
Fachbereich 3: Mathematik und Informatik

Master’s Thesis
Long-term analysis and visualization reproducibility

of heterogeneous robotic experience data in a
continuously developed knowledge processing service
German title: Langzeit-Reproduzierbarkeit von Analyse und Visualisierung
heterogener Robotikexperimentdaten in einem ständig weiterentwickelten

Wissenverarbeitungsdienst

Moritz Horstmann

Matriculation No. 259 007 4

28th January 2019

Examiner: Prof. Michael Beetz PhD
Supervisor: Dr. Karsten Sohr

Advisor: Daniel Beßler

Moritz Horstmann

Long-term analysis and visualization reproducibility of heterogeneous robotic experience data in a con-
tinuously developed knowledge processing service

German title: Langzeit-Reproduzierbarkeit von Analyse und Visualisierung heterogener Robotikexperi-
mentdaten in einem ständig weiterentwickelten Wissenverarbeitungsdienst

Master’s Thesis, Fachbereich 3: Mathematik und Informatik

Universität Bremen, January 2019

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig angefertigt, nicht anderweitig zu
Prüfungszwecken vorgelegt und keine anderen als die angegebenen Hilfsmittel verwendet habe.
Sämtliche wissentlich verwendete Textausschnitte, Zitate oder Inhalte anderer Verfasser wurden
ausdrücklich als solche gekennzeichnet.

Bremen, den 28th January 2019

Moritz Horstmann

3

Contents

Contents . i

1 Introduction 1

2 Motivation 3
2.1 Reproducibility in research . 3
2.2 Open science . 4

2.2.1 Open Data . 6
2.2.2 Software in research . 8
2.2.3 Open Science Tools . 10

2.3 Open Science, reproducibility and openEASE 11

3 Sustainability analysis of openEASE 15
3.1 Introduction of openEASE . 15
3.2 Architecture . 18

3.2.1 Source code and data . 20
3.2.2 Build process . 22

3.3 System review . 25

4 Achieving software reproducibility in openEASE 31
4.1 Combined KnowRob client and openEASE management 31

4.1.1 Current state . 32
4.1.2 Separation into openEASE and openEASE-webclient 33

4.2 Versioning and dependency management . 36

5 Development of a heterogeneous data management system 39
5.1 Design and quality requirements . 39
5.2 Core . 40
5.3 CLI . 42
5.4 Server . 43
5.5 Artifact-Recorder . 43

6 Evaluation 45

i

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

6.1 Quantitative evaluation of MultiRepo . 45
6.2 Improvements for openEASE reproducibility . 50
6.3 Conclusion . 51

A Appendix 53
A.1 List of Figures . 53
A.2 List of Tables . 53
A.3 Bibliography . 53
A.4 List of Abbreviations . 58
A.5 Glossary . 59
A.6 Content of the disc . 62

ii

Chapter 1

Introduction

More and more researchers profit from the use of computational power to advance in their field.
Computer simulations, statistics and the possibility to collect and process huge amounts of data
(big data) offers advantages to sciences like biology, physics and engineering. Basically any field
of research can leverage digital data collection and the processing of it. The results of Big data
science enabling the gain of information from largely unstructured datasets and the proliferation
of powerful computing hardware lowered the entry bar to benefit from this technology.

When using digital data and software to publish research results, often only the interpreted and
processed results are included into the publication. The replication of such results is next to
impossible, as the foundation of results gained through computational science often lies within
the used data, and not in the description published along with the result. The importance of
result replication can be seen in the ‘replication crisis’ of scientific studies and research results
in psychology, where many of the result could not be reproduced and are thus considered to be
flawed [Sch14].

To prevent this flaws in scientific research results, the concept of Open Science gained popu-
larity in the research community, defining a framework to conduct transparent research with
reproducible results. The goal of this thesis is to establish the requirements to reproduce results
obtained by the application of research software, which is a sub-category of the Open Science
movement, and the transfer of those results to the cloud-based knowledge processing service ope-
nEASE. The analysis of openEASE regarding its suitability to conduct reproducible research
with it as a research toolkit, as well as the reproducibility of the openEASE software state itself.

The analysis then is used to suggest amendments to the architecture of openEASE following the
established requirements, followed by the implementation of some of those suggestions. During
this research, a data management and build artifact archiving software was implemented as an
experimental case study, which is then evaluated for its suitability to assist in efficient archiving
artifacts used during a software build process, and the repetition of such a build process just
by using the archived artifacts. Together with the implemented architectural changes of ope-

1

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

nEASE, this thesis presents a guideline and takes the first steps towards software reproducibility
of an existing research software.

2

Chapter 2

Motivation

Many researchers of various research fields leverage the collection and analysis of data. Their
effort can either be directed at working on collection processes and analysis algorithms directly
as part of their research (e.g. data science), or be directed at applying established computing
and data processing methods to aid them in advancing their topic (e.g. statistics, computational
science). This chapter discusses the importance of reproducibility of all data related actions in
research activities, and the different challenges in achieving it.

2.1 Reproducibility in research

When referring to reproducibility in research, this work focuses only on the reproducibility of
computer assisted data processing, as it already offers a wide range of interesting questions and
challenges to solve. How is reproducibility of data processing defined, how can it be achieved
and what are the benefits of it?

In typical scenarios (not limited to research), there are many steps involved in performing data
processing tasks. At first, there is the collection of data. Data sources have to be found and
exploited or the data has to be recorded, imported or even typed in manually. When the data
is digitally available and accessible by the researcher, it then needs to be preprocessed further
based on the format and quality of the data, and the required target format of the software
designated to process the data. The preprocessed data is then passed to either existing software,
custom made software or a hybrid of both, to achieve the actual processing of the data. As a
result of this process, new data or an alteration of the original data is produced, followed by
post-processing for aggregation, evaluation or visualization, which is then ultimately used for
deriving or validating results. In varying degrees, some of the described steps might already take
significant time and effort on their own, even such that they can be the main goal of a research
topic, or the sole purpose of a commercial company.

3

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
2.2. OPEN SCIENCE

Ideally, when research is executed with extra care for the reproducibility of its data processing,
the complete chain of processing steps is transparent, meaning that it is documented in great
detail how the involved steps can be replicated. At least the raw source data should be published
so the (possible not easily reproducible) task of data collection does not has to be repeated - in
the best case, all data results from each processing step is also made available. Apart from data
itself, the environment in which the data was processed is an important factor to be considered
for successful reproduction, too. The emphasis here does not lay on the sharing of locations or
hardware involved in the data processing, but rather the software and its configuration used in
the process.

Being able to reproduce all or parts of the data processing steps from research gives the research
community many advantages. It fosters the peer-review of publications, as reviewers are able
to validate the progress from the research basis to the final result, in contrast to validating a
publication based on just the reported result. Follow up research can profit from reproducible
research by using both algorithm implementations and used datasets: Improved processing algo-
rithms could be used to extract information with higher quality and diversity from the gathered
data, which is a fundamental principle of big data analytics, but generally applies to all data
intensive research areas (machine learning/artificial intelligence, biology or medical research to
name a few). Or, new and improved processing algorithms could be applied to existing datasets
outside the scope of the original authors, without the need of re-implementing algorithms in soft-
ware. Making newly created research software open source and available can lead to enhanced
collaboration between researchers, sharing of software revisions and consequently improving the
results it produces.

However, there are some challenges in conducting reproducible research and critique against the
openness of this methodology. To get a better understanding of the challenges faced in the
involved fields, the following section will provide an examination of them in the context of the
open science movement, before gathering individual issues subsequently.

2.2 Open science

Research reproducibility is part of the open science movement. Open science is the description
of a methodology framework defined by the principles of “transparency, universal accessibility
and reusability of the scientific information disseminated via online tools” [Pon+15, p. 1]. The
European Commission funded project FOSTER has compiled a taxonomy for open science,
from which three categories applicable to this thesis can be extracted: “Open Data”, “Open
Reproducible Research” (specifically “Open Source in Open Science”) and “Open Science Tools”
(figure 2.1 on page 5). The first two categories describe the publication of research software and

4

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

CHAPTER 2. MOTIVATION

ancillary data, the latter mainly describes the toolkit to support the former.

Figure 2.1 A taxonomy of open science [Pon+15]

While sharing the basic general motive, different groups of scholars follow slightly different goals
with being more open in their research. Fecher et al. identified two objectives of practicing open
science that are endorsed by the first motivation section: Collaboration between scientists and the
availability of collaboration platforms and tools, as well as free availability of data, publications
and software/code. The other identified objectives are improved citation/impact metrics, peer
reviews, and broader science accessibility for citizens [FF14].

With the previous section already covering some supportive arguments, critical opinions about
open science do also exist. In his book “Reinventing Discovery” from 2012, Nielsen brings up
the remarkable opinion of a scientist on Paul Ginsparg (the creator of arXiv, one of the first
instance of open access media [Gin91]): “[He] had ’wasted his talent’ for physics by creating
the arXiv, and [...] what Ginsparg was doing was like ’garbage collecting’” [Nie11, p. 182]. At
least some parts of the research community seem to show a great disregard for the creation of
assistant tools for science, any effort invested into tool development is considered a waste of time.
When this disregard is shared by research institute leaders, member researchers would also lack
the funds and time to spend on innovating the toolkit in their field. And reservation against
creating software instead of writing publications is not unwarranted at first glance, because
when institute funding depends on the visibility of its research or publication count, potentially
resource intensive software development would not immediately contribute to that.

Another aspect brought up by critical scholars is the possibility of being overwhelmed by shared

5

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
2.2. OPEN SCIENCE

research, which could apply to both mass publication of research data and early or excessive
collaboration [Nie11, p. 198]. As publishing data and source code alongside with papers would
greatly increase the volume of information to review, it is also imaginable that either the review
expenditure rises, or more information is published unreviewed. The issue with vast amounts
of information with varying quality can be seen in the field of big data, where making sense
and finding answers from huge datasets is an ongoing challenge [SS13] [Har14]. Publishing too
much data could eventually introduce dependencies to similar querying and analysis technologies,
making further research dependent on the quality of such technology.

