such that (xA , xB′) ∈ rGK . This means that xA ∈ (∃r.B′)GK .

Case ∃r.B v B′: Consider the two possible kinds of elements in (∃r.B)GK

1. Let a ∈ ind(A) ∩ (∃r.B)GK . This means that there exists an b ∈ BGK such that
(a , b) ∈ rGK . By construction of GK, we thus know that K |� ∃r.B(a) and since
∃r.B v B′ ∈ T , we have K |� B′(a) and it holds that a ∈ B′GK by construction
of B′GK .

2. Let xA ∈ N ∩ (∃r.B)GK . This means that there is a xA′ ∈ BGK such that
(xA , xA′) ∈ rGK . By construction of GK it follows necessarily that T |� A′ v B
and T |� A v ∃r.A′. Combining these two gives T |� A v ∃r.B, but since
∃r.B v B′ ∈ T , it also follows that T |� A v B′ and thus xA ∈ B′GK by
construction of B′GK . �

With this Lemma, we can prove the central property of the canonical model GK:

Theorem 3.11. For an EL knowledge base K and any EL concept C and any individual name
a ∈ ind(A)

K |� C(a) if and only if GK |� C(a).

Proof. First, assume that K |� C(a). It directly follows that GK |� C(a) since GK is a model
of K by Lemma 3.10. It remains to be shown that K |� C(a) if GK |� C(a). From the
definition of models we have that this is equivalent to a ∈ CGK �⇒ a ∈ CI for all I that
are models of K. By Theorem 3.4 we know that this is the case if (GK , a) - (I , a) for all I.
Let’s choose an arbitrary I. In order to show that K |� C(a) if GK |� C(a), we want to

prove that σ with

σ � {(b , b) | b ∈ ind(A)} ∪ {(xA , x) | x ∈ AI}.

is a Σ-simulation witnessing (GK , a) - (I , a). By construction of σ we have that (a , a) ∈ σ,
it remains to be shown that σ fulfills the conditions of Σ-simulations.

For the [Atom] condition, consider a pair (a , a) ∈ σ with a ∈ ind(A). Assume a ∈ AGK

but a < AI for contradiction for a A ∈ Σ. By construction of AGK it follows that K |� A(a).
Since I is a model of K, this contradicts a < AI . Consider an (xA , x) ∈ σ. We have that
xA ∈ BGK if and only if T |� A v B and by construction of σ we have that x ∈ AI . But
since I is a model of T it follows that x ∈ BI .
For the [Forth] condition, we consider the three possible kinds of combinations of

elements of ind(A) and N in rGK . First, consider (a , b) ∈ rGK with a , b ∈ ind(A) and
(a , a) ∈ σ. This means r(a , b) ∈ A by construction of GK and (b , b) ∈ σ. Since I is a

17

3.4 Concepts as Interpretations

model of A, it follows that (a , b) ∈ rI . Second, consider an (a , xA) ∈ rGK with a ∈ ind(A),
xA ∈ N and (a , a) ∈ σ. This means that K |� ∃r.A(a) by construction of GK. Since I is a
model of K, there must be a x ∈ AI such that (a , x) ∈ rI . By construction of σ, we have
that (xA , x) ∈ σ. Finally, consider an (xA , xB) ∈ rGK with xA , xB ∈ N and (xA , x) ∈ σ. By
construction of rGK we have that T |� A v ∃r.B and by construction of σ that x ∈ AI .
Since I is a model of K, there must be an x′ ∈ BI such that (x , x′) ∈ rI and it follows that
(xB , x′) ∈ σ by construction of σ. �

3.4 Concepts as Interpretations

In this section, we describe what it means to “view” an EL concept C as an interpretation
IC and how IC relates to other interpretations. The tree-shaped concept interpretation
IC can be constructed by “viewing” C as an interpretation. Baader, Küsters, and
Molitor [6] give a similar construction called EL-description trees. Instead of constructing
tree-shaped graphs, we construct tree-shaped interpretations (since we have defined
simulations to be between interpretations, not graphs). Every EL concept C of depth 0 is
of the form

C � A1 u · · · u An

and every concept C of depth k + 1 is of the form

C � A1 u · · · u An u ∃r1.C1 u · · ·∃rm .Cm

with each Ci being of depth at most k. Note that for C � > we consider n � 0. IC can
now be inductively constructed from this form as follows. First, if depth(C) � 0 then
∆IC � {vC} and AIC

i � {vC} for all i (and all other AIC and rIC are empty). Then, If
depth(C) > 0, let Ii be the inductively defined ICi for all 1 ≤ i ≤ m. We consider the
elements ∆Ii to be pairwise disjoint. Then

∆IC � {vC} ∪
⋃

1≤i≤m

∆Ii

rIC �

⋃
1≤i≤m

rIi ∪ {(vC , vCi) | if ri � r}

AIC �

⋃
1≤i≤m

AIi ∪
{
{vC} if A ∈ {A1 , . . . ,An}
∅ otherwise.

for all r and A. Figure 3.3 shows the interpretation IC for the concept C � Professor u
∃gives.Lecture u ∃attends.Lecture
The following lemma characterizes the semantic relation of IC and C:

Lemma 3.12. Let C be an EL concept, then the following holds for all interpretations I and
elements a ∈ ∆I :

(IC , vC) -Σ (I , a) if and only if I |� C(a).

18

3.4 Concepts as Interpretations

vC

Professor

LectureLecture

gives attends

Figure 3.3: The tree-shaped interpretation IC of C � Professor u ∃gives.Lecture u
∃attends.lecture

Proof. First, assume (IC , vC) - (I , a). We now show I |� C(a) by structural induction
over C.

Case C � A: vC ∈ AIC by construction of IC . Since (IC , vC) - (I , a), there is a simulation
σ, such that (vC , a) ∈ σ. Due to the first condition of simulations it follows that
a ∈ AI and thus I |� C(a).

Case C � D u D′: vC ∈ DIC ∩D′IC by construction of IC . Since the induction hypothesis
holds for D and D′ we have that I |� D(a) and I |� D′(a). Thus it follows that
a ∈ DI ∩ D′I and I |� C(a).

Case C � ∃r.D: vC ∈ (∃r.D)IC by construction of IC. This means there is a v′C ∈ DIC

with (vC , v′C) ∈ rIC . Since (IC , vC) - (I , a), there is a simulation σ, such that
(vC , a) ∈ σ. Due to the second condition of simulations there must be a a′ ∈ ∆I
with (a , a′) ∈ rI and (v′C , a′) ∈ σ. By applying the induction hypothesis we have
that a′ ∈ DI and thus I |� ∃r.D(a).

Conversely assume that I |� C(a). We now show that there is a simulation σ witnessing
(IC , vC) - (I , a) by structural induction over C.

Case C � A: We construct a simulation σ � {(vC , a)}. By construction of IC we know
that vC ∈ AIC . Since I |� C(a) we have that a ∈ AI and σ fulfills the [Atom]
condition. Since vC has no r-successors in IC, the relations σ fulfills the [Forth]
condition and it follows that (IC , vC) - (I , a).

Case C � D u D′: Since the induction hypothesis holds for D and D′, there are simula-
tions σD and σD′ such that (ID , vC) - (I , a) and (ID′ , c) - (I , a). It follows that the
simulation σ � σD ∪ σD′ is a witness that (IC , vC) - (I , a).

Case C � ∃r.D: There is a v′C ∈ DIC with (vC , v′C) ∈ rIC by construction of IC. Since
I |� C(a) there must also be a a′ ∈ DI with (a , a′) ∈ rI . The induction hypothesis
holds for D, thus there is a simulation σ′ such that (ID , v′C) - (I , a′). We construct
the simulation σ � σ′ ∪ {(vC , a)} which is a simulation between (IC , vC) and
(I , a). �

19

3.4 Concepts as Interpretations

Similarly we can “view” a tree-shaped interpretation I as a concept CI , by inductively
constructing sub-concepts for all successors of an individual and adding them into
a conjunction. This is conceptually the reverse of the construction described above
and results for example in “reading of” the concept C � professor u ∃gives.lecture u
∃attends.lecture from the interpretation in Figure 3.3.

20

4 Concept-by-Example for EL

In this chapter, we investigate the concept-by-example problem. First, we define the
problem of EL concept separability in EL knowledge bases to be the following decision
problem CBE:

Input: EL knowledge base K, a set of positive examples P ⊆ ind(K), a set of negative
examples N ⊆ ind(K) and a signature Σ.

Question: Is there an EL concept C using only names from Σ such that
• K |� C(a) for all a ∈ P, and
• K 6 |� C(b) for all b ∈ N?

We say that C is a witness or that it witnesses (K, P,N,Σ) ∈ CBE if it is such a concept.
As an example for the concept-by-example problem consider the EL knowledge base

from the last chapter:

T � {Student v Human u ∃attends.Lecture}
A � {Student(alice), Student(bob), Lecture(logic),

attends(bob, logic), ∃attends.Seminar(alice)}.

Given this knowledge base, the positive examples P � {alice, bob} and the negative
example N � {logic} and a signature with all relevant names, an EL concept C such that
K |� C(alice) and K |� C(bob) but K 6 |� C(logic) is Human or ∃attends.Lecture.

On the other hand there is no separating concept for P � {bob} and N � {alice}, since
for the concepts C ∈ {>,Human, Student, ∃attends.Lecture} we have that K |� C(bob),
but also that K |� C(alice). The concept C � attends.Seminar describes Alice but not
Bob, but since EL lacks negation, it does not help us to get a concept that describes Bob
but not Alice.
Note that another related problem, that is sometimes considered in the literature is

concept definability. Here, the question is, if there is a concept query that exactly describes
only the positive examples, but no other individuals. This is a special case of CBE, where
N � ind(K) \ P.
In the following chapter we give a characterization of CBE using the canonical model

and use it to show upper and lower bounds for the decision and computation problem
variant. Furthermore, we show, that the lower bound does not improve if we restrict the
knowledge base in various ways, for example to an empty TBox or to a fixed outdegree.
In the following sections we can assume K to be in normal form:

21

4.1 Characterization of Separability

Theorem 4.1. Let K be a knowledge base, P a set of positive examples, N a set of negative
examples and Σ a signature. Let K̂ denote the knowledge base K in normal form.