Not only the publishing of data and software is found to be problematic, the reliance on complex
data and software in research is accused of making the verification of the research itself harder
[Nie11, p. 202f]. On the other hand, at least the reproducibility of research would definitely
benefit from this, as those artifacts are required in the first place to recreate it.

Finally, Lancaster finds in his article “Open Science and its Discontents”: “Other aspects of
the open science movement, including building tools for reproducibility, [...] code, infrastructure
and raw data [...] are still largely unrewarded by the current academic system” [Lan16]. This
confirms the assumption about the perception of tool development in science and could further
explain the lack of effort on other categories of open science, as well.

Moving on from theoretical advantages and disadvantages to practical challenges, the next sec-
tions assess individual open science categories, and offer related examples.

2.2.1 Open Data

Sharing research data offers a wide range of benefits for the research community. Not needing
to set up and execute expensive and/or time-consuming experiments for data acquisition lowers
the initial hurdle for new researchers and institutes with less funding to contribute to that field.

However, the handling, publication and usage of such data needs consideration on some issues
in order to be useful to others.

• Data format: The data format is a key factor when it comes to re-usability and reproducibil-
ity. It determines the requirements and preparation time necessary to use the data. As data
usually needs to be interpreted by software, choosing a proprietary data format requiring
proprietary and closed-source software should be only done when absolutely necessary, as it
can hinder the later use of the data. Licensing requirements can impose issues for researchers
and institutes with less financial resources. Newer software versions could be incompatible,
compatible versions could be made unavailable or require deprecated hardware and oper-
ating system environments. The software development company could no longer exist and
copyright laws could prevent the access to working copies of the software.

6

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

CHAPTER 2. MOTIVATION

Another recommendation is the use of standardized and well established data formats. Those
formats have the advantage of offering a wide variety of existing and possibly maintained
software libraries and tools, allowing researchers to operate with the development environ-
ment and programming language they prefer.
The 5-star open data initiative defines similar guidelines and metrics about the quality of
data formats and their presentation, which support these considerations [KH].

• Meta data: Third party data can only be useful if it can be found in the first place and
has proper descriptions available. Meta data helps search engines and data management
software to provide researchers with relevant data according to their queries and filters.
For identifying and referencing datasets, a unique identifier that is globally recognized and
established should be assigned.

• Storage: For data to be published, the established publishing instruments have limited
suitability. A suitable data hosting service has to be commissioned to publish the data,
either with the own institute if it offers one, or with a third party institution or company.
For the choice of storage, the requirements of service level has to be clarified: How much
data storage is required? How and when is the data transferred to the service? Is the
storage required to be available before the publication and are additional resources such as
processing power for data analysis etc. desired? How long is the retention time of the data?
Is the service protected against data loss?
If the dataset is small (up to three-figure megabyte range), this may not seem like a diffi-
cult task, as cheap and ubiquitous consumer-grade storage solutions can be used. On the
contrary, a simple change in the infrastructure of such a solution could for example ren-
der published and printed hyper links to data invalid. At least when the dataset exceeds
the gigabyte bound, different solutions are required that are capable of handling large data
volumes and guarantee long term access to the data [CER].

These considerations do come at a cost for the publisher. Preparation and conversion of open
data formats, chunking data into individually addressable parts and writing meta data for it is a
complex and time-consuming task. Limited resources and hosting costs can be a major obstacle
for researchers to publish their data alongside their regular publications. The success of open
data is coupled to the availability of tools and services to support researchers and ultimately the
acceptance and valuation of open data contribution in the research community.

For reference, there are some noteworthy open data sources and services for research data pub-
lication available. An extensive list of open data sources is the Awesome Public Datasets list,
comprising of references to over 600 publicly availably datasets [Awe19]. Examples of research
data hosting services include Zenodo1 and Dryad2. Zenodo is a data storage service for research
data of all sciences and humanities. It provides 50 Gb of storage free of charge, with more
capacity being availably by request. The data is kept indefinitely on the same petabyte scale
1https://zenodo.org
2https://datadryad.org

7

https://zenodo.org
https://datadryad.org

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
2.2. OPEN SCIENCE

infrastructure as the data from the Large Hadron Collider. It offers a public search engine for
the hosted datasets and assigns a Digital Object Identifier (DOI) for uploaded data [OC]. It is
operated by OpenAIRE3, a service for accessing European Commission funded research. Dryad
also offers curated data storage services, providing additional release and embargo management
capabilities, supporting the coordination of publication with journals and assigning a DOI for
datasets. It charges $120 in fees per publication, which include 20 Gb storage space and is
operated by a nonprofit organization [Isa+07].

Further services do exist which offer a complete data storage and analysis suite, some of which are
covered in the next section about the challenges of using and providing software in the context
of reproducible research.

2.2.2 Software in research

When existing standard software is used to process research data, the most important considera-
tions for reproducibility are to be made in the realm of Open Data covered in the previous section.
The only additional requirement for research to be reproducible in that case is the availability
of the software and its configuration (if applicable). But if custom made software modules are
used for data processing, extra care has to be taken in order for the process to be reproducible,
and the reproducibility of the software might decay over time without countermeasures.

For software to function properly in general, it is required to at least possess its binary executable
alongside with the third party libraries and modules it depends on. Depending on the technology
the software was created with, a certain version of a software runtime and/or a certain operating
system with a certain version is also required. For both commercial and most free/open-source
software projects, these requirements are managed and controlled by maintainers, who provide
documentation, installation packages and updates in case of updated or changed dependencies
(from software libraries to operating systems).

Properly maintaining a software again requires time and effort, especially for software with a
large and complex code base, and there are some reasons imaginable why researchers might chose
not to publish their custom-made software, which consequently impedes the reproducibility of
their research:

Software artifacts might not be published by a researcher if they were only used for evaluation
purposes. While the results of a software can be aggregated comprehensively for evaluation using
tables or graphs, the software itself may not be feasible for publication. An issue preventing the
publication of such software can be missing documentation: To set up and execute a software,
extensive instructions about the required operating environment (such as hardware- or operating

3https://www.openaire.eu/

8

https://www.openaire.eu/

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

CHAPTER 2. MOTIVATION

system requirements) and instructions on how to build the software from source-code or how to
acquire and install binaries is required. This effort can be reduced by using public source-code
hosting services (e.g. github4 or bitbucket5) and standard software development frameworks, such
as common build tools (CMake, Maven, Gradle, MSBuild) or self contained bundling formats (e.g.
static linking, container images or software installers). However, the development of software that
employs those frameworks requires conformance to the frameworks’ guidelines and ultimately still
needs additional effort by the researcher.

When software is not designed to be released to the public, but is only intended to be run on a
researchers’ machine, the quality of the software may hinder the public release of it. Imminent
deadlines, inexperience in software development or indifference can lead a researcher to disregard
existing or suitable software architecture, design patterns and coding styles, adding and changing
functionality where it does not belong and inflating complexity. Combined with the circumstance
that software used to yield or verify a research result is not valuated equally as the result itself, a
researcher may have very little motivation to adhere to software development quality standards
and include software artifacts in publications [Boe15, p. 71f].

If software artifacts are released alongside the research publication, the documentation is suffi-
cient to execute it on another machine and all required dependencies are present, reproducibility
of the software result is still not guaranteed. Software can perform differently on machines with
deviating hardware specifications resulting in mismatching performance, different outcomes or
failures. To prevent this, the software would have to undergo extensive testing on different
operating environments - or the system environment of the developer must become the only au-
thorized configuration. When software dependencies (e.g third party libraries) are not pinned to
a specific version, any major update might break compatibility or introduce behavioral changes.
Dependencies from unreliable or user-provided sources can become unavailable or be deleted by
their owners, resulting in software build breakage [Wil16]. Measures against these types of fail-
ures (such as software tests or quality assurance) are usually not prevalent in research software,
as they are very resource intensive. Also they do not prevent incompatibilities introduced by
software the developer can not control (e.g. a browser), no passive or preventive countermeasures
exist against this issue, and therefore active maintenance is required.

For most of the data- and computational-science related tasks which require custom software
modules, there are a range of web-based services offering a complete research data hosting and
analysis development suite. Researchers who can fit their custom data processing algorithms
into a framework offered by one of these services can simply reference those in their publication
- setup, maintenance, hosting and publication of the software is taken care of by the service.
One example is the data science community kaggle. It features a collection of publicly accessible
datasets, provides hosting for datasets (10 Gb maximum each) and a Python-based develop-

4https://github.com
5https://bitbucket.org

9

https://github.com
https://bitbucket.org

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
2.2. OPEN SCIENCE

ment environment for machine learning, deep learning, visualization and statistical analysis of
uploaded datasets. The software environment is based on container technology and runs in their
data center, thus no installation effort is required. They host data science competitions where
institutions and companies can offer rewards for solving their data science problem. kaggle is
free to use at the time of writing and owned by Alphabet Inc. [GH]. Another service offering
a platform for the development, operation and publishing of data science workload is the Open
Science Data cloud. It provides researchers compute resources for a time frame of three months,
comprising of access to virtual machines and storage. From those resources, it is possible to ac-
cess one petabyte of publicly available datasets. Users are assigned individually negotiated usage
quotas at no to cost-covering expense [Gro+10] [Gro+12]. The last featured example is OpenML,
a data science community similar to kaggle but with a focus on machine learning tasks. It hosts
datasets and offers the possibility to construct own machine learning processing pipelines, which
can be applied to said datasets. The supported dataset format choice is very limited (only the
ARFF format [PTF08]) and the service is free to use at the time of writing [Rij+13].

Accomplishing research software sustainability is actively being discussed by members of re-
search institutes and research infrastructure providers. In the “Knowledge Exchange Workshop
on Research Software Sustainability”, attendants put strong emphasis on the importance of ex-
tending the lifecycle of research software. They identified currently lived measures applied by
the research community regarding the software lifecycle, ranging from productive examples such
as using virtual machines and containers, as well as constant renewal of software, to destruc-
tive examples, like deprecation of software and ignorance (“7. Procrastination. Do nothing”)
[Het16, p. 9-10]. Aerts et al. suggest a formal framework to foster the introduction of software
valuation and sustainability guidelines to be embraced by top level hierarchy research institu-
tions and governments [AD16]. This seems like a sustainable approach, because requiring all
researchers receiving public funding to put emphasis on software re-usability could break the
cycle of irresponsible research software handling.