(K, P,N,Σ) ∈ CBE if and only if (K̂, P,N,Σ) ∈ CBE

Note that this requires the assumption that the new concept names introduced by the
normalization are not from Σ.

Proof. (⇒) For the first direction, assume that (K, P,N,Σ) ∈ CBE. Then there is a concept
C using only names from Σ such that for all models I of K we have that I |� C(a)
for all a ∈ P and I 6 |� C(b) for all b ∈ N. Since K̂ is a conservative extension of K,
every model of K̂ is also a model of K. By definition C contains only names from Σ, it
follows that K̂ |� C(a) for all a ∈ P and K̂ 6 |� C(b) for all b ∈ N. Thus C is a witness for
(K̂, P,N,Σ) ∈ CBE.

(⇐) Assume that (K̂, P,N,Σ) ∈ CBE. Then there is a concept C using only names from
Σ such that for all models I of K̂ we have that I |� C(a) for all a ∈ P and I 6 |� C(b) for
all b ∈ N . Since every model of K can be extended to a model of K̂ and C only contains
names from Σ, it follows that K |� C(a) for all a ∈ P and K 6 |� C(b) for all b ∈ N . Thus C
is a witness for (K, P,N,Σ) ∈ CBE. �

4.1 Characterization of Separability

In this section, we provide a characterization of the concept-by-example problem for EL
knowledge bases and EL concepts. This characterization allows us to develop algorithms
for both concept learning and deciding the separability problem in the following sections.
The idea of this characterization is based on the characterization of the similar query-by-
example problem for relational databases by ten Cate and Dalmau [39] and Barceló and
Romero [9] and its extension to description logic knowledge bases by Gutiérrez-Basulto,
Jung, and Sabellek [19]. The main differences to these earlier works are that we use
EL concepts instead of conjunctive queries, finite canonical models instead of universal
interpretations and Σ-simulations instead of Σ-homomorphisms. The following theorem
states the characterization of separability.

Theorem 4.2. For every EL knowledge base K, all sets P and N over ind(A) and signatures Σ,
the following two are equivalent

1. (K, P,N,Σ) ∈ CBE

2.
∏

a∈P(GK , a) �Σ (GK , b) for all b ∈ N

Proof. First, let (K, P,N,Σ) ∈ CBE with P � {a1 , . . . an} and let C be an EL-concept
witnessing this using only names from Σ. We want to show that 2. holds. By universality
ofGK (Theorem3.11) andLemma3.12 there are simulations σi such that (IC , vC) - (GK , ai)

22

4.2 Deciding Separability is ExpTime-complete

for each positive example ai . From these we construct σ as a relation between IC and∏
a∈P(GK , a) as follows:

σ � {(a , (a1 , . . . , an)) | (a , ai) ∈ σi for all i}.
By construction σ is a simulation from IC to

∏
a∈P GK and (vC , (a1 , . . . , an)) ∈ σ.

Assume for contradiction that 2. does not hold. Then there is a b ∈ N such that there is
a simulation ρ between

∏
a∈P(GK , a) and (GK , b). Composing σ and ρ yields a simulation

that is a witness for (IC , c) - (GK , b) due to transitivity of simulations and thus K |� C(b)
(Lemma 3.12), a contradiction to (K, P,N,Σ) ∈ CBE.

Conversely, let 2. be fulfilled. We want to show that there is a witness concept C for
(K, P,N,Σ) ∈ CBE. Let (I , a∗) be the Σ-restriction of

∏
a∈P(GK , a). The interpretation I

cannot directly be viewed as a concept. Instead we consider its tree-shaped unravelling
Î, which can be viewed as a (possibly infinite) EL concept C � CÎ . In particular consider
a∗ is at the “root” of the tree-shaped concept. By construction of C, Î |� C(a∗). From
Lemma 3.7 and the existence of projections from I to GK it follows that GK |� C(ai). From
2. and universality of GK, we have that K |� C(a) for all a ∈ P and K 6 |� C(b) for all b ∈ N .
The issue that remains is that the unravelling Î may be infinite and we cannot read off a
finite concept C if this is the case.

If C is infinite, we show that there is a finite restriction of C which is a witness. Denote
with Ci , i ≥ 0, the restriction of C to role depth i. Parts of C of the form ∃r.D at role
depth i are simply replaced with > to achieve this. We have that Ci is finite for every
i. For contradiction, we assume that, for every i ≥ 1, Ci is not a witness. There is a
simulation σi such that (ICi , vCi) - (GK , bi) for some bi ∈ N (Lemma 3.12) for each C − i.
Since N is finite, there must be some b such that b � bi for infinitely many i. Thus
there are infinitely many simulations σi , i ≥ 1 with (vC , b) ∈ σi . From this sequence of
simulations we construct a new sequence σ′i , i ≥ 1 such that

for all j ≥ 1 and i < j, we have that σ′i ⊆ σ
′
j . (∗)

Start with setting σ′1 � σ1, satisfying the condition (∗). To define σ′j , assume that all σ′k are

defined for 0 < k < j. Let V � ∆
IC j \ ∆IC j−1 be all individuals in IC j but not in IC j−1 and

define for all k ≥ j, τk as the restriction of σk to V . By construction, V is finite. Moreover
as GK has finite outdegree, there are only finitely many different τk . Choose some τ
such that τ � τk for infinitely many k ≥ j. Then obtain a new sequence of simulations
by dropping all σk with τk , τ. Setting σ′j � τ ∪ σ′j−1 finishes the construction and
satisfies (∗). It remains to note that σ̂ �

⋃
i≥0 σ

′
i is a simulation from (IC , vC) into (GK , b).

Thus
∏

a∈P(GK , a) - (GK , b), contradicting 2., it follows that there must be an i such that
Ci is a witness for CBE. �

4.2 Deciding Separability is ExpTime-complete

Now that we have this characterization of the concept-by-example problem for EL
knowledge bases, we can use it to give an algorithm for deciding the problem and thus
show an upper bound for its complexity.

23

4.2 Deciding Separability is ExpTime-complete

Input: (K, P,N,Σ)

1. Construct GK from K.

2. Construct
∏

a∈P(GK , a) from GK.

3. For all b ∈ N, check if
∏

a∈P(GK , a) -Σ (GK , b). Return “false” if there exists
such a simulation.

4. Otherwise return “true”

Figure 4.1: Algorithm for deciding CBE in exponential time

The algorithm in Figure 4.1 returns “true” if (K, P,N,Σ) ∈ CBE and “false” if
(K, P,N,Σ) < CBE. Soundness and completeness of this algorithm follow directly from
the characterization in Theorem 4.2. We claim that this algorithm runs in exponential
time in the size of its input:

• Step 1 takes polynomial time to construct GK from K.

• Step 2 constructs
∏

a∈P(GK , a) with exponential size in |P | and thus requires
exponential time.

• The check in Step 3 is executed at most |N | times and each step checks if there
is a simulation between the exponentially-sized

∏
a∈P(GK) and (GK , b). This can

be decided with the polynomial-time algorithm for simulations from Section 3.2.
Overall, each check thus takes exponential time, since we need to check for the
existence of a simulation between an exponentially-sized and a polynomially-sized
interpretation.

Thus, the described algorithm can be implemented to run in exponential time in the size
of its input. The lemma directly follows from this:

Lemma 4.3. CBE is in ExpTime.

For showing ExpTime-hardness of CBE and thus give a matching upper bound we
adapt a proof of ExpTime-hardness of the simulation problem for concurrent transition
systems by Harel, Kupferman, and Vardi [20]. More precisely, we reduce the word
problem for alternating, linear space bounded Turing machines (TMs). Given such a TM
M with linear space bound s(n) and an input w with |w | � n, we construct an ABox A
and sets of positive and negative examples P and N , such that

((∅,A), P,N,Σ) ∈ CBE if and only if M does not accept w.

It is well-known that there is a fixed alternating TM whose word problem is ExpTime-
complete [15]. This construction for CBE was already published by Funk et al. [18].
For our purposes, an alternating Turing machine M � (�,Q∀ ,Q∃ , 7→, q0 , Facc , Frej)

consists of

24

4.2 Deciding Separability is ExpTime-complete

• a finite set of tape symbols �,

• a set of universal states Q∀,

• set of existential states Q∃,

• a set of accepting states Facc,

• a set of rejecting states Frej (the sets Q∀, Q∃, Facc, Frej of states are disjoint, their
union is the set of all states Q),

• an initial state q0,

• a transition relation 7→ ⊆ Q × � ×Q × � × {L, R,H}.

L, R and H correspond to the head moving to the left, to the right and staying at the
same cell, respectively. We call the accepting and rejecting states Facc ∪ Frej final states. In
our model of alternation, 7→ has a branching degree of 2. The TM is in an existential
state in even-numbered steps and in a universal state in odd-numbered steps. We use
(q , a) 7→ ((ql , bl ,∆l), (qr , br ,∆r)) when M is in state q ∈ Q∀ ∪ Q∃ reading symbol a to
indicate that it branches to the left with (ql , bl ,∆l) and to the right with (qr , br ,∆r). These
directions are not related to the movement of the head which is determined by ∆l or
∆r . We call ql the↙-child of q and qr the↘-child of q. Additionally, we assume that M
always reaches a final state and that it loops there forever.

The computation of M on an input word w can be represented as a graph, whose nodes
are configurations of M. With each node in the graph we associate an acceptance value 1
or 0 as follows. Configurations that are in an accepting state have the acceptance value 1,
configurations that are in a rejecting state have acceptance value 0. The acceptance value
of a configuration in a universal state is the minimum value of its two children and the
value of a configuration in an existential state is the maximum value of its children. A
TM accepts its input if the initial configuration has an acceptance value of 1 and rejects
its input if the initial configuration has an acceptance value of 0.