All discussed concerns and obstacles in achieving reproducibility in research software until now
only covers short-lived software created and used for the a specific, time-constrained research
matter, such as writing a paper, a thesis etc. Additional challenges arise when building longer-
lived tools to be used by other researchers, as covered in the next section.

2.2.3 Open Science Tools

An Open Science Tool (or any software tool for that matter) is a special instance of research
software, as its purpose is not limited to producing publishable results in a constrained data
domain, but rather to assist multiple researchers during their research activities, possibly in
diverse fields of research, over an extended amount of time and spanning multiple publications

10

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

CHAPTER 2. MOTIVATION

and projects.

Besides the aforementioned considerations about research software reproducibility in general, it is
especially important for research tools to focus on compatibility, reliability, longevity and a good
user experience. The lifespan of a tool does not end with the scientific publication like many of
the regular research software artifacts, it really just starts there. This increases the requirements
to maintain reproducibility considerably: Was it sufficient to just ‘keep the software alive’ after
publication before, it is now necessary to keep it in a state where new research can be done reliably
while using it. Wishes for new functionality and updated requirements due to advancements in
the research field the tool is targeting add to the existing workload of keeping the tool compatible
with the current typical operating environment. Unless there is enough funding to employ staff
dedicated to maintenance and support, the software authors need to balance the amount of work
they invest in advancing the tool, responding to support requests from users and continuing their
original research they designed the tool for in the first place.

Properly maintaining software is also time-consuming, studies estimate that proper software
maintenance takes 40% [Wes93] to 75% [McK84] of the time spent on software development
in total. Maintenance comprises of correcting errors found in the software, reacting to changed
environments (both system environment and the environment of the domain the software operates
in) and preventing future software issues (e.g. migrating to a faster storage technology when the
old one will struggle with the work load in the foreseeable future).

Different system designs of research tools come with different challenges: Delivering the tool as
an individually installable software package requires effort in data migration, different operating
system support and easing the installation process, whereas providing the tool as a service might
reduce said expenditure. Hosting tools as web-service on the other hand introduces the need for
user data separation and management and the provision of resources for each user either for free,
or for a payment with additional need for accounting. Operation and monitoring effort must also
not be underestimated.

Summing up the difficulties achieving reproducible research data and software results, a general
and cheap solution is unlikely to be found anytime soon. A good start would be for each individual
researcher dealing with either valuable data or software to invest as much time publishing,
preserving and maintaining it as comfortably deductible from the schedule and trying to promote
the idea of reproducibility to the superior to earn additional time.

2.3 Open Science, reproducibility and openEASE

Leaving the general analysis of reproducibility requirements and returning to the objective of
this thesis, it is left to inspect the subject for its position in the realm of Open Science, and what

11

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
2.3. OPEN SCIENCE, REPRODUCIBILITY AND OPENEASE

areas could possibly conflict with the goal of making it sustainable for future use in research.

openEASE is a knowledge processing service for robot experience data developed by members
of the Institute for Artificial Intelligence (IAI)6 at the University of Bremen. It is designed to
allow recording a robots episodic memory, comprising of data from the robots’ sensors and most
importantly of a symbolic representation of the plan data executed by the robot during its oper-
ation. Combined with the reasoning capabilities of the integrated knowledge base KnowRob ,
it enables semantic querying about why and how an action was performed by the robot, as well
as the state of the environment and related objects inside before and after the action. A web-
based workbench for interaction and querying of the recorded data is also provided, delivering
visualization of the data and the results of the issued queries. Queries itself can be issued freely
as a Prolog query (called goal), which is then passed to the KnowRob knowledge base providing
the reasoning functionality. Additionally, a list of predefined queries may be presented with a
description of its meaning to assist in usage of the system and to emphasize interesting rea-
soned results from an experience dataset [Ten+15]. openEASE is not only designed to be used
by humans for evaluation of robotic experiences, but also the other way around. By recording
human interaction (e.g. with a virtual pizza making game as demonstrated in the paper) and
feeding it into openEASE , and also from re-using previously recorded robotic experience data,
robotic agents can be trained to extract information about complex movements and repeat them
[Bee+16].

openEASE offers a solution for the difficulty in reproducing complex robotic experiments. Re-
search comprising a robotic experiment is usually bound to an enormous amount of highly inte-
grated software components for sensor-data processing, movement planning, action planning and
knowledge processing, interacting with many sensors and motors in a specific and carefully set
up environment. Recreating an identical setup with the same parameters as used in the original
experiment for verification and follow-up research requires similar or identical hardware compo-
nents, is very resource consuming at best and thus often infeasible for other researchers. With
its extensive reasoning capabilities, openEASE can be used to reconstruct the exact course of
a robotic experiment, allowing detailed querying of algorithmic decisions and their impact on an
experiment. As an Open Science Tool, openEASE would be able to foster reproducibility of re-
search about algorithms used to control a robot. Any researcher could just upload a recording of
the complete robotic sensor data, together with the internal belief-state of the robot and a digital
description of the environment, generate a reference to the storage location in openEASE and
publish it for other researchers to track, verify and possibly re-use the data effortlessly.

Even though openEASE is designed to be offered as a web-service for users and robotic agents,
there are also some instances of openEASE already running at different organizations outside
the IAI. One goal of openEASE is the possibility for other institutes to host their own instance,
so this option is expected to be used continuously with increasing intensity. In this way, the

6https://ai.uni-bremen.de

12

https://ai.uni-bremen.de

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

CHAPTER 2. MOTIVATION

maintenance effort of the software is the sum of both a centralized service and a distributed
toolkit.

This software takes a special role in the context of Open Science being classified as both a
research software and a research tool. The cutting-edge technology of knowledge processing is
still researched with great intensity and frequency, with the knowledge processing engine and
semantical framework KnowRob being a particularly active research target [BPB18] [Hai+18]
[Yaz+18]. Thus, the code-bases of KnowRob and openEASE are constantly evolving. At the
same time, openEASE is striving to become a knowledge processing service to be used outside
the IAI by both researchers and automated systems like robotic agents. It invites researchers
to import datasets of their robotic or human experience data, providing storage space for every
registered account in the system and an Application Programming Interface (API) for accessing
the reasoning service. It therefore is both an important contribution to the research field of
knowledge processing and a valuable contribution to the Open Science movement.

For the reproducibility of openEASE itself however, this means that the expectations about
its reliability and longevity are very high. New versions of openEASE must not interfere with
the functionality of visualizing and analyzing existing datasets. It shall be possible to upload a
dataset, and safely assume that it would be possible to successfully reload it and run at least the
same queries on the dataset that were available at the time of its upload 10 years later. Despite
the long-term reliable access to datasets and functions, it is still desired to regularly be able to
add new features to openEASE , restructure its architecture to fit future requirements or to
deprecate and remove features. Given the high research activity around openEASE and the
software it comprises of, amending the software modules doing the knowledge processing and
related activities should not be hindered by the preservation and recreation measures.

The next chapter analyses the current state of openEASE , if and how it is affected by the
previously established issues and which requirements it currently fulfills and lacks to be considered
a reproducible software with reproducible outcome.

13

Chapter 3

Sustainability analysis of openEASE

To assess the suitability of openEASE to be both a dynamically developed research software
and to offer its users a safe and reliable way to access their datasets and retain the software
capabilities they were offered at the time of upload to execute on their datasets, an in-depth
analysis of the current state of openEASE needs to be carried out.

This chapter provides a description of the components openEASE consists of and its archi-
tecture, and examines its components for structural and quality issues threatening the goal of
functionality reproduction with continued development-

3.1 Introduction of openEASE

The provision of a knowledge processing service is a complex endeavor, requiring a lot of involved
software and systems. openEASE accomplishes this task through two software parts, which are
involved in providing the actual reasoning service and robotic experience analysis together with
an in-browser visualization and query console.

The first part, the knowledge processing platform KnowRob which is also developed at IAI,
provides reasoning and analysis capabilities for recorded data. It contains an extensive ontology,
a fine-grained and detailed representation of object classes and general actions. KnowRob con-
tains “the vocabulary for describing knowledge about actions, events, objects, spatial and tempo-
ral information”, allowing semantic interpretation of data having no semantic annotation of its
own [BTW15]. The predefined classes and actions are sufficient to semantically describe robotic
experience data, like logged information from perception systems [Bee+15] or high-level task and
action planning software [BMT10]. Combined with a description of the environment and location
information of the participating entities (robot and perceived/manipulated objects), which can
be obtained from sensor or internal state data (laser scanners, depth-camera, robot coordinate
frame data), KnowRob allows semantic querying on the episodic memory.

15

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
3.1. INTRODUCTION OF OPENEASE

The queries, as well as large parts of KnowRob itself are written in the Prolog logic programming
language, which represents program logic as rules. A rule is a declaration of a predicate that
evaluates to true when the given condition is also true. When the condition of a rule is always
true, it is called a fact. A Prolog interpreter (like SWI-Prolog, also used in KnowRob [Wie+12])
then uses the set of rules and facts to evaluate input statements. When the statement contains
no variables, the interpreter tries to verify the statement and outputs true if the statement is
conforming to the set of known rules, or false if it violates a rule. If the statement contains a
variable, the interpreter backtracks the set of known rules, trying to find matching candidates
of the variable for the statement to become true. KnowRob defines Prolog rules to represent
various data types from input data in Prolog (e.g. time or location), accessing external data
from Prolog and to reason on this data with the defined ontology. Leveraging the Prolog to Java
bridge of SWI-Prolog, KnowRob also provides a set of companion modules written in Java to
perform tasks lacking native Prolog library support or which are easier (or only) implementable
with an imperative programming style (e.g. accessing a MongoDB1 NoSQL database).

KnowRob is integrated into the Robot Operating System (ROS) infrastructure, a system de-
signed to cater the needs of robotic agents, providing a common framework and inter-process
communication for the diverse required software to operate a robot. This allows live reasoning
of data captured live during operation of the robot and to let the robot decide its next ac-
tion based on inferred knowledge. This advantage however turns into a burden when running
KnowRob outside a robotic agent, requiring a ROS installation for correct operation. ROS
imposes very strict preconditions for the installation of a specific release version, as it requires a
specific version of the Ubuntu2 GNU/Linux long time supported operating system.

The other part of openEASE , comprises of a rich client to the KnowRob reasoning engine
running in the web browser. It implements a workbench solution for users to view, analyze
and visualize previously recorded robotic experience data. A Graphical User Interface (GUI)
allows users to issue Prolog queries to KnowRob, either by freely typing them, or by select-
ing them from a list of predefined queries, which are described in plain English language. The
predefined queries are curated by the maintainers of openEASE and enable users to quickly
explore interesting data points in the experience data. The inferred results of the Prolog queries
are returned to the user as raw Prolog response, but also visualized in a freely explorable 3D
rendering of the experience setting, fed by semantic environment data from KnowRob (see
figure 3.1 on page 17), and a textured 3D model of the robot, if present. Images or videos
of selected episodes are displayable in a designated area of the GUI, as well as statistical data
gathered by KnowRob through a graph rendering. Technologically, the client leverages the
RobotWebTools3 stack, a collection of ROS modules and JavaScript libraries to enable access
to various ROS resources from a browser (or any remote system, that is). Normally, the ROS

1https://www.mongodb.com
2https://www.ubuntu.com/
3https://github.com/RobotWebTools

16

https://www.mongodb.com
https://www.ubuntu.com/
https://github.com/RobotWebTools

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

CHAPTER 3. SUSTAINABILITY ANALYSIS OF OPENEASE

infrastructure only allows inter-process communication over a local area network with bidirec-
tional communication, prohibiting the use of firewalls and routing/address-translating facilities.
RobotWebTools overcome this limitation by tunneling ROS communication data through com-
mon and widely used protocols (like WebSocket4) over the Internet. Additionally, it offers a set
of visualization libraries for common data formats used in ROS software and communication,
which is also used by openEASE.

Further features of the web front-end of openEASE are user management to supply individual
users their own KnowRob knowledge processing instance with separated data, an editor for user-
supplied ontologies and Prolog programs and administrative options to maintain the content of
the episodic memory database.

Figure 3.1 openEASE GUI

4https://tools.ietf.org/html/rfc6455

17

https://tools.ietf.org/html/rfc6455

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
3.2. ARCHITECTURE

3.2 Architecture

Another prerequisite to properly assessing openEASE according to the rules of reproducible
research is to gain an overview about its architecture, and the purposes of each individual com-
ponent.

openEASE operates on Docker [Mer14], a containerization technology which allows deploying
and running software with their required libraries in isolation from the rest of the operating
system, but without introducing significant overhead (e.g. through emulation of hardware or
by running an extra operating system instance on a virtual machine). Docker containers run
directly inside the operating system of the host, making them dependent on the API/system-
calls of the operating systems kernel and its ability to isolate processes from each other. Docker
itself originally supported containerization for GNU/Linux only, using the cgroups and names-
paces features offered by the GNU/Linux kernel [BN06] [Men07], alongside with separate stacked
file-system images containing the isolated software with libraries. Although Docker recently sup-
ported native containerization for Microsoft Windows operating systems, running containers
based on different kernel technology is not possible, so virtualization is required for interoperable
container execution.

To cater the diverse requirements of involved software components in openEASE , several
containers need to be provisioned. Through defined shared folders (called volumes in the context
of Docker) and inter-container networks, these containers are orchestrated to cooperate in serving
the necessary functionality of openEASE

• webrob: Contains the web interface of openEASE written with the Python based web-
framework flask5. It comprises of both the core KnowRob query client and visualization in-
terface and the administrative and service operation management functions, such as the user
management and login feature, and administrative access to experience data synchroniza-
tion (currently only from IAI) and content editing. Furthermore, it offers a video recording
service for the visualization of knowledge processing results, an editor for user-editable Pro-
log programs and knowledge bases (ontologies), and a log viewer for the session-associated
KnowRob instance. Supporting the use of openEASE in teaching courses, a tutorial and
an option to add course material and exercises are also built-in.

• postgres_db: Hosts a PostgreSQL relational database6. Manages user registration infor-
mation and openEASE tutorial and course information, which can be added and edited
dynamically through the administrative interface from the web interface.

• knowrob: Spawned for each user visiting the openEASE website, either anonymously with-
out data persistence, or with persistent user data for registered users. The container-image
holds a fully functional ROS and KnowRob installation. Upon start, a ROS master in-

5http://flask.pocoo.org/
6https://www.postgresql.org/

18

http://flask.pocoo.org/
https://www.postgresql.org/

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

CHAPTER 3. SUSTAINABILITY ANALYSIS OF OPENEASE

stance, a registry service used for tracking and advertising other active ROS components
(called ROS nodes), is launched. Alongside with it, an instance of a Prolog interpreter capa-
ble of being queried in the JSON format is executed and initialized with KnowRob Prolog
software, as well as openEASE specific Prolog add-ons. For enabling access of JavaScript
clients through a WebSocket connection, an instance of rosbridge_server accompanied with
a rosauth authentication system (both originating from the aforementioned RobotWebTools
stack7) is launched finally.

• mongo_db: Holds all episodic memory data integrated into openEASE inside a Mon-
goDB8 database. Both the webrob container (for administrative maintenance) and all user-
individual knowrob containers (to provide the reasoning service) have access to this database.

• nginx: Hosts an instance of the nginx9 web-server/load-balancer. It is the only container
allowing incoming requests to openEASE , enabling easy central Transport Layer Security
(TLS)-deployment for securing connections and operates as a central communication hub to
both the web-interface and the KnowRob knowledge processing containers in openEASE.

• dockerbridge: A Remote Procedure Call (RPC) service written in Python to control and
interact with knowrob user-containers. It provides means to create, start, stop and remove
user-containers through the host Docker API. Data-transfers from and to containers can be
initiated for controlled bypass of the container isolation.

• docker-gen: Monitors the Docker management system on the host for updates in the con-
tainer constellation and updates the route configuration inside the nginx container when
necessary10. This is required to provide access to dynamically spawned containers, such as
the user-individual knowrob containers, or to remove access to terminated containers.

Missing in the list of containers are the auxiliary containers created for data storage. Docker
containers are designed to be short-lived, updating a container is neither directly supported
nor recommended. Instead, the container is deleted and re-created. Persistent data is handled
through the concept of volumes. Volumes are directories managed separately from containers,
that can be linked into container instances and survives their re-creation. Historically, volumes
were tied to a specific container itself, which required the concept of long-lived data containers:
Containers whose sole purpose is to store data in a directory, which they exposed to other short-
lived application containers. Starting with Docker v17.06, volumes are not tied to a container
anymore11, eliminating the deviation from the short-lived container paradigm.

For a complete analysis of openEASE , knowledge about the location of associated source code
and used data, along with information about the build process of openEASE and its components
are of relevance, and is the subject of the following sub-sections.

7https://github.com/RobotWebTools
8https://www.mongodb.com
9https://www.nginx.com/
10https://github.com/jwilder/docker-gen
11https://docs.docker.com/v17.06/engine/admin/volumes/volumes/

19

https://github.com/RobotWebTools
https://www.mongodb.com
https://www.nginx.com/
https://github.com/jwilder/docker-gen
https://docs.docker.com/v17.06/engine/admin/volumes/volumes/

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
3.2. ARCHITECTURE

3.2.1 Source code and data

openEASE requires a wide selection of data both during build and operation.

The main source and entry point for openEASE is the knowrob/docker12 git repository. It
should be noted that this repository is not the official source code repository for openEASE but
a copy of the main developer to account for the latest changes in openEASE , which are not
yet published to the official repository. It contains the latest source code of the webrob and
dockerbridge containers in the sub-directories flask and dockerbridge. Furthermore, build
descriptions for all Docker containers either containing software directly developed by the IAI
or for third-party software requiring amendments to the official released form. This includes
the KnowRob knowledge processing implementation with separate build descriptions for each
version corresponding to the ROS distribution it was developed against (hydro, indigo, kinetic
subdirectories).

Looking at the dependencies of the openEASE components, the KnowRob software has the
highest amount of external dependencies from diverse sources during the build process. Based
on a bare Ubuntu 16.04 GNU/Linux image, a KnowRob installation suitable for the use in
openEASE additionally needs 1381 software packages from Ubuntu and ROS APT servers, 121
Java library files from the Maven repositories JCenter and Spring and the download of 8 git
repositories when compiling from source. The build-time dependencies of the webrob container
is mostly limited to those of the Python interpreter and a Node.js environment, both of which
are satisfied with 305 software packages from the Ubuntu APT server in total, as well as the
installation of 38 Python dependencies from pip and 216 Node.js modules from npm. Other
containers required well below 100 packages from APT servers and no other dependencies.

As for the runtime dependencies of openEASE , there are two very large datasets required for
operation. One being the 3D robot model and texture data hosted at two git repositories and one
svn repository, totaling in 1.4 Gb of data. The other one being the previously recorded episodic
memory and robotic experience data hosted on an File Transfer Protocol (FTP) server, totaling
in 39 Gb of data.

The investigated dependencies, required datasets and their sources have to be carefully considered
when analyzing and optimizing openEASE for software reproducibility, because it has to be
ensured that all data is still accessible at the time of reproduction. For an overview of the used
sources by openEASE, refer to the table 3.1 on page 22.