Given an alternating TM M and a word w, we construct an ABox A consisting of two
parts AM,w and BM . Let M � (�,Q∀ ,Q∃ , 7→, q0 , Facc , Frej) be the given TM, and let s(n)
be the space bound of M on the word w as input. We use concept names Reject and
Accept and role names rq ,a ,d ,i , for all q ∈ Q, a ∈ �, d ∈ {↙,↘} and 1 ≤ i ≤ s(n) in both
parts of the ABox.

We start with BM . The individuals in BM that correspond to universal and existential
states are (∀, 0, 0, 0), (∀, 0, 1, 0), (∀, 1, 0, 0), (∀, 1, 1, 1). (∃, 0, 0, 0), (∃, 0, 1, 1), (∃, 1, 0, 1),
(∃, 1, 1, 1). The intuition is that an element (∗, l , r, v) corresponds to a configuration of a
TM with the following properties: its↙-child has acceptance value l, its↘-child has
acceptance value r and its own acceptance value therefore is v. Furthermore, there are
two individuals that represent an acceptance or a rejection state of the TM. They are
called 1 and 0, which corresponds to their acceptance value. The only concept assertions
in BM are Reject(0) and Accept(1).

25

4.2 Deciding Separability is ExpTime-complete

We add the following role assertions to BM in order to represent the transitions between
configurations. For left branches, we have rq ,a ,↙,i(e , e′) ∈ BM for all q ∈ Q , a ∈ �, 1 ≤
i ≤ s(n) and for e � (∗, l , r, v) if either e′ � (∗′, l′, r′, v′), ∗ is the opposite type of state
as ∗′ and l � v′, or alternatively e′ � l. For right branches, we have rq ,a ,↘,i(e , e′) ∈ BM
for all q ∈ Q , a ∈ �, 1 ≤ i ≤ n, and for e � (∗, l , r, v) if either e′ � (∗′, l′, r′, v′), ∗ is the
opposite type of state as ∗′ and r � v′, or alternatively e′ � r. We additionally, have
r(0, 0), r(1, 1) ∈ BM for all role names r.
The second part AM,w has a number of concept and role assertions for each of the

s(n) tape cells. For every cell i we have individuals of the form (q , a , i) and (a , i), for all
q ∈ Q , a ∈ �. An individual (a , i) represents that the content of cell i is a and the head of
the TM is not on cell i. An individual (q , a , i) represents that the content of cell i is a, that
the head of the TM is on cell i and that the TM is in state q. In the following description,
the cases i � 1 and i � s(n) are not treated in a special way, since we can assume that
that M does not move its head beyond cell 1 or s(n).

Informally, a role assertion rq ,a ,d ,i(e , e′) is included in AM,w if in state q with the head
at cell i and reading tape symbol a, M can change the tape cell represented by e to e′ by
taking a d-branch. Note that e and e′ may be identical, meaning that the TM transition
does not affect the tape cell.
More formally, each transition (q , a) 7→ ((ql , bl ,∆l), (qr , br ,∆r)) of M results in the

following role assertions for each tape cell i in AM,w :

1. Role assertions that correspond to the head moving from cell i to cell i − 1 or i + 1.
For each individual (q , a , i) ∈ ind(AM,w), we include:

rq ,a ,↙,i((q , a , i), (bl , i)), rq ,a ,↘,i((q , a , i), (br , i))

2. Role assertions that correspond to the head moving from cell i − 1 or i + 1 to cell i.
For each individual (b , i) ∈ ind(AM,w), we include:

rq ,a ,↙,i−1((b , i), (ql , b , i)), if ∆l � R

rq ,a ,↘,i−1((b , i), (qr , b , i)), if ∆r � R

rq ,a ,↙,i+1((b , i), (ql , b , i)), if ∆l � L

rq ,a ,↘,i+1((b , i), (qr , b , i)), if ∆r � L

3. Role assertions that correspond to the transition not modifying the cell. For each
(b , i) ∈ ind(AM,w), we include:

rq ,a ,↙, j((b , i), (b , i)), for all j < {i − 1, i} if ∆l � R

rq ,a ,↘, j((b , i), (b , i)), for all j < {i − 1, i} if ∆r � R

rq ,a ,↙, j((b , i), (b , i)), for all j < {i , i + 1} if ∆l � L

rq ,a ,↘, j((b , i), (b , i)), for all j < {i , i + 1} if ∆r � L

rq ,a ,↙, j((b , i), (b , i)), for all j , i if ∆l � H

rq ,a ,↘, j((b , i), (b , i)), for all j , i if ∆r � H

26

4.2 Deciding Separability is ExpTime-complete

4. Role assertions that modify the current cell without moving the head. For each
(q , a , i) ∈ ind(AM,w), we include:

rq ,a ,↙,i((q , a , i), (ql , bl , i)), if ∆l � H

rq ,a ,↘,i((q , a , i), (qr , br , i)), if ∆r � H

Additionally, we need a number of role assertions for the final transitions (q , a) 7→
(q , a ,H), q ∈ Facc ∪ Frej of M. For each such transition and each possible cell i, we include
the assertions

rq ,a ,↙,i((q , a , i), (q , a , i)), rq ,a ,↘,i((q , a , i), (q , a , i)).

It remains to add concept assertions that mark accepting and rejecting states. We
include, for all a ∈ �, 1 ≤ i ≤ n:

Reject((q , a , i)) ∈ AM,w , for all q ∈ Frej ,

Reject((a , i)) ∈ AM,w ,

Accept((q , a , i)) ∈ AM,w , for all q ∈ Facc ,

Accept((a , i)) ∈ AM,w .

This finishes the construction of AM,w . The signature Σ includes all used role and
concept names. It remains to define P and N. Intuitively, P is a set of individuals
representing the initial configuration of M on input w. Moreover, N consists of a single
individual b. Formally, let wi denote the i-th symbol of w and β be the symbol for an
empty tape cell. We then define:

ai �


(q0 , w1 , 1) if i � 1
(wi , i) if 2 ≤ i ≤ n
(β, i) if n + 1 ≤ i ≤ s(n)

P � {a1 , . . . , as(n)}
b � (∀, 1, 1, 1).

Lemma 4.4. (K, P, {b},Σ) ∈ CBE for K � (∅,AM,w ∪ BM) if and only if M does not accept w.

Proof. By Theorem 4.2 and the construction of the disjoint AM,w and BM , it suffices to
show that

M accepts w if and only if
∏
a∈P

(IAM,w , a) -Σ (IBM , b), (∗)

where, for any ABox A, IA is the canonical model of the knowledge base that contains
just A. Before we give the formal proof, we provide some insight in the construction of
AM,w . For this purpose, let us denote with I the product

∏
a∈P IAM,w . Moreover, for a

configuration α of M, let xα denote the element of∆I corresponding to this configuration,
where for a (e1 , . . . es(n)) ∈ ∆I , e1 encodes the content of the first tape cell, es(n) encodes the

27

4.2 Deciding Separability is ExpTime-complete

content of the last tape cell and the single ei � (q , a , i) encodes the state and head position.
We claim that elements of I that are reachable from (a1 , . . . , as(n)) correspond precisely
to the configurations in the computation of M on input w. Indeed, (a1 , . . . , as(n)) � xα0

for the initial configuration α0 of M on input w. Moreover, we observe that, for any
(non-final) configuration α of M, xα has precisely two successors xαl , xαr in I, where
αl , αr are the successor configurations of α according to M’s transition relation 7→. To
see this, let q be the state, i be the head position and a be the current tape symbol in α.
By construction of AM,w , the element (q , a , i) of xα has precisely two successors, one for
rq ,a ,↙,i and one for rq ,a ,↘,i . Furthermore, we have (xα , x′) ∈ rIq ,a ,↙,i if and only if x′ � xαl

is the↙-child of xα and (xα , x′) ∈ rIq ,a ,↘,i if and only if x′ � xαr is the↘-child of xα. We
proceed with the proof of (∗).
(⇐) Suppose σ is a simulation between

∏
a∈P(IAM,w , a) and (IBM , b). The goal is to

show that the initial configuration α0 of M on input w is accepting. For proving this, we
associate with every element d ∈ ind(BM) a value vd by taking vd � v if d is of the shape
(∗, l , r, v) and vd � d if d ∈ {0, 1}. Now, the desired statement is a consequence of the
following claim.
Claim. For every configuration α reachable from α0, we have that, if (xα , d) ∈ σ, then

vd is the acceptance value of α.
Proof of the Claim. We prove this by induction on the length of the longest path from α

to a final configuration.
First, consider the case when α is a final configuration. By construction of AM,w , we

have xα ∈ AcceptI if α is accepting and xα ∈ RejectI if α is rejecting. By definition of BM
and (xα , d) ∈ σ, we know d � 1 or d � 0, respectively. Consider now the case that α is
not a final configuration and (xα , d) ∈ σ. By definition of the role assertions in BM , we
have that d is a universal (resp., existential) element (∀, ∗, ∗, ∗) (resp., (∃, ∗, ∗, ∗)) if α is a
universal (resp., existential) configuration. By what was said above, xα has precisely
two successors xαl and xαr in I. By the simulation condition [Forth], we know that
(xαl , dl) ∈ σ and (xαr , dr) ∈ σ for some elements dl , dr . By induction, we know that vdl

and vdr are the acceptance values of αl and αr . By definition of BM , the acceptance value
of α is vd . This finishes the proof of the Claim.

(⇒) Suppose M accepts the word w. Define a relation σ from elements xα of I to
individuals of BM . Let (xα , v) ∈ σ for configurations α that are final with acceptance
value v and (xα , (∗, l , r, v)) ∈ σ for configurations α if and only if ∗ is the type of α, l is
the acceptance value of the↙-child of α, r is the acceptance value of the↘-child of
α, v is the acceptance value of α. We prove that σ is a simulation between (I , xα0) and
(IBM , b). For condition [Atom], we only have to consider the final elements that are in
the extensions of Accept or Reject since there are no other concept names. The relation σ
fulfills [Atom] since it relates final elements to final elements in BM . For [Forth], consider
an element xα with (xα , d) ∈ σ for some non-final configuration α; the argument for final
configurations is similar. By the remark above, we have to show that (xαl , dl) ∈ σ and
(xαr , dr) ∈ σ for two elements dl , dr and the possible successor configurations αl and αr
of α. But this is clear from the definition of σ. �

28

4.2 Deciding Separability is ExpTime-complete

Note that this reduction can be modified to show ExpTime-hardness of EL concept
definability as well.
This gives us the matching ExpTime lower bound (Lemma 4.4) to the ExpTime upper

bound (Lemma 4.3) and we know that CBE is ExpTime-complete:

Theorem 4.5. CBE is ExpTime-complete.

This concludes this section about the concept-by-example decision problem.

29

4.3 Restrictions

4.3 Restrictions

As seen in this section, the deciding separability for concept-by-example for EL-
knowledge bases is surprisingly hard, considering that EL is an inexpressive description
logic. We investigate various restrictions of the problem which often lead to lower
complexity in other settings. However, we will discuss in this section that various
restrictions of the decision problem still yield an ExpTime lower bound and thus do not
help making the problem easier. One restriction however, improves the lower bound by
limiting the role depth of the separating concept. This is discussed in Chapter 5.

Empty TBox First, one could consider the decision problemwhere the input knowledge
base is restricted to have an empty TBox. However, as can be seen in Section 4.2, the
reduction from alternating, linear space bounded Turing machines does not require a
TBox. This variant is still ExpTime-hard. This means that EL concept separability in
relational databases is ExpTime-hard as well.

Tree-shaped ABox Then, one could restrict the input knowledge base K � (T ,A) to
have a tree shaped ABox A, but allow arbitrary TBoxes. In this case, the reduction from
alternating Turing machines no longer applies, since it produces a cyclical ABox. Still, a
slight modification of the reduction gives an ExpTime lower bound for this restriction:
Instead of putting the complete cyclical structure for each tape cell into the ABox, it
only contains a single “root” individual for each cell. Instead, we add sufficient concept
inclusions to the TBox to generate this structure for each tape cell in the construction of
the canonical model. The rest of the reduction then works exactly the same, since the
canonical model of this modified reduction is in some sense equivalent to the model
of the original reduction. It can be noted however, that this modification requires a
non-empty and circular TBox.

Restrict the outdegree of the ABox Finally, one could restrict the outdegree of the
individuals in the ABox and the signature of the knowledge base. In the reduction from
alternating Turing machines as described in Section 4.2, the number of used role names
rq ,a ,d ,i depends on the size of the input, since i ranges from 1 to the number of tape cells
the Turing machine needs for a input word of size n. Otherwise the number of role
names and the ABox role assertions that determine the outdegree can be seen as fixed,
since there exists a certain fixed alternating Turing machine with an ExpTime-hard word
problem that can be used in the reduction [15].

To remove this dependence of the signature on the length of w, wemodify the reduction
from alternating, linear space bound Turing machines as follows: Given a TMwith space
bound s(n) and input word w with |w | � n, the reduction constructs elements for s(n)
tape cells. Recall, that a role assertion rq ,a ,d ,i(e , e′) encodes that a cell e changes to e′ if
the head is at position 1 ≤ i ≤ s(n), the state is q, the current symbol is a and it branches
in direction d. The intuition is that a single role transition rq ,a ,d ,i is replaced by a path
of role transitions of i times r′q ,a ,d ,1 followed by s(n) − i + 1 times rq′,a ,d ,0. Since at each

30

4.3 Restrictions

e

e′1 e′2 e′3

rq ,a ,d ,1 rq ,a ,d ,2 rq ,a ,d ,3

e

e′1 e′2 e′3

(e , 1, 0)

(e , 1, 1)

(e , 1, 2)

(e , 2, 0)

(e , 2, 1) (e , 3, 0)

r′q ,a ,d ,1

r′q ,a ,d ,0

r′q ,a ,d ,0

r′q ,a ,d ,0

r′q ,a ,d ,1

r′q ,a ,d ,1r′q ,a ,d ,0

r′q ,a ,d ,0 r′q ,a ,d ,0

Figure 4.2: Illustration of the modification of the reduction

step in the path, the only options are rq ,a ,d ,0 and rq ,a ,d ,1, the outdegree of all individuals
becomes 2. This replacement is done both in AM,w and BM .
The modified reduction replaces the role assertion rq ,a ,d ,i(e , e′) with a sequence of

additional elements {(e , j, 0) | 1 ≤ j ≤ s(n)} ∪ {(e , i , k) | 1 ≤ k < s(n) − i}, that are linked
by the roles r′q ,a ,d1 and r′q ,a ,d ,0 in the following way:

r′q ,a ,d ,1(e , (e , 1, 0))
r′q ,a ,d ,1((e , j, 0), (e , j + 1, 0)) for all 1 ≤ j < i

r′q ,a ,d ,0((e , i , k), (e , i , k + 1)) for all 0 ≤ k < s(n) − i − 1

r′q ,a ,d ,0((e , i , s(n) − i), e′)

The cases s(n) � 1 or i � s(n) or i � (n) − 1 require some special attention, but are not
described here. This limits the outdegree of each individual to q × a × d × 2 since the
(e , j, 0) are used in paths for multiple i.

Figure 4.2 shows the idea of this modification. The tape-size dependent outdegree of
3 in the first ABox is replaced by the fixed outdegree of at most 2 in the second ABox.
Note that the path-length and number of additional elements of this construction can be
improved if needed, however this does not change the idea behind the reduction.
With this modified reduction we have shown that bounding the outdegree of K still

gives us an ExpTime lower bound and thus no improvement. This modification even

31

4.4 Size of the Learned Concept

shows that we get the same lower bound for a knowledge base K over a fixed signature
of concept and role names.

4.4 Size of the Learned Concept

Similarly to the decision problem, we can define a corresponding computation problem
for the concept-by-example problem. Since it computes a concept that applies to all
positive examples but not to the negative examples, it is often called concept learning in
previous works. Here, we want to learn an EL concept that separates the examples in an
EL knowledge base:

Input: EL knowledge base K, a set of positive examples P ⊆ ind(K), a set of negative
examples N ⊆ ind(K) and a signature Σ.

Output: An EL concept C using only names from Σ such that
• K |� C(a) for all a ∈ P, and
• K 6 |� C(b) for all b ∈ N

if it exists and “fail” otherwise.

First we show that the learned concept C can be of double exponential size for some
inputs. Second we show that there always is a concept C of at most double exponential
size that witnesses (K, P,N,Σ) ∈ CBE. We conclude that an algorithm that computes a
separating concept must take double exponential time in the worst case.

Theorem 4.6. For every n ∈ N, there is an EL knowledge base K, sets P and N and signature
Σ such that (K, P,N,Σ) ∈ CBE, the size of (K, P,N,Σ) is polynomial in n and the smallest
separating concept C with

• K |� C(a) for all a ∈ P, and

• K 6 |� C(b) for all b ∈ N

has size of at least 22n .

Proof. Let n ∈ N. There is a ((∅,A ∪ B), P, {b},Σ) such that the concept C that separates
a1 , . . . an and b, is of double exponential size and the size of A ∪ B and P is polynomial
in n.

We construct the first partA of the ABox such that the product model
∏

a∈P GK contains
a bitwise counter with n bits as follows: For each bit i ≤ n we include elements 0i
and 1i that represent the state of this bit (either 0 or 1). The concept name I marks the
1-state of the bit with the concept assertion I(1i). The possible state transitions of the
bits are encoded with role assertions of roles ri and li for 1 ≤ i ≤ n. A ri or li transition
represents that the i-th bit of the counter flips from 0 to 1 and all lower bits flip from 1 to
0:

32

4.4 Size of the Learned Concept

s2 , s1 02 , 01 02 , 11 12 , 01 12 , 11

I

s
r1

l1

r2

l2

r1

l1

Figure 4.3: Product model of the A part of the ABox used in the reduction for n � 2 bits

ri(0i , 1i), li(0i , 1i)
ri(1 j , 0 j), li(1 j , 0 j) for all 1 ≤ j < i

ri(1 j , 1 j), ri(0 j , 0 j), li(1 j , 1 j), li(0 j , 0 j) for all i < j ≤ n

Additionally we include an element si for all 1 ≤ i ≤ n that represents an initial state
for each bit and a special role s that represents a transition from the initial state to the
0-state with the role assertion s(si , 0i) for all 1 ≤ i ≤ n. This completes A.

We let P be {s1 , . . . , sn}, the initial states of the bits. Let I be
∏

a∈P GK. Each reachable
element in ∆I from (s1 , . . . , sn) represents a binary number encoded in the bit states
of the components, with the first component being the least significant bit and the last
component being the most significant bit. The roles ri and li link a number j to its
successor j + 1 until the maximum value 2n − 1 of the counter is reached. The element
representing the maximum value (11 , . . . , 1n) is the only element of II . This way I has
size 2n and each counter element has two possible successors, one with an ri role and
one with an li role. Figure 4.3 shows I for the A part of the ABox for n � 2.
For the second part B, we construct an ABox that encodes that there is a path over

ri and li that does not lead to an element that is in II . We include an initial element t
and elements that track acceptance values of paths 00, 10, 01 and 11. The names of the
elements 00, 10, 01 and 11 contain the acceptance value of their left and right successor,
the acceptance value of an element is 1 if both its li and ri successors have acceptance
value 1 and 0 otherwise. The acceptance value of element 11 is expressed with the
concept assertion I(11) The right and left successors are encoded with role assertions for
all ri and li :

li(11, 11), ri(11, 11), li(10, 11), ri(01, 11)
ri(10, e), li(01, e), li(00, e), ri(00, e) for all e ∈ {00, 10, 01}

Additionallywe add role assertions from the initial element t: s(t , e),for all e ∈ {00, 10, 01}.
This results in the ABox part shown in Figure 4.4.

It can now be observed that (s0 , . . . , sn) and t can be separated by an EL-concept, since
for all simulations σ between the two parts of the ABox it can only be be that (e , 11) ∈ σ
but not that (e , 10) < σ, (e , 01) < σ and (e , 00) < σ for all elements of the binary counter e.
And thus we have that ((s0 , . . . , sn), t) < σ since t does not have 11 as an s-successor.