12https://github.com/daniel86/docker

20

https://github.com/daniel86/docker

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

CHAPTER 3. SUSTAINABILITY ANALYSIS OF OPENEASE

Type Name Content description

G docker13 Source code of webrob and dockerbridge, Docker build de-
scription and auxiliary scripts

G knowrob14 Source code of KnowRob

G knowrob_addons15 Additional packages for KnowRob not required for stan-
dard operation (e.g. openEASE extensions)

G iai_maps16 KnowRob dependency

G iai_common_msgs17 KnowRob dependency

G iai_cad_tools18 KnowRob dependency

G mjpeg_server19 openEASE dependency

G tf2_web_republisher20 openEASE dependency

G knowrob_robcog21 KnowRob source package

G ros3djs22 JavaScript 3D rendering library for ROS

A Ubuntu APT Basic software dependencies, required by all containers

A ROS APT23 Dependencies for the ROS environment

M JCenter24 Dependencies for ROS-Java packages

M Spring25 Dependencies for ROS-Java packages

- npm Node.js module dependencies

- pip Python dependencies

G iai_robots26 Robot 3D model data

13https://github.com/daniel86/docker
14https://github.com/knowrob/knowrob
15https://github.com/knowrob/knowrob_addons
16https://github.com/code-iai/iai_maps
17https://github.com/code-iai/iai_common_msgs
18https://github.com/code-iai/iai_cad_tools
19https://github.com/RobotWebTools/mjpeg_server
20https://github.com/RobotWebTools/tf2_web_republisher
21https://github.com/andreihaidu/knowrob_robcog
22https://github.com/RobotWebTools/ros3djs
23http://packages.ros.org
24https://bintray.com/bintray/jcenter
25https://repo.spring.io
26https://github.com/code-iai/iai_robots

21

https://github.com/daniel86/docker
https://github.com/knowrob/knowrob
https://github.com/knowrob/knowrob_addons
https://github.com/code-iai/iai_maps
https://github.com/code-iai/iai_common_msgs
https://github.com/code-iai/iai_cad_tools
https://github.com/RobotWebTools/mjpeg_server
https://github.com/RobotWebTools/tf2_web_republisher
https://github.com/andreihaidu/knowrob_robcog
https://github.com/RobotWebTools/ros3djs
http://packages.ros.org
https://bintray.com/bintray/jcenter
https://repo.spring.io
https://github.com/code-iai/iai_robots

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
3.2. ARCHITECTURE

Type Name Content description

G pr2_common27 Robot 3D model data

S cad_models28 Robot 3D model data

F episodes29 Episodic memory

Table 3.1 Data sources used during openEASE build, deployment and operation

Type legend: G = git, A = APT, M = Maven, S = svn, F = FTP

3.2.2 Build process

For software reproducibility in research, it is important to have either long-term available archived
copies of the exact executable software versions used for the research, or to be able to build the
software from its source code and produce executables which behave identical to the research
version.

openEASE consists of a collection of software modules packaged in containers, this means that
either the full images of all custom built containers for all released versions of openEASE have
to be archived, or it must be possible to repeat the construction of the container images. The
Docker software contains a container image download and upload mechanism to a service called
called ‘registry’. The company behind Docker, Docker Inc. offers the platform DockerHub30,
being such a registry, for sharing Docker images at no cost for open source projects. They
impose no limitations on how many images can be uploaded per user, how many versions of
the same container are uploaded, how large the uploaded images are and how long the images
are preserved. Actually, this publishing method has been used previously for openEASE, there
exists an account on DockerHub on which required images were published31. Moreover, a script
file in the knowrob/docker main git repository exists to download images from this exact account.
The significance and acceptance of this method is shown by inspecting last modification date of
the images in that account: The last update was uploaded more than two years ago.

Apart from the infrequent update on the DockerHub account, and despite the seemingly very suit-
able conditions for archiving openEASE containers, other technical issues could advise against
this solution. First of all, the image sizes of the openEASE related containers are very large
27https://github.com/daniel86/pr2_common
28http://svn.ai.uni-bremen.de/svn/cad_models
29ftp://open-ease-stor.informatik.uni-bremen.de
30https://hub.docker.com/
31https://hub.docker.com/u/knowrob/

22

https://github.com/daniel86/pr2_common
http://svn.ai.uni-bremen.de/svn/cad_models
ftp://open-ease-stor.informatik.uni-bremen.de
https://hub.docker.com/
https://hub.docker.com/u/knowrob/

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

CHAPTER 3. SUSTAINABILITY ANALYSIS OF OPENEASE

to download, amounting to 4.62 Gb for the knowrob container, 453 Mb for the dockerbridge con-
tainer and 1.04 Gb for the webrob container. Due to the way the containers are constructed, the
data would have to be downloaded again for the smallest amendment to the dependencies, which
might be feasible for fast Internet connections available in research institutions, but not for a
standard household connection, taking around three quarter of an hour to download for a 15.3
Mbits connection, the average Internet connection speed for Germany in 2017 [Tec17]. Another
issue arising from this solution is the decreased flexibility in assigning versions for openEASE .
As openEASE continues to be actively developed with new functions added regularly, and has
been used and continues to be used as a tool in teaching, it is desirable to build individual
versions running in parallel (e.g. using a new version with added reasoning capabilities for newly
captured experience data). A host system running openEASE would have to store the full size
of all currently selectable container images, even if differ minimally. To explain this limitation,
it is necessary to understand how Docker normally handles the build process of containers and
how openEASE uses it.

The build process for a Docker container is described in a file called ‘Dockerfile’. A Dockerfile
describes the content of an image, by declaring commands to be executed sequentially. A typical
command to be executed in a Dockerfile is the installation of a software package with a packet
manager or the invocation of a build process for a software. It is also possible to add files and
folders from the machine building the image. The modification each addition or command execu-
tion does to the image is saved as an intermediate image, with only the added and changed files
being stored physically (copy-on-write). Thus, a container image is really a stack of intermediate
images, whose cumulated changes result in the file system content of the final image. Dockerfiles
can refer to existing Docker images and start executing its commands with the file system state
of the referenced image. This allows to re-use images and start the build of a container with
a baseline (e.g. commonly used libraries), which can either be built beforehand on the same
machine, or be downloaded from a Docker registry. Furthermore, a Docker image referenced
in the same version in multiple Dockerfiles only has to be downloaded and stored once, which
should prevent the repeated download of complete images on minor changes to a container, as
criticized earlier.

The special use of build files for the openEASE containers however prevents this optimization, as
its Dockerfiles contain commands changing large portions of the image at once. The installation
of dependencies for example, is done in a single command. The reason for this design decision
is the reduction of overhead and improved container performance. Docker recommends not to
use too many image layers (it had a limitation of 42 layers when openEASE development
started), because the excessive stacking of images would degrade performance. If the installation
of dependencies were done for each package individually, 20 command executions would be
necessary instead of one. Also the installation of packages through the package manager fills
up cache directories in the file system of the created image, so it is considered best practice

23

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
3.2. ARCHITECTURE

to update the package manager, install all required packages and clear the cache directory in
the same Dockerfile command. Another factor that prevents the optimization is the size of
KnowRob. The delta size of the intermediate image where just the source code is downloaded
amounts to 450 Mb at the time of writing, the delta size of intermediate image directly after
invoking the build process of KnowRob amounts to 890 Mb.

Being able to preserve just the dependencies of each container for openEASE should be eval-
uated, as the archival of all dependencies needed to build the openEASE containers would
consume just under one gigabyte of storage space, with changed or added dependencies only
adding their actual size to the consumed space. If this option proves to be unpractical or un-
reliable, the archival of full Docker images could still be an option, because with regard to
reproducibility, inconvenience is trumped by the possible inability to reconstruct an earlier state
of a software. One argument in favor of full image archival is the fact that the build processes of
both KnowRob and the webrob container with the web interface of openEASE have references
to bleeding edge dependencies, i.e. always targeting and requesting the latest change of the
source code repository of a dependency. When dependencies are archived individually, it must
be ensured that the exact same change is used in the repeated build process when the software
is rebuilt.

Continuing with an overview of the used technology for building containers openEASE comprises
of, there are many build systems and technologies involved and to consider for the reproducibility
analysis. KnowRob, being placed in the ROS ecosystem, comprises of many individual software
components called packages. ROS uses the build system catkin, which supports dependency
resolution in the realm of ROS packages (i.e. it is able to resolve dependencies to other software
used and published in the ROS ecosystem) and building ROS packages written in C++, Lisp,
Python or Java. The way the KnowRob Dockerfile is written, no dependencies are actually
necessary to resolve using catkin directly. However, for building ROS packages written in Java,
catkin invokes the Java build system Gradle, which uses the Maven repositories referenced in
chapter 3.2.1 on page 20 for dependency resolution.

The container with the web interface of openEASE , webrob, is made of a Python web ap-
plication serving both dynamic content for user/session management, management of container
instances and for dynamically reading from and writing to database backed data, as well as
static content, made out of the JavaScript libraries necessary for communication with the
KnowRob containers and the GUI and visualization portions, and also images, Cascading Style
Sheets (CSS) and web fonts. For the resolution of Python dependencies, the package manager
pip is used, which is backed by the Python Package Index (PyPI). Currently, dependencies of
the JavaScript components are resolved through the npm package manager. As the dependencies
resolved through that manager are designed to run with Node.js in a standalone environment,
they are converted to be used within a browser by the Node.js module browserify32. The package

32http://browserify.org/

24

http://browserify.org/

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

CHAPTER 3. SUSTAINABILITY ANALYSIS OF OPENEASE

manager npm is backed by the npm-registry.

Other containers built by openEASE require significantly less (< 100) dependencies from the
Ubuntu APT and pip package managers (dockerbridge), or no dependencies at all (data contain-
ers, postgres_db).

All Docker containers which are no data containers reference fixed image versions available from
DockerHub or other container images built in the same openEASE build process, so there is no
risk in having suddenly non-functional containers due to an image update.

The build of openEASE is invoked through the build shell script in the scripts directory of
the main knowrob/docker git repository. It allows the selection of container images to be built
(all, or any combination of knowrob, dockerbridge and webrob containers) and offers options to
both disable the Docker build cache and to replace the APT and Maven repository sources used
during the container builds with caching services. The first option is suitable when Docker asserts
that the outcome of a command execution is unchanged and skips its execution by re-using an
intermediate image gained from previous build executions. When the use of an updated package
from APT is desired, this option can force Docker to execute the command regardless of the
cache status. The second option, the injection of caching services, helps accelerate the container
build by preventing the repeated download of the same packages. The services are provided by
two Docker containers, running a apt-cacher-ng33 service and a nexus34 repository manager.