33

4.4 Size of the Learned Concept

t

00 01

10 11 I

s

s

s

li , ri

li

ri

li ri

li

li ri

li

ri

ri

li , ri

Figure 4.4: B part of the ABox used in the reduction

Claim: C � ∃s .C2n is the smallest concept that separates (s0 , . . . , sn) and t where

C0 � I
Ci+1 � ∃l f (i).Ci u ∃r f (i).Ci

and f “selects” the correct role name for the given depth1:

f (i) �
{

0 if i is even
1 + f (i/2) otherwise.

Intuitively the f (i)-th bit is the bit that flips from 0 to 1 when a binary counter with the
value i is incremented.

Proof of claim: Let I be the product interpretation
∏

a∈P GK. To show that C is indeed the
smallest concept, we enumerate the reachable elements of I according to their distance
from the maximum counter value. The element (11 , . . . , 1n) with the maximum counter
value 2n − 1 is then called v0, its r f (2n−2) and l f (2n−2) predecessor is called v1 and so on,
until we reach the element (01 , . . . , 0n) with the minimum counter value 0, which is
called v2n−1. We show that Ci is the smallest concept that separates vi from 00, 01 and 10
by induction. For i � 0 we have that v0 ∈ II but 01, 10, 00 < II . Thus, I is the smallest
separating concept. Now assume that the claim holds for Ci . If we want to separate vi+1
from 00, 01 and 10, we need to separate both its r f (2n−i−2) and its l f (2n−i−2) successor from
00, 01, 10, since each of 00, 01, 10 has at least one successor in {00, 01, 10}. The smallest
concept which does this is

C′ � ∃r f(2n−i−2).D1 u l f(2n−i−2).D2

1Based on a possible definition of the integer sequence https://oeis.org/A007814

34

https://oeis.org/A007814

4.4 Size of the Learned Concept

where D1 separates the ri successor and D2 separates the li successor from 00, 01 and
10. Since both successors are vi , the smallest separating concept is Ci by the induction
hypothesis. It follows that

C′ � Ci+1.

Thus, Ci+1 is the smallest concept that separates vi+1 from 00, 10 and 01. It follows that
C � ∃s .C2n is the smallest concept that separates (s1 , . . . , sn) from t and

|C | ≥ 22n
. �

This gives us a double exponential lower bound on the size of the separating concept
for concept-by-example. The next theorem gives us a matching upper bound:

Theorem 4.7. Let K be an EL knowledge base, P a set of positive examples, N a set of negative
examples and Σ a signature. If (K, P,N,Σ) ∈ CBE, then there is a concept of at most double
exponential size witnessing this.

Proof. To show this theoremwefirst prove a claim regarding the algorithm for simulations
between finite interpretations from Section 3.2. Recall that it produces a sequence of
relations σi until it ends with a simulation σ after at most n2 steps.
Claim: Let I and J be interpretations and k be the maximum outdegree of J . If the

relation σi ⊆ ∆I × ∆J does not contain a pair (c , d) then there is a concept C of size at
most (3k)i such that c ∈ CI but d < CJ .

Wewill show this via induction over i. First, consider i � 0. If σ0 does not contain a pair
(c , d) then it must be that c ∈ A but d < A for some A ∈ NC ([Init]). The concept C � A
of size (3k)0 � 1 thus separates c and d. Now, assume that the induction hypothesis
holds for i. Let (c , d) be a pair that is in σi but removed by the algorithm in a [Step] and
thus not in σi+1. Then there must be an r ∈ NR and c′ ∈ ∆I with (c , c′) ∈ rI , such that
for no d′ ∈ ∆J with (d , d′) ∈ rJ we have that (d′, c′) ∈ σi . Via the induction hypothesis
we know that c′ can be separated from all r-successors d1 , . . . , dm of d. Note that m is
bounded by the maximum outdegree of J : m ≤ k. Let Ci be the concept that separates
c′ from di , by the induction hypothesis we know that |Ci | ≤ (3k)i . The concept that
separates c and d:

C � ∃r.
m/

i�1
Ci

thus has a size of at most (3k)i+1:

|C | ≤ 3︸︷︷︸
∃r.

+ k︸︷︷︸
u

+ (3k)i︸︷︷︸
Ci

·k � 3 + k + 3i · k i+1 ≤ (3k)i+1.

From the characterization of concept-by-example in Theorem 4.2 we know that
(K, P,N,Σ) ∈ CBE if and only if

∏
a∈P(GK , a) �Σ (GK , b). Thus, running the algorithm for

simulations on
∏

a∈P GK and GK does result in a relation that does not contain (∏a∈P a , b)
after at most an exponential number of steps (due to the exponential size of

∏
a∈P GK).

35

4.4 Size of the Learned Concept

Input: (K, P,N,Σ)

1. Check with the algorithm for the decision problem if (K, P,N,Σ) ∈ CBE,
output “false” if not.

2. Construct GK from K.

3. Construct
∏

a∈P GK from GK.

4. Construct I as the unravelling of
∏

a∈P(GK) up to depth n2n with n �

|(K, P,N,Σ)|.

5. Output I viewed as a concept C

Figure 4.5: Algorithm for concept learning in double exponential time

Let n � |(K, P,N,Σ)|. We know that |GK | ≤ n, deg(GK) ≤ n and that k ≤ n. Thus we
have that |∏a∈P GK | ≤ nn and that the algorithm goes through at most n2n steps. By the
claim shown above we get the following upper bound for the size of the concept C that
separates each a from each b:

|C | ≤ (3n)n2n
. �

Theorem 4.7 and Theorem 4.6 tell us that a complete and correct algorithm for learning
an EL concept in an EL knowledge base needs to run in double exponential time in the
size of its input, if only to output the separating concept due to its size. Figure 4.5 gives a
possible algorithm for this.

The algorithm runs in double exponential time in the size of its input:

• Step 1 can be implemented in exponential time as per Lemma 4.3.

• Steps 2 and 3 take exponential time as in the algorithm for the decision problem

• Since the outdegree of GK is bounded by n, we know that the size of the unravelling
up to depth n2n is at most nn2n . Step 4 thus takes a double exponential time. This
cannot be avoided since the concept that we output from this is of the same size.

• Step 5 “reads of” the concept from the unravelling and thus requires double
exponential time again.

That the concept C indeed separates P and N follows from the reasoning in the proof of
the characterization in Theorem 4.2.

36

5 Concept-by-Example for EL with Bounded
Concept Depth k

In the last chapter we have shown that deciding EL concept separability is ExpTime-
complete in EL knowledge bases and that various restrictions do not change this. In
this chapter we will define a variant of concept-by-example, that limits the role depth
of the separating concept to a constant k, called CBEk . We will show that CBEk is only
NP-complete and thus that this restriction makes the problem easier. Furthermore we
will show that there is an exponential time algorithm for learning such a depth bounded
separating concept.

Separability by an EL concept of at most role depth k or CBEk is the following decision
problem:

Input: EL knowledge base K, a set of positive examples P ⊆ ind(K), a set of negative
examples N ⊆ ind(K) and a signature Σ.

Question: Is there an EL concept C using only names fromΣ andwith depth(C) ≤ k
such that

• K |� C(a) for all a ∈ P, and
• K 6 |� C(b) for all b ∈ N?

We say that C is a witness or that it witnesses (K, P,N,Σ) ∈ CBEk if it is such a concept.
As an example for the concept-by-example problem with concept role depth of at most
one (CBE1), consider the EL knowledge base from earlier:

T �{Student v Human u ∃attends.Lecture}
A �{Student(alice), Student(bob), Lecture(logic),

attends(bob, logic), ∃attends.Seminar(alice)}

Given this knowledge base, the positive example P � {alice} and the negative example
N � {bob} and a signaturewith all relevant names, the EL concept C � ∃attends.Seminar
with role depth 1 is a witness for K |� C(alice) and K 6 |� C(bob). On the other hand, if
we consider CBE0, there is no concept C with depth(C) � 0 that separates P � {alice}
and N � {bob} since for all such concepts C ∈ {>,Human, Student} it holds that
K |� C(alice) and K |� C(bob). The individuals Alice and Bob can only be separated by a
concept of role depth at least 1.

37

5.1 Characterization of Separability

5.1 Characterization of Separability

To give a characterization of CBEk we first need a notion of Σ-simulations for concepts
that are limited to role depth k. These are Σ, k-simulations.

Definition 5.1. Let I ,J be interpretations, a ∈ ∆I and b ∈ ∆J .
A relation σk is a Σ, k-simulation between (I , a) and (J , b) if there is a series of relations

σk ⊆ σk−1 ⊆ · · · ⊆ σ0 such that

1. [AtomK] c ∈ AI ∧ (c , d) ∈ σ0 �⇒ d ∈ AJ for all A ∈ Σ,

2. [ForthK] For all r ∈ Σ: If (a , b) ∈ σi+1 and (a , a′) ∈ rI , then there exists b′ ∈ ∆J with
(b , b′) ∈ rJ and (a′, b′) ∈ σi

3. [ElemK] (a , b) ∈ σk .

We write (I , a) -Σ,k (J , b) if there is a Σ, k-simulation between (I , a) and (J , b). Note
that a Σ-simulation between (I , a) and (J , b) is also a Σ, k-simulation between (I , a) and
(J , b) for any k ≥ 0, since the [Forth] condition of Σ-simulations is stronger than the
[ForthK] condition of Σ, k-simulations. Similarly to Theorem 3.4 there is a connection
between Σ, k-simulations and concept with role depth of at most k, as expressed in the
following lemma:

Lemma 5.2. (Jung et al. [22]) Let I and J be interpretations. Then for all signatures Σ, all EL
concepts C over names from Σ with depth(C) ≤ k, all c ∈ ∆I and all d ∈ ∆J , we have

(I , c) -Σ,k (J , d) if and only if c ∈ CI
�⇒ d ∈ CJ .

The proof of this lemma is standard and therefore not included here [32]. For the
stronger k-bisimulations this proof can be found for the setting of modal logic in
Blackburn, de Rĳke, and Venema [10].

With this theorem we can give a characterization for the CBEk problem. The character-
ization and its proof of correctness are similar to the characterization in Theorem 4.2
but use Σ, k-simulations instead of unbounded Σ-simulations. This makes handling the
“infinite unravelling”-case in the proof simpler.

Theorem 5.3. For every EL knowledge base K, all sets P and N over ind(A) and signatures Σ,
the following are equivalent:

1. (K, P,N,Σ) ∈ CBEk

2.
∏

a∈P(GK , a) �Σ,k (GK , b) for all b ∈ N

Proof. (⇒) Let C be the concept that witnesses (K, P,N,Σ) ∈ CBEk with depth(C) ≤ k.
By Lemma 3.12 and since GK is a model of K there are Σ-simulations σi such that
(IC , vC) -Σ (GK , ai), these are also Σ, k-simulations. From these we construct

σ � {(a , (a1 , . . . , an)) | (a , ai) ∈ σi}.

38

5.2 Deciding Separability is NP-complete

By construction, σ is a Σ, k-simulation between (IC , vC) and
∏

a∈P(GK , a) and we know
that (vC , (a1 , . . . , an)) ∈ σ. Assume for contradiction that 2. does not hold. Then there is a
b ∈ N such that there is aΣ, k-simulation ρ between

∏
a∈P(GK , a) and (GK , b). Composing

σ and ρ yields a Σ, k-simulation between (IC , vC) and (GK , b) and thus by Lemma 5.2
K |� C(b), a contradiction.
(⇐) Assume now that

∏
a∈P(GK , a) �Σ,k (GK , b) for all b ∈ N is fulfilled. Let (Î , a∗) be

the tree-shaped unravelling up to depth k of
∏

a∈P(GK , a). We view Î as an EL-concept
C with a∗ as its root. By construction we have that Î |� C(a∗) and thus it follows that
GK |� C(ai) for all i from Lemma 3.7 and the properties of the product model. From 2.
and universality of GK (Theorem 3.11) we have that K |� C(a) for all a ∈ P and K 6 |� C(b)
for all b ∈ N . �

5.2 Deciding Separability is NP-complete

In this section, we use the characterization of CBEk to show that CBEk is NP-complete.
First, we have to show that the size of the witnessing concept is only polynomial in size
of the input, instead of double exponential. We do this by showing that there always
is an interpretation with a linear outdegree that can be used instead of the product of
the canonical model, which can have an exponential outdegree. The combination of
bounded role depth and linear outdegree then results in witness of polynomial size.
Let I and I′ be interpretations. We call I′ an induced sub interpretation of I if it is a

restriction of I to a certain set of individuals, that is

∆I
′ ⊆ ∆I

AI′
� AI ∩ ∆I′ for all A ∈ NC

rI
′
� rI ∩ (∆I′ × ∆I′) for all r ∈ NR ,

Lemma 5.4. Let I ,J be tree-shaped interpretations. Then for all a ∈ ∆I and b ∈ ∆J , the
following holds: If (I , a) �Σ,k (J , b) then there is a sub-interpretation I′ of I such that

1. deg(I′) ≤ deg(J),

2. (I′, a) �Σ,k (J , b).

Proof. We show the lemma by induction on k. For k � 0, let Ia ,b ,0 be the induced
sub-interpretation of I, defined by

∆Ia ,b ,0 � {a}.

By construction deg(Ia ,b ,0) ≤ deg(J) since the outdegree is 0. Furthermore, since
there is no Σ, 0-simulation between (I , a) and (J , b), there must be an A ∈ Σ such that
a ∈ AI , but b < AJ . Since a ∈ AI

a ,b ,0, there cannot be a Σ, 0-simulation between (Ia ,b ,0 , a)
and (J , b).

39

5.2 Deciding Separability is NP-complete

For k > 0, let a′ be the r-successor of a in I and let b1 , . . . bn be the r-successors of b in
J such that (I , a′) �Σ,k−1 (J , bi) for all i ≤ n. We construct a induced sub-interpretations
Ia ,b ,k of I, defined by

∆Ia ,b ,k � {a} ∪
⋃

bi∈{b1 ,...,bn}
∆
Ia′ ,bi ,k−1

Let a′ be an r-successor of a in I. Since I is tree-shaped, the maximum outdegree
of Ia ,b ,k is bounded by the number of r-successors of b in J and the outdegree of the
sub-interpretations Ia′,bi ,k−1. By the induction hypothesis we thus know that

deg(Ia ,b ,k) ≤ deg(J).

Furthermore for there to be a Σ, k-simulation between (Ia ,b ,k , a) and (J , b), there must
be a b′ ∈ ∆J such that (b , b′) ∈ rJ and there is a Σ, k − 1-simulation between (Ia ,b ,k , a′)
and (J , b). The element a′ is contained in Ia ,b ,k since it is included in all Ia′,bi ,k−1. By the
induction hypothesis and construction of Ia ,b ,k weknow that there is noΣ, k−1-simulation
between (Ia′,bi ,k−1 , a′) and (J , bi) for all bi . Thus

(Ia ,b ,k , a) �Σ,k (J , b). �

With this bound on the outdegree of interpretations, we can show an upper bound of
the size of the separating concept for CBEk :

Lemma 5.5. Let K be an EL knowledge base, P a set of positive examples, N a set of negative
examples and Σ a signature. If (K, P,N,Σ) ∈ CBEk , then there is a concept of at most polynomial
size witnessing it.

Proof. Assume that (K, P,N,Σ) ∈ CBEk with |(K, P,N,Σ)| � n and let the concept C be a
witness for this. By the definition of CBEk we know that depth(C) ≤ k. Since K 6 |� C(b)
for all b ∈ N , we know that

(IC , vC) �Σ,k (GK , b) for all b ∈ N.

First, consider a single bi ∈ N . By Lemma 5.4 we know that there is a sub-interpretation
I′C of IC with deg(I′C) ≤ deg(GK) and

(I′C , vC) �Σ,k (GK , bi).

Since deg(GK) ≤ n we know that |I′C | ≤ nk . If we view I′C as a concept Ci we have that its
size is polynomial in n. We still have K |� Ci(a) for all a ∈ P, since Ci is “created” from C
by removing existential restrictions and thus CJ ⊆ CJ

i must hold for all interpretations
J . Thus we have for the concept

C �

/
bi∈N

Ci

that K 6 |� C(bi) for all bi ∈ N and that K |� C(a) for all a ∈ P since K |� Ci(a) for all i. The
concept Ci thus separates all a ∈ P from all bi ∈ N and is of at most polynomial size in
n. �

40

5.2 Deciding Separability is NP-complete

Input: (K, P,N,Σ)

1. Nondeterministically write a polynomially sized concept C on to the tape.

2. For all a ∈ P, check if K |� C(a). Reject the input if this is not the case.

3. For all b ∈ N , check if K 6 |� C(b). Reject the input if this is not the case.

4. Otherwise accept the input.

Figure 5.1: Description of a NTM for deciding CBEk

Lemma 5.6. CBEk ∈ NP for all k ≥ 0.

Proof. Figure 5.1 gives a description of a nondeterministic Turing machine (NTM) that
decides CBEk in polynomial time. Soundness and completeness follow from Lemma 5.5
and the definition of CBEk .

• Step 1 only makes a polynomial amount of nondeterministic choices.

• Steps 2 and 3 check if K |� C(a) for a linear number of individuals a. Each check
can be performed in polynomial time in the size of the concept and the knowledge
base.

The NTM thus runs in nondeterministic polynomial time in the size of its input. It
follows that CBEk ∈ NP. �

We continue with showing a NP lower bound for CBEk by giving a reduction from
3SAT. While we reduce to CBE1, the reduction can be modified for any CBEk , k ≥ 1.

Lemma 5.7. CBEk for k ≥ 1 is NP-hard.

Proof. In order to show NP-hardness of the concept-by-example problem with fixed role
depth k, we give a reduction from 3SAT. 3SAT is the Boolean satisfiability problem for
formulas in conjunctive normal form where each clause is limited to three literals. It
is well known that 3SAT is NP-complete [23]. A 3SAT formula ϕ is a conjunction of a
number of clauses of the form (l1 ∨ l2 ∨ l3) where each literal li is either a variable xi , or
a negated variable xi . Let vars be the set of all variables. A formula ϕ is satisfiable if
there is a variable assignment v : vars→ {0, 1} of the variables in ϕ that satisfies each
clause, that is, evaluates at least one literal to 1.

For a given 3SAT formula ϕwe constructA, P, N ,Σ such that ((∅,A), P,N,Σ) ∈ CBE1 if
and only if ϕ is satisfiable. The idea behind this reduction is based on the characterization
of CBE1 in Theorem 5.3. We construct a knowledge base K such that there is a Σ, 1-
simulation between the product model and GK if for each variable assignment of ϕ there
is a clause of ϕ that is not satisfied.

41

5.2 Deciding Separability is NP-complete

Given a propositional formula ϕ in conjunctive normal form, we construct two separate
parts Aϕ and Bϕ of A. We use a single role name r and the concept names Xi and X i for
each variable xi of ϕ. Let S be the set of all such concept names

S � {Xi | xi is a variable in ϕ} ∪ {X i | xi is a variable in ϕ}.

For the first part Aϕ we add the elements ai , pi , ni for each variable xi in ϕ. We add the
following assertions to Aϕ for all xi :

r(ai , pi) r(ai , ni) A(pi) for all A ∈ S \ {X i} A(ni) for all A ∈ S \ {Xi}.

For the second part Bϕ, we consider the clauses of ϕ. Bϕ contains a “root” element b and
for each clause ci of ϕ a child element bi . For a given clause ci � (li ,1 ∨ li ,2 ∨ li ,3)we let
Li , j be the concept name that corresponds to the variable of li , j with the same polarity as
li , j :

Li , j �

{
Xk if li , j � xk

Xk if li , j � xk

The following assertions are added to Bϕ for ci :

r(b , bi) A(bi) for all A ∈ S \ {Li ,1 , Li ,2 , Li ,3}}

This completes Bϕ. Now let

K � (∅,Aϕ ∪ Bϕ)
P � {ai | xi ∈ vars(ϕ)}
N � {b}
Σ � S ∪ {r}.