3.3 System review

With information about the architecture of openEASE , the environment openEASE is built in
and which sources it uses during build and normal operation, all prerequisites are met to begin the
in-depth analysis of openEASE. To reiterate, the goal of this analysis is to assess the possibility
of reproducing previously obtained results of openEASE at a future date. Issues hindering or
preventing this shall be addressed, to be able to propose a solution in the following chapters.
The build and setup procedure of openEASE, its software architecture and its source code will
be considered in the analysis. Note that only openEASE itself is considered in this analysis,
the source code of software and containers only built and/or used within openEASE (e.g.
KnowRob) is not considered here and is assumed to be an immutable dependency. KnowRob in
particular could be exempted from this supposition, given that it is developed in the same
institute as openEASE, however KnowRob is not used exclusively for openEASE, thus any
possible issues might not be directly amendable just to fix reproducibility of openEASE. Another

33https://wiki.debian.org/AptCacherNg
34https://www.sonatype.com/nexus-repository-sonatype

25

https://wiki.debian.org/AptCacherNg
https://www.sonatype.com/nexus-repository-sonatype

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
3.3. SYSTEM REVIEW

aspect is that the analysis and later amendment of KnowRob would increase the effort of this
work beyond its reasonable limit.

Starting with the setup procedure of openEASE, by enumerating the requirements and steps
to be executed to operate an instance of openEASE with a given target version (e.g. a version
used by a researcher in a publication), an analysis baseline can be established. Any issues found
during this process will immediately and directly prevent reproduction of research results, as the
openEASE system hosted by the IAI does not offer a way to execute experience data analysis
with an earlier software version at the time of writing.

The first positive results of the analysis are the presence of a setup documentation35, which
describes the setup procedure of some of the openEASE dependencies (web-browser, Docker).
As outlined in the chapter 2 on page 3, documentation is one of the most important elements in
achieving research reproducibility. Besides the written documentation, the usage of Docker itself
supports achieving software reproducibility, as the Dockerfile build descriptions of containers
essentially are part of the system documentation. They describe step by step the construction
of the target system, starting from a common and often publicly available baseline (e.g. a public
base image from DockerHub). The use of Docker for software reproducibility is being discussed
and recommended by other authors, as well [Boe15] [CFG16].

Following the mentioned installation documentation, the reader is advised to execute the script
downloading the outdated Docker images from DockerHub (mentioned in chapter 3.2.2 on page
22). This step reveals two major issues: The first being the outdated documentation or the
outdated Docker images (depending on whether the DockerHub image download method shall
be retained to obtain a version of openEASE). The second issue is revealed when closely in-
specting the DockerHub images. It can be seen that only one version is published: ‘latest’.
Further investigation of the scripts directory inside the main openEASE repository shows the
script responsible for publishing versions to DockerHub, and that the version used to publish
images is always ‘latest’. The openEASE repository itself also does not contain any reference
to explicitly defined or released versions: No git tags are present, the development happens on
the ‘master’ branch (except for some branches containing modifications for a few events where a
modified openEASE instance was used, robohow and fallschool) and the source code inside
the repository also contains no references to a central openEASE version. Consequently, the
containers whose source code is hosted in the main openEASE repository are not versioned,
affecting both the webrob and dockerbridge container.

The lack of a versioning continues throughout the software built in openEASE: KnowRob,
which at least has branches in its git repository for every ROS distribution it was released for,
does not receive a version during the build of its container. As for the required data to operate
openEASE (Episodic memory and robot model data for 3D robot visualization), looking back
at section 3.2.1 on page 20 shows an FTP server as the source for the episodic memory, offering
35http://www.knowrob.org/doc/docker, accessed on 23th January 2019

26

http://www.knowrob.org/doc/docker

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

CHAPTER 3. SUSTAINABILITY ANALYSIS OF OPENEASE

no support for versioning or for retrieving deleted or changed versions of the episodic memories
at all. In the previous chapter, it was established that in research, software used together with
data must be present at exactly the same combination they were had during research for them
to be reproducible.

Generally, through the usage of version control system (vcs)s, such as git or svn, a mechanism
for automatic versioning is already present: Simply taking the revision or commit ID as version
is sufficient to restore the exact state of this version through the use of the check-out mecha-
nism of the version control system. In the case of openEASE though, because there are so
many repositories of different vcs involved, which are referenced in multiple Dockerfiles and npm
package dependency declarations, the restoration of an old version of openEASE (knowing all
revision IDs and commit IDs of the openEASE installation used in research) is infeasible and
only achievable by modifying said references to refer to the correct IDs.

Because continuing to follow the documentation will not assist the analysis further due to the
missing selection of the target version, the build process of openEASE is examined next. Build-
ing openEASE from source to reproduce a published research experiment is the only viable
option currently, despite being inconvenient due to the lack of documentation. The missing
versioning on the episodic memory data can still cause issues, but it seems more likely that the
software is changed due to continuous development, rather than that the episodic memory data
is changed after recording.

The inspection the build files revealed another issue linked to versioning, which is the reference
of bleeding-edge software dependencies in the Dockerfile and the npm package dependencies.
The build files of the container images for webrob, knowrob and dockerbridge have in common,
that they install software packages from APT repositories as one of their first build step. While
maintainers of the Ubuntu GNU/Linux APT repositories generally are very careful with up-
dating software versions, only fixing software bugs or security issues and not add functionality
breaking older functions, it can happen there as well. The ROS APT repository, although re-
quiring extensive testing before a release, can be populated with packages from any developer
targeting the ROS platform36 and might be more likely to have breaking features due to package
updates. The container image builds continue with instances of this issue, referencing devel-
opment branches of software dependencies’ git repositories and unpinned versions in pip and
npm package dependency declarations. And while the maintainers of APT repository generally
ensure that no package is deleted from the repository, an owner of a dependencies’ source code
repository may rename, restructure or delete it at any time. The lack of version pinning does not
only theoretically cause problems, openEASE already experienced issues linked to that cause
before [Beß16] [Bal19]. The first experienced issue is particularly interesting, because the fix for
the issue was to pin the version of the affected library being incompatible, but the version has not
changed for over two years. While not directly affecting reproducibility of the software, the use

36http://wiki.ros.org/ROS/ReleasingAPackage, accessed on 23th January 2019

27

http://wiki.ros.org/ROS/ReleasingAPackage

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
3.3. SYSTEM REVIEW

of very old software libraries together with other, bleeding-edge libraries indicates a quality issue
and might cause problems when developing new features or when new versions of the library are
released with security fixes.

Other issues with the build process of openEASE were not encountered, by using the provided
build script it was possible to build the latest version of openEASE with basically just having
Docker as a required dependency.

Regarding the architecture of openEASE, the use of Docker containers providing the function-
ality of very heterogeneous software while isolating them from each other and the host is a good
measure to assist in achieving reproducibility. But when the purposes of the single containers, or
rather the contained software is inspected closely, a sincere issue emerges: Due to the fact that
openEASE is both a research tool providing services to other researchers over a long time pe-
riod, and contains heavily developed and changed research software itself (KnowRob), it must
be ensured that the part of openEASE offering the service functionality is strictly separated
from the actively developed and regularly changed KnowRob part. As mentioned earlier, the
knowrob container isolates the KnowRob software itself from the rest of the system, requiring
just a network connection to communicate with it, so the KnowRob part presents no immediate
architectural reproducibility issue.

The webrob container nonetheless, is affected, as it provides both management functionality for
the operation of openEASE as a service, and hosts the client web interface communicating di-
rectly with KnowRob, and thus is tightly coupled with the API of the KnowRob ROS-services
and the format of ROS-messages transmitted from and to the knowrob container. This architec-
tural design prevents an independent operation of the service functionality of openEASE and
the client interface, imposing consequences both for the reproducibility of the software and for
continuous development of openEASE. Moreover, if the KnowRob code is updated causing
an incompatibility with the current client code in the webrob container, no entanglement ex-
ists which binds the client code to a specific KnowRob revision. The independent operation
of the KnowRob web client and visualization modules would allow having multiple versions
of such client being active on the same openEASE host system together with their respective
KnowRob version (it is already separate and user-individual in the knowrob container anyway)
and episodic memory data. If openEASE would allow the user to select the KnowRob and web
client version combination, and every version combination ever used is preserved and runnable on
demand, it would shift the effort of having to install a historic version of openEASE (possibly
from source code) from the individual to the provided instance of openEASE itself.

Another issue in the architecture which could affect the endeavor of reproducibility is the lack
of data management for user-provided data. Users can use the editor functionality to contribute
ontology and Prolog data to their KnowRob instance. With no management features for this
data, the only facility to keep track of the data is the Docker software stack knowing about
the users’ data container stored on the host running openEASE. Because the paradigm of a

28

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

CHAPTER 3. SUSTAINABILITY ANALYSIS OF OPENEASE

container is to be short-lived, there is no special protection against accidental deletion by the
Docker command line interface. Regardless of whether this is a theoretical issue (because it never
occurred so far on any productive openEASE systems to the knowledge of the author), when
it happens, it will affect reproducibility, because users might use their storage for their research
and refer to this data in their publications.

The analysis of the source code of openEASE shows one issue interfering with software repro-
ducibility: On startup of openEASE, the mesh and texture data for robot model visualization
is downloaded using the value of an environment variable provided by the user. While the vari-
able is documented in the documentation mentioned in the beginning of this section, it is data
belonging to the episodic memory data and the KnowRob version, as those data determine
when and which robot shall be displayed. When choosing to use the Docker complete image
archival method with DockerHub, the mesh data is missing from the image and could prevent
reproduction partially, as robot models might not render correctly in visualization reproduction
scenarios.

Is worth noting that some functional separation issues and quality issues in general can be
also found on the source code level. An example is the duplication of large chunks of code,
like in the directory flask/webrob/templates [Boz18]. The html files knowrob_simple.html,
knowrob_teaching.html and knowrob_tutorial.html share almost identical script dependency
declarations, and some identical JavaScript method declarations. Such quality issues are a sign
of increasing complexity [Leh80] or no sufficient design phase before implementation [Bro+98]
and could suggest a re-engineering of openEASE [Mül97]. This, however, does not affect repro-
ducibility directly, because even though future development might be hindered by such issues,
the reconstruction of current and previous states of the software are not affected.