It remains to be shown that the reduction is sound and complete:

(K, P,N,Σ) ∈ CBE1 if and only if ϕ is satisfiable.

We show the contrapositive of this statement:
(⇒) Assume that ϕ is not satisfiable. We need to show that (K, P,N,Σ) < CBE1. If ϕ

is not satisfiable, then for all variable assignments v there must be a clause cv that is not
fulfilled. Let bv ∈ ∆GK be the individual in B that corresponds to cv .

Let I denote the product model
∏

a∈P(GK , a) and let gv ,i ∈ ∆GK be the individual that
encodes the truth value of a variable xi in the variable assignment v:

gv ,i �

{
pi if v(xi) � 1
ni if v(xi) � 0

For a variable assignment v, the individual ev � (gv ,1 , . . . , gv ,n) ∈ ∆I corresponds to v
by encoding the value of all variables in order.

42

5.2 Deciding Separability is NP-complete

Let σ be the following relation

σ � {(ev , bv) | v is a variable assignment of ϕ} ∪ {((a1 , . . . , an), b)}

We want to show that σ is a Σ-simulation that witnesses∏
a∈P

(GK , a) -Σ (GK , b). (∗)

For the [Atom] condition of simulations, assume that ev ∈ XI
i for some i and ev . By

construction ofA and ev we know that v(xi) � 1. Since v does not fulfill the clause cv , the
variable xi cannot appear as a positive literal in cv . By construction of B we thus know
that bv ∈ XI

i . The reasoning for ev ∈ X
I
i for some i is equivalent. The [Atom] condition

holds for ((a1 , . . . , an), b) since (a1 , . . . , an) is in the extension of no concept name.
The [Forth] condition of simulations holds for all ev since they have no r-successors.

It remains to be shown that all r-successors of (a1 , . . . , an) are of the form ev and are
thus included in σ. Each successor must contain either pi or ni at position i, since these
are the only successors of ai . Thus σ is a Σ-simulation that witnesses (∗). It follows that
(K, P,N,Σ) < CBE1 since σ is also a Σ, 1-simulation.

(⇐) Assume that (K, P,N,Σ) < CBE1. By Theorem 5.3 there must be a Σ, 1-simulation
σ between (I , (a1 , . . . , an)) and (GK , b) witnessing this. Given this Σ, 1-simulation we
want to show that ϕ is not satisfiable by showing that for each variable assignment
v there is a clause cv of ϕ that is not fulfilled by that assignment. The individuals
(a1 , . . . , an) and b must be included in the simulation σ. Since by construction ev is an
r-successor of (a1 , . . . , an) in I, there must be an element ci in GK that is a r-successor of
b and (ev , ci) ∈ σ. Since ev and ci are included in a simulation, it follows from the [Atom]
condition that for all concept names A, ev ∈ AI �⇒ ci ∈ AGK . We also know that by
construction ci < AGK if A is a concept name that represents a variable truth-value that
would make a literal of ci true. Thus the variable assignment v does not make any literal
of ci true. It follows that for each variable assignment v, there is a clause cv that is not
fulfilled. There is no variable assignment that can satisfy all clauses. Therefore ϕ is not
satisfiable. �

Theorem 5.8. CBEk is NP-complete for all k ≥ 1.

Proof. Follows directly from Lemma 5.6 and Lemma 5.7. �

Furthermore we can show that CBE0 is in P. It is thus likely easier than CBEk for k ≥ 1.
This is not surprising, since it does not allow any existential restrictions in the separating
concept.

Theorem 5.9. CBE0 ∈ P.

Proof. Figure 5.2 shows an algorithm that decides CBE0 in polynomial time in the size of
its input. Correctness and soundness of the algorithm follow from the characterization
of CBEk in Theorem 5.3 and the fact that we only need to check the [Atomk] condition
for Σ, 0-simulations.

43

5.3 Learning Role Depth Bounded Concepts

Input: (K, P,N,Σ)

1. Construct GK

2. Construct only the product individual (a1 , . . . , an) ∈ ∆I for P � {a1 , . . . , an}
of the product model I �

∏
a∈P GK

3. For all b ∈ N, check if there is a concept name A ∈ Σ with (a1 , . . . , an) ∈ AI

and b < AGK

4. Accept if there is such an A for each b, Reject the input otherwise

Figure 5.2: Algorithm for deciding CBE0 in polynomial time

Each step runs in polynomial time: Step 2 can be implemented in polynomial time,
since we do not need to look at the entire product model, only a single element of it. The
element can only be in the extension of a linear number of concept names. Step 3 runs in
polynomial time since the size of N and Σ are bounded by the size of the input. �

5.3 Learning Role Depth Bounded Concepts

Similar to the case with unbounded role depth, we can define the corresponding concept
learning problem for CBEk :

Input: EL knowledge base K, a set of positive examples P ⊆ ind(K), a set of negative
examples N ⊆ ind(A) and a signature Σ.

Output: An EL concept C using only names from Σ and with depth(C) ≤ k such
that

• K |� C(a) for all a ∈ P, and
• K 6 |� C(b) for all b ∈ N

or “fail” if there is no such concept.

Lemma 5.5 tells us that if (K, P,N,Σ) ∈ CBEk for an EL knowledge base K, a set of
positive examples P, a set of negative examples N and a signature Σ, that there is a
concept C of at most polynomial size such that

• K |� C(a) for all a ∈ P

• K 6 |� C(b) for all b ∈ N .

This directly leads to an algorithm that enumerates all polynomially sized concepts and
checks if they fulfill the conditions. Each check only takes a polynomial amount of time,

44

5.3 Learning Role Depth Bounded Concepts

but there are exponentially many concepts of polynomial size. The algorithm thus would
take exponential time in the size of its input.
If there exists an exponentially faster algorithm for learning the separating concept,

that is an algorithm that runs in polynomial time, we could decide CBEk in polynomial
time by accepting the input if this algorithm outputs a concept and rejecting otherwise.
This would show P � NP and is out of scope of this thesis. This differentiates the role
depth bounded case from the unbounded case, where computing the separating concept
is exponentially harder than deciding that it exists, as shown in Section 4.4.

45

6 Conclusion and Future Questions

In this thesis we have given a formal understanding of when a separating EL concept
exists for a set of positive and a set of negative examples in an EL knowledge base.
Deciding if such a concept exists is ExpTime-complete, however computing or learning
a separating concept can take double exponential time in general. Some commonly
considered restrictions do not improve this complexity. The exception is restricting the
role depth of the separating concept, which makes deciding if such a concept exists
NP-complete and allows for an exponential time algorithm to learn a separating concept.
The algorithm is optimal if the exponential time hypothesis is true. Furthermore we
show that the separating concept can be double exponentially sized in the unbounded
case and only polynomially sized in the role depth bounded case.

Although there exist complete algorithms and implementations to learn EL concepts
from positive and negative examples, no formal analysis of the existence of a separating
EL concept or the complexity of EL concept learning has been done in previous work
(except the work of Funk et al. [18], which considers separability in more expressive
description logics beyond the results of this thesis).
These algorithms for concept-by-example help users understand and work with EL

knowledge bases by allowing them to express concepts from the application domain with
only positive and negative examples. This reduces the need to have expert knowledge in
knowledge base engineering for a lot of tasks.

The following areas of future questions questions could be considered, to build upon
the results of this thesis:

Extension to more expressive description logics EL is, although it has applications
in real world knowledge bases, an inexpressive description logic. There are multiple
extensions of EL that add expressiveness and mostly preserve the important property
that subsumption and other common reasoning tasks can be done in polynomial time.
Examples are EL⊥ and EL++ [4], although more exist.

Can the characterizations and algorithms be adapted to these extensions such that we
get similar upper bounds?

Short representation of the separating concept There are EL knowledge bases for
which concept learning takes double exponential time, primarily because a separating
concept may be of double exponential size. The concept used in Section 4.4 however has
a very regular structure and we conjecture that it could be represented with a set of TBox
axioms of only single exponential size. Does learning a set of TBox axioms instead of a
single concept make concept-by-example easier? Do the same lower bounds still apply?

47

6 Conclusion and Future Questions

Assumptions that lead to concept learning in polynomial time? Can we make other
assumptions or restrictions about the knowledge base that would lead to polynomial
time algorithms for deciding separability and concept learning? Are these assumptions
and restrictions realistic in real world EL knowledge bases?

Apply techniques for better understanding of the least common subsumer The tech-
niques used to characterize concept separability could be used to better understand the
least common subsumer and most specific concept operators.

Role depth bounded case for ELI separability Funk et al. [18] have shown that ELI
separability in the general case is undecidable. Considering that EL separability
is considerably easier when one restricts the role depth of the separating concept,
investigating if the lower bound of ELI separability improves for the same restriction,
might be worthwhile.

48

Bibliography

[1] Marcelo Arenas and Gonzalo I. Diaz. “The Exact Complexity of the First-Order
Logic Definability Problem”. In: ACM Transactions on Database Systems 41.2 (2016),
13:1–13:14.

[2] Marcelo Arenas, Gonzalo I. Diaz, and Egor V. Kostylev. “Reverse Engineering
SPARQL Queries”. In: Proceedings of the 25th International Conference on World Wide
Web. WWW 2016. Ed. by Jacqueline Bourdeau, Jim Hendler, Roger Nkambou,
Ian Horrocks, and Ben Y. Zhao. 2016, pp. 239–249.

[3] Franz Baader. “Computing the Least Common Subsumer in the Description
Logic EL w.r.t. Terminological Cycles with Descriptive Semantics”. In: Conceptual
Structures for Knowledge Creation and Communication. 11th International Conference
on Conceptual Structures. Ed. byAldo deMoor,Wilfried Lex, and BernhardGanter.
2003, pp. 117–130.

[4] Franz Baader, Sebastian Brandt, and Carsten Lutz. “Pushing the EL Envelope”. In:
Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence.
Ed. by Leslie Pack Kaelbling and Alessandro Saffiotti. 2005, pp. 364–369.

[5] Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. An Introduction to
Description Logic. Cambridge University Press, 2017.

[6] Franz Baader, Ralf Küsters, and Ralf Molitor. “Computing Least Common Sub-
sumers in Description Logics with Existential Restrictions”. In: Proceedings of the
Sixteenth International Joint Conference on Artificial Intelligence. ĲCAI 99. Ed. by
Thomas Dean. 1999, pp. 96–101.

[7] Franz Baader, Carsten Lutz, andBoontawee Suntisrivaraporn. “CEL—aPolynomial-
Time Reasoner for Life Science Ontologies”. In: Proceedings of the 3rd International
Joint Conference on Automated Reasoning. ĲCAR 2006. Ed. by Ulrich Furbach and
Natarajan Shankar. Vol. 4130. Lecture Notes in Computer Science. 2006, pp. 287–
291.

[8] Liviu Badea and Shan-Hwei Nienhuys-Cheng. “A Refinement Operator for De-
scription Logics”. In: Inductive Logic Programming, 10th International Conference.
ILP 2000. Ed. by James Cussens and Alan M. Frisch. Vol. 1866. Lecture Notes in
Computer Science. Springer, 2000, pp. 40–59.

[9] Pablo Barceló and Miguel Romero. “The Complexity of Reverse Engineering
Problems for Conjunctive Queries”. In: 20th International Conference on Database
Theory. ICDT 2017. Ed. by Michael Benedikt and Giorgio Orsi. Vol. 68. LIPIcs. 2017,
7:1–7:17.

49

Bibliography

[10] Patrick Blackburn, Maarten de Rĳke, and Yde Venema.Modal Logic. 2001.
[11] Angela Bonifati, Radu Ciucanu, and Aurélien Lemay. “Learning Path Queries on

Graph Databases”. In: Proceedings of the 18th International Conference on Extending
Database Technology. EDBT 2015. Ed. by Gustavo Alonso et al. 2015, pp. 109–120.

[12] Sebastian Brandt. “On Subsumption and Instance Problem in ELH w.r.t. General
TBoxes”. In: Proceedings of the 2004 International Workshop on Description Logics.
DL 2004. Ed. by Volker Haarslev and Ralf Möller. Vol. 104. CEUR Workshop
Proceedings. 2004, pp. 21–30.

[13] Sebastian Brandt. “Polynomial Time Reasoning in a Description Logic with Existen-
tial Restrictions, GCI Axioms, and -What Else?” In: Proceedings of the 16th Eureopean
Conference on Artificial Intelligence. ECAI 2004. Ed. by Ramó López de Mántaras and
Lorenza Saitta. IOS Press, 2004, pp. 298–302.

[14] Lorenz Bühmann, Jens Lehmann, and Patrick Westphal. “DL-Learner - A Frame-
work for Inductive Learning on the Semantic Web”. In: Journal of Web Semantics 39
(2016), pp. 15–24.

[15] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. “Alternation”. In:
Journal of the Association of Computing Machinery 28.1 (1981), pp. 114–133.

[16] EdmundM. Clarke and Bernd-Holger Schlingloff. “Model Checking”. In:Handbook
of Automated Reasoning. Ed. by John Alan Robinson and Andrei Voronkov. Elsevier
and MIT Press, 2001, pp. 1635–1790.

[17] Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito. “DL-FOIL Concept
Learning in Description Logics”. In: Inductive Logic Programming, 18th International
Conference. ILP 2008. Ed. by Filip Zelezný and Nada Lavrac. Vol. 5194. Lecture
Notes in Computer Science. Springer, 2008, pp. 107–121.

[18] Maurice Funk, Jean Christoph Jung, Carsten Lutz, Hadrien Pulcini, and Frank
Wolter. “Learning Description Logic Concepts: When Can Positive and Negative
Examples Be Separated?” In: Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence. ĲCAI 2019. (to appear). 2019.

[19] Víctor Gutiérrez-Basulto, Jean Christoph Jung, and Leif Sabellek. “Reverse En-
gineering Queries in Ontology-Enriched Systems: The Case of Expressive Horn
Description Logic Ontologies”. In: Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence. ĲCAI 2018. Ed. by Jérôme Lang. 2018,
pp. 1847–1853.

[20] David Harel, Orna Kupferman, and Moshe Y. Vardi. “On the Complexity of
Verifying Concurrent Transition Systems”. In: Information and Computation 173.2
(2002), pp. 143–161.

[21] Pascal Hitzler, Markus Krotzsch, and Sebastian Rudolph. Foundations of Semantic
Web Technologies. Chapman and Hall/CRC, 2009.

50

Bibliography

[22] Jean Christoph Jung, Fabio Papacchini, Frank Wolter, and Michael Zakharyaschev.
“Model Comparison Games for Horn Description Logics”. In: Thirty-Fourth Annual
ACM/IEEE Symposium on Logic in Computer Science. LICS. (to appear). 2019.

[23] Richard M. Karp. “Reducibility among Combinatorial Problems”. In: Complexity
of Computer Computations. Ed. by Raymond E. Miller, James W. Thatcher, and
Jean D. Bohlinger. Springer US, 1972, pp. 85–103.

[24] Yevgeny Kazakov, Markus Krötzsch, and František Simančík. “The Incredible ELK
- From Polynomial Procedures to Efficient Reasoning with EL Ontologies”. In:
Journal of Automated Reasoning 53.1 (2014), pp. 1–61.

[25] Boris Konev, Carsten Lutz, Ana Ozaki, and Frank Wolter. “Exact Learning of
Lightweight Description Logic Ontologies”. In: Journal of Machine Learning Research
18.201 (2018), pp. 1–63.

[26] Jens Lehmann. “DL-Learner: Learning Concepts in Description Logics”. In: Journal
of Machine Learning Research 10 (2009), pp. 2639–2642.

[27] Jens Lehmann. Learning OWL Class Expressions. Vol. 6. Studies on the Semantic
Web. IOS Press, 2010.

[28] Jens Lehmann and Christoph Haase. “Ideal Downward Refinement in the EL
Description Logic”. In: Inductive Logic Programming, 19th International Conference.
ILP 2009. Ed. by Luc De Raedt. Vol. 5989. Lecture Notes in Computer Science.
Springer, 2009, pp. 73–87.

[29] Jens Lehmann and Pascal Hitzler. “Foundations of Refinement Operators for
Description Logics”. In: Inductive Logic Programming, 17th International Conference.
ILP 2007. Ed. by Hendrik Blockeel, Jan Ramon, Jude W. Shavlik, and Prasad
Tadepalli. Vol. 4894. Lecture Notes in Computer Science. Springer, 2007, pp. 161–
174.

[30] Carsten Lutz, David Toman, and Frank Wolter. “Conjunctive Query Answering
in the Description Logic EL Using a Relational Database System.” In: Proceedings
of the 21st International Joint Conference on Artificial Intelligence. ĲCAI 2009. Ed. by
Craig Boutilier. 2009, pp. 2070–2075.

[31] Carsten Lutz and Frank Wolter. “Conservative Extensions in the Lightweight
Description Logic EL”. In: Proceedings of the 21th Conference on Automated Deduction.
CADE-21. Ed. by Franz Pfenning. Vol. 4603. Lecture Notes in Computer Science.
Springer, 2007, pp. 84–99.

[32] Carsten Lutz and Frank Wolter. “Deciding Inseparability and Conservative Exten-
sions in the Description Logic EL”. In: Journal of Symbolic Computation 45.2 (2010),
pp. 194–228.

[33] Shan-Hwei Nienhuys-Cheng and Ronald De Wolf. Foundations of Inductive Logic
Programming. Vol. 1228. Springer Science & Business Media, 1997.

51

Bibliography

[34] Alan Rector and Ian Horrocks. “Experience Building a Large, Re-Usable Medical
Ontology Using a Description Logic with Transitivity and Concept Inclusions”. In:
Proceedings of the Workshop on Ontological Engineering. AAAI’97. 1997, pp. 321–325.

[35] Peter N. Robinson and Sebastian Bauer. Introduction to Bio-Ontologies. Chapman
and Hall/CRC, 2011.

[36] Md. Kamruzzaman Sarker and Pascal Hitzler. “Efficient Concept Induction for
Description Logics”. In: CoRR abs/1812.03243 (2018). arXiv: 1812.03243.

[37] Viachaslau Sazonau. “General Terminology Induction in Description Logics”. PhD
thesis. University of Manchester, 2017.

[38] Stefan Schulz, Ronald Cornet, and Kent Spackman. “Consolidating SNOMED CT’s
Ontological Commitment”. In: Applied ontology 6.1 (2011), pp. 1–11.

[39] Balder ten Cate and Victor Dalmau. “The Product Homomorphism Problem and
Applications”. In: 18th International Conference on Database Theory. ICDT 2015.
Ed. by Marcelo Arenas and Martín Ugarte. Vol. 31. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2015, pp. 161–176.

[40] Benjamin Zarrieß and Anni-Yasmin Turhan. “Most Specific Generalizations w.r.t.
General EL-TBoxes”. In: Proceedings of the 23rd International Joint Conference on
Artificial Intelligence. ĲCAI 2013. 2013, pp. 1191–1197.

[41] Moshé M. Zloof. “Query-by-Example: The Invocation and Definition of Tables and
Forms”. In: Proceedings of the International Conference on Very Large Data Bases. Ed. by
Douglas S. Kerr. ACM, 1975, pp. 1–24.

52

https://arxiv.org/abs/1812.03243

	List of Figures
	Introduction
	Contributions
	Overview

	Related Work
	Ontology Learning
	Learning Queries in Databases
	Least Common Subsumer and Most Specific Concept
	Inductive Logic Programming
	Other Approaches

	Preliminaries
	The Description Logic EL
	Simulations and Interpretations
	The Canonical Model of a Knowledge Base
	Concepts as Interpretations

	Concept-by-Example for EL
	Characterization of Separability
	Deciding Separability is ExpTime-complete
	Restrictions
	Size of the Learned Concept

	Concept-by-Example for EL with Bounded Concept Depth k
	Characterization of Separability
	Deciding Separability is NP-complete
	Learning Role Depth Bounded Concepts

	Conclusion and Future Questions
	Bibliography