Based on the findings about openEASE summed up in the table 3.2 on page 30, a strategy
needs to be found on how to solve the most grave pitfalls in reproducing results and software
development states and how to mitigate the others as best as possible. A suggestion for such a
strategy is developed in the following chapter.

29

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
3.3. SYSTEM REVIEW

No. Description

1. Outdated documentation on how to set up openEASE

2. Missing versioning of openEASE

3. Missing versioning of dependencies

4. Missing versioning of required data (episodic memory/3D meshes and tex-
tures)

5. Reference of bleeding-edge software dependencies (latest change in a reposi-
tory, or ‘HEAD’, unpinned versions)

6. KnowRob web client and visualization code is not separated from the ope-
nEASE service implementation

7. KnowRob web client and visualization code, KnowRob and the required
data are not entangled

8. No management features for user-provided data

9. Mesh data is downloaded during runtime, not during build

Table 3.2 Issues interfering or preventing software reproducibility in openEASE

30

Chapter 4

Achieving software reproducibility in openEASE

In the previous chapter, several issues were found in openEASE which need to be addressed to
make it a reliable and long-term dependable tool for fostering research in the field of robotics
and knowledge processing. In this chapter, a strategy to resolve these issues is developed.

The findings in table 3.2 on page 30 lead to both obvious and debatable solutions. In the following
section, a solution to issue 6 from the referenced table is proposed and its implementation is
documented afterwards. It is the first prerequisite for having a reproducible software, as a tight
coupling between a software component that is changed often due to active development and
might break sometimes, and a software component required to work reliably is not compatible.

4.1 Combined KnowRob client and openEASE management

For the issue of having no separation between the client web interface to the research soft-
ware KnowRob and the rest of openEASE , an obvious solution is to separate both parts
from each other. At first, the present structure of the web interface implementation is ex-
plained, followed by the description of the separation of said parts and the moving of the
KnowRob web-client code with its visualization and GUI libraries into an own Docker con-
tainer. The analysis of the current state and the modification executed was done based on the
commit b52b1536c80518ad948a23735a92ed2dd50a52ae in the git repository attached to this
thesis as openease.zip. All paths and files referenced in this section refer to this repository as
well.

31

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
4.1. COMBINED KNOWROB CLIENT AND OPENEASE MANAGEMENT

4.1.1 Current state

The files related to the openEASE web-interface can be found in the flask/webrob. Three
folders inside that directories are relevant to the examination: The pages directory containing
Python files using the web-framework flask to serve web pages dynamically, the templates
folder containing the HTML code for the dynamic (and static) web-pages with placeholders to
be replaced by flask and the static folder containing JavaScript libraries, CSS files and images.

When a user opens the openEASE web-page, he is directly redirected to the GUI from which
he can select episodic memories to load, an action the user is always prompted for when he
first visits the site. Apart from opening the user login and registration page, the user has no
option other than selecting an episodic memory (figure 4.1 on page 32). After the user selects
the desired episode, a KnowRob user-container is launched and the web-interface waits until
this container is fully loaded, polling the state of the container in a fixed interval. An overlay
displaying a progress circle prevents any user interaction during this time.

Figure 4.1 Right menu of openEASE with episodic memory selection

When the container is completely started, meaning the ROS system with the KnowRob software
and the WebSocket transport are usable, the overlay disappears, and the full GUI is displayed to
the user. The user then has the ability to either use the query console or the predefined query list
to query the KnowRob knowledge base and visualizing the episodic memory data, or to open one
of the following views: A episode replay page capable of producing videos from episodic memory
visualization, a tutorial page teaching the basic usage of openEASE with a live walk-through
of the Prolog query and visualization capabilities, an editor for adding user-supplied content and
a log view showing the log messages of the user-assigned KnowRob container (figure 4.2 on
page 33). All views selectable are pre-loaded in the background inside an invisible frame, and

32

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

CHAPTER 4. ACHIEVING SOFTWARE REPRODUCIBILITY IN OPENEASE

are brought to the front upon selection, allowing fast switching without load times.

Figure 4.2 Left menu of openEASE with different selectable views

The user can also select another episode from the right menu, which terminates and removes the
currently running knowrob container and launches a fresh one, because the existing container
might have been tainted by previous user queries and it is non-trivial to unload experience data
from a running KnowRob instance.

All enumerated actions require access to the JavaScript KnowRob client instance and the
visualization libraries and auxiliary scripts - other interactions with openEASE like the display
of a user details page or administrative pages when logged in as administrator do not involve the
use of the KnowRob client code or visualization.

Unfortunately, the code for initialization and display of the KnowRob client and visualization is
mixed with all of the other code responsible for the rest of openEASE functions. Moreover, the
KnowRob client initialization code residing in the templates/main.html file and some of the
JavaScript libraries depend on having user information and information on how to authenticate
against the knowrob container injected through the template system of flask. In return, some of
the JavaScript code responsible for managing the frames for faster view-switching is found inside
the library managing the KnowRob client connection.

4.1.2 Separation into openEASE and openEASE-webclient

The resolution for these findings is to establish a clear separation between web-pages and code
responsible for displaying the outer GUI, frames and menu items, and the code responsible for
communication with KnowRob and the visualization. Challenging is to handle the various
callback notifications necessary in this system: The aforementioned overlay for example must be
hidden when the KnowRob client is ready to use. Also, the client needs to retrieve the informa-
tion on which Uniform Resource Locator (URL) the knowrob container is reachable and which
authentication data to use. To implement a clean, low-complexity and future-proof solution, the
separated KnowRob related code should be placed inside its own container. For clear reference,
when referring to the ‘webclient’ from now on, both the client KnowRob and ROS libraries and

33

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
4.1. COMBINED KNOWROB CLIENT AND OPENEASE MANAGEMENT

the HTML and JavaScript parts responsible for displaying the visualization and Prolog console
options are meant. ‘openEASE web interface’ refers to the old, now client-independent, web
pages of openEASE . The webclient container should be completely static (i.e. no Python or
other framework should be required during operation) and be served through a simple nginx
web-server instance.

All amendments described in this subsection can be viewed in the file tree of the commit
9a933448e8c66410bc1ad0100c391f8486f6258a in the git repository attached to this thesis as
openease.zip.

As first refactoring step, all static content clearly identifiable as being part of either the
KnowRob and ROS client libraries, or the query console, visualization and 3D navigation code,
was moved to the directory openease-webclient. A directory structure similar to the originat-
ing flask/webrob is established inside: openease-webclient/static for JavaScript libraries,
images and CSS files, and openease-webclient/html for HTML files.

The dependency resolution for JavaScript, which was previously handled by one npm package
.json file in the flask/webrob/static folder, was split into dependencies required by the we-
bclient in the openease-webclient/package.json file, and the remaining dependencies which
are left in the original flask/webrob/static/package.json file. Also, an own Dockerfile was
added to the webclient directory, which invokes the npm dependency resolution and browserify
conversion, as well as a static templating tool selected for this task to minimize duplicate HTML
code: jekyll1. Jekyll allows the generation of static HTML pages from templates and is the
template engine behind the Github pages2 feature.

With these preconditions, a lightweight container serving static content can be built and
launched. To reach the nginx web-server, the webclient container had to be added to the
main nginx container configuration of openEASE, so that it is made available under the
https://openease-host/webclient/$WEBCLIENT_NAME URL, with $WEBCLIENT_NAME be-
ing the name of the webclient container. This allows the parallel operation of multiple webclient
instances, for when the startup of an older knowrob container is requested. Additionally, the
latest webclient version is built and launched per default, using the name ‘default’.

Remaining for this restructuring is the separation of JavaScript code and the adjustment of the
existing HTML files the client GUI comprises of to work with jekyll.

The openEASE web interface was stripped of any code specific to tasks to be executed by
the webclient. It now handles the management and handling of the frame switching previously
located in the KnowRob webclient library and the menu content control. For the frame switch-
ing control, a new JavaScript library was created flask/webrob/static/lib/framecontrol.js,
containing old frame control functions now stripped from the webclient library. The web inter-

1https://jekyllrb.com/
2https://pages.github.com/

34

https://jekyllrb.com/
https://pages.github.com/

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

CHAPTER 4. ACHIEVING SOFTWARE REPRODUCIBILITY IN OPENEASE

face was redesigned in such a way that the webclient is loaded into a single frame, in which the
KnowRob client instance is initialized. Inside this frame, the frame control library creates the
view frames previously located directly on the openEASE web interface pages. The available
view frames a webclient provides is now declared via a JSON file placed in the root directory
of every webclient instance: openease-webclient/html/webclient-description.json. When
loading the webclient, the openEASE web interface queries this file to determine the content
of the menu and the view frames to spawn. The library responsible for loading the webclient
is the newly created flask/webrob/static/lib/controller.js, along with the initialization
code in flask/webrob/templates/main.html. These files gather necessary information for the
webclient to connect to the knowrob container instance, set up the surrounding GUI elements
and load the selected webclient instance.

The webclient itself now needs to obtain initialization information from the openEASE web
interface, as it does not have access to such information anymore as a static web page. For that
matter, a new HTML page is created in the webclient, which is loaded into the frame controlled
by the openEASE web interface (openease-webclient/html/client_frame.html). The new
page then accesses the controller instance of the parent web page to retrieve the KnowRob con-
nection and authentication information, gain access to some GUI controls such as the overlay and
initializes the KnowRob web client. The inter-frame access is possible through the Same-Origin-
Policy modern browsers employ, which grants frame-embedded pages access to the parent page
and its JavaScript context when both the frame and its parent originate from the same server.

The KnowRob client JavaScript library in the webclient (openease-webclient/static/lib/
knowrobClient.js) was rewritten in a way, that where it directly tried to access resources
now located in the openEASE web interface, it would use the newly introduced controller
classes. The required connection and authentication information are loaded into the client li-
brary from the client_frame.html page. All references to the client library, mostly present
in the knowrob_*.html main webclient pages in the openease-webclient/html directory, were
updated to obtain their controller instance through the client_frame.html parent frame, more
specifically the new client controller openease-webclient/static/lib/knowrobController.js.
It keeps track about the state of the client when it is initialized, and fires a callback on initializa-
tion, ensuring all webclient pages retrieve only active and initialized KnowRob client instances.

The editor page in this scenario shares both domains of the webclient and the openEASE web
interface, making the decision where to put it challenging. As it requires both dynamic ac-
cess to the user-data container and thus requiring a dynamic web-framework such as flask,
but also requires access to the KnowRob client to propagate changes to edited packets back
to the running knowrob container, it was decided to leave it in the openEASE web inter-
face (flask/webrob/templates/editor.html). The propagation of package changes was solved
with a special callback, which is registered by the webclient on initialization. The controller of
openEASE web interface invokes this callback, accessing the knowrobController.js on the

35

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
4.2. VERSIONING AND DEPENDENCY MANAGEMENT

webclient frame. On another occasion, the changing of the currently active episode, the con-
troller is also accessed by the openEASE web interface to signal the client the change of the
episode.

While this creates a reference to the webclient requiring knowledge about the API of the controller
inside, it is limited to two functions, which is tolerable (see lines 60-70 in flask/webrob/static/
lib/controller.js).

The main webclient interface pages, namely knowrob_simple.html, knowrob_tutorial.html
and knowrob_teaching.html pages for displaying the visualization, query console and li-
brary, statistics and video GUI, as well as the video.html episode replay and video genera-
tion page were amended to fit the jekyll template language. Common JavaScript dependen-
cies were externalized into openease-webclient/html/_includes/knowrob_base.html, and
common JavaScript initialization code required by most of the interface pages was moved
to openease-webclient/html/_includes/knowrob_commonjs.html, fixing most of the code-
duplication encountered in the HTML code.

With these changes, the webclient for KnowRob is completely separated from the webrob con-
tainer, now operating as openease-webclient container. As a bonus, many issues in the amended
JavaScript libraries being caused by a race condition (like the KnowRob client being loaded
to early or too late, the view frames not being completely loaded etc.) are solved through the
introduction of the aforementioned various callback facilities.

4.2 Versioning and dependency management

One of the major problems being present in the openEASE software project is the lack of
versioning in individual components, and the whole system as well. It is therefore the next logical
step to evaluate possible solutions how to support adding versions to openEASE, including
its dependencies, and the required datasets, as well. A solution for this problem could solve
issues 2, 3, 4 and 7 from table 3.2 on page 30, adding not only versions to every dependency
currently un-versioned, but would also enable the coupling of the KnowRob version to the
newly created openease-webclient container introduced in the previous section and the dataset
of episodic memories.

Furthermore, if the solution could also assist in pinning bleeding-edge software dependencies,
issue 5 from table 3.2 on page 30 would at least be mitigated.

Remembering the requirements established in chapters 2 on page 3 and 3 on page 15, this solution
is required to gain the following features:

36

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

CHAPTER 4. ACHIEVING SOFTWARE REPRODUCIBILITY IN OPENEASE

• The coupling of KnowRob, the openease-webclient interface and the associated episodic
memory data.

• Assigning stable versions of the above 3-tuple combination to existing experiment data,
allowing experiments to be migrated to new KnowRob developments gradually, not all
at once requiring immense compatibility testing effort or the risk of breaking a previously
working experiment.

• Having the freedom of not migrating old experiments to work with a new KnowRob version,
because it is unmaintained.

• Having the freedom of using bleeding-edge software dependencies (a feature which is desired
in actively developed and constantly evolving research software) AND long-term stability of
release iterations.

• Providing the option to load older versions of the above 3-tuple software combination for
reproducing (historic) analysis and visualization results.

Firstly, the option discussed in 3.3 on page 25 to archive Docker images shall be reiterated. When
compiling a Docker image of a container, all dependencies in their current state are fixed inside
the image. No artificial version number would have to be introduced for currently un-pinned
dependency versions and bleeding-edge development versions. The only issue with this solution
is the omission of the episodic memory, which totals to over 39 Gb of data. A Docker Inc. (the
operators of DockerHub) employee states, that image sizes are not limited, but problems might
be encountered with image sizes above 10 or 20 Gb3. Thus, the upload of the episodic memories
to DockerHub must be tested before employing this solution, or it has to be split to multiple
image to reduce the maximum single image size.

The scripts to upload the Docker images to DockerHub would have to be amended to pass
a unique version number instead of ‘latest’ to prevent overwriting the previous image versions.
openEASE then could be changed to remember previously built versions of its container images,
load these versioned images of KnowRob , the client libraries and the related episode files from
DockerHub on demand and every release would be totally reproducible, given that the last issue
9 of the mesh data being downloaded at runtime is also solved by uploading it to DockerHub in
an own container.

This option is inconvenient, as it requires large amounts of storage space both on DockerHub
and on a host system running openEASE (Docker caches images downloaded from DockerHub).
With the knowrob container image being 4.6 Gb large at the moment of writing, the storage
requirements could grow dramatically, especially when many combinations of openEASE are
released in the future. Also, the episodic data needs to be imported into a MongoDB database
before it is accessible by KnowRob , effectively doubling the required amount of data to store
(image with the raw episodic memory data, and the containers holding the MongoDB data).
Additionally, as mentioned in the previous chapter, the option of downloading large images is

3https://forums.docker.com/t/does-docker-hub-have-a-size-limitation-on-repos-or-images/10154

37

https://forums.docker.com/t/does-docker-hub-have-a-size-limitation-on-repos-or-images/10154

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
4.2. VERSIONING AND DEPENDENCY MANAGEMENT

not optimal for individuals with slow, household Internet connections.

Therefore, another solution is proposed and shall be implemented: Rather than archiving com-
plete Docker images, the archival of each dependency individually should be attempted. This
would keep the required amount of storage to a minimum, as only the changed and added depen-
dency data would have to be archived when a new combination of KnowRob , its client and the
episodic data (or the openEASE service itself) is released. When a specific version combination
of openEASE is requested by a user, this solution would require an on-the-fly build of that
container image, which could be faster than the download of a complete image, given that all
dependencies are available locally. If a version combination is requested frequently, it could be
kept in the Docker image cache, reducing the waiting time for those versions to a minimum.

Like the solution of archiving complete Docker images, implementing this solution would archive
required data sources and dependencies, but with the ability to store everything separately either
locally or in the same network. It should collect every necessary artifact required to build a ver-
sion of openEASE during the build process and be able to repeat the build process based on the
collected artifacts. If any upstream dependency breaks due to a bad update or a newly introduced
incompatibility, the centrally archived and versioned artifacts should remain unaffected. This
measure should not hinder standard development methods, though. It should still be possible
to declare dependencies in a standard following fashion, because adhering to a standard helps
the understanding of external developers, fosters contribution and ultimately reproducibility,
too. In other words, this solution should not require to change the way dependencies like the
installation of packages from APT, pip, npm or Maven repositories are declared. They should
still be declarable through a command execution declaration in a Dockerfile, or the standard
package dependency declaration of the various build systems of the programming languages used
in openEASE.

Those demands result in the following requirements of the solution:

• Being able to store potentially large binary files efficiently (for episodic memory and binary
dependencies)

• Providing a reference to the archived binary files
• Offering means to record and repeat a container building process
• Offering a mechanism to add a version to each recorded building session
• Issuing a combined version to recorded building sessions, stored binary files and source code,

which is sufficient to describe a complete openEASE system including all related containers
and data.

The design and implementation of such a solution is documented in the next chapter.

38

Chapter 5

Development of a heterogeneous data man-
agement system

In the last chapter, the requirements for a data management solution capable of handling the
storage of both large binary files, as well as text files (such as software source code) have been
set-up. The system should be capable of efficiently storing heterogeneous data, assigning version
information to a collection of heterogeneous data and distributing such data. In this chapter,
the design and implementation of such a solution is documented.

5.1 Design and quality requirements

During the analysis of openEASE, the need for an advanced and reliable data management
tool emerged, resulting in the creation of ‘MultiRepo’. It is designed to cater the needs of
archiving dependencies required by the build processes executed to construct Docker images, as
well as the repetition of said build process based on the archived artifacts. Another requirement
was establishment of being able to create single versions describing a system comprising of
heterogeneous data, such as openEASE, to be able to reference the state of the system by using
a single identifier. A researcher using openEASE should be enabled to describe the system
state his research was executed in with just the identifier, allowing other researchers to repeat
the analysis and visualization results obtained from openEASE.

As MultiRepo should be able to reliably support the operation of openEASE , the implemen-
tation is accompanied with unit- and function tests. Furthermore, the consequent use of code
comments of non-obvious implementation details assists in future maintenance and extension of
MultiRepo.

MultiRepo is implemented using the Java programming language and is structured into four

39

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
5.2. CORE

software modules: The software core, a command line interface, a server implementation and the
artifact-recorder.

5.2 Core

In the MultiRepo core, main functionality of MultiRepo is implemented. It offers the creation and
the management of a collection of binary file repositories for large binary data and git repositories
for source code and text files in a MultiRepo repository. A MultiRepo repository consists of a
directory with a set of sub-repositories being either a git or binary file system repository.

Git was chosen to be supported as sub-repository for text-based files, because it offers the best
performance for management of small binary and text-based content. It is the standard for col-
laboration in development projects, as it was designed exactly for this purpose. The widespread
usage of git, observable for example on the code-hosting platform Github, means that developers
are likely to be familiar with the use of git in software development. MultiRepo does not try to
re-implement git or the collaborative hosting git repositories. Instead it is designed to silently
archive read-only copies of the git repositories registered in a MultiRepo repository. The publi-
cation of changes to a git repository to an upstream collaborative git host happens through the
official git command line interface, as well as the update of a git repository inside a MultiRepo
repository.

Binary repositories on the other hand are completely managed within MultiRepo. Even though a
MultiRepo repository may contain multiple binary repository instances, they are stored internally
in the same data structure to enable cross-repository data de-duplication. Data added to a binary
repository is automatically chunked into small parts using the rolling hash-algorithm Adler32
algorithm originally designed by Mark Adler for the deflate compression algorithm [GD]. To find
the end of a chunk, the value of the rolling hash-algorithm is calculated with a window size of
2048 bytes, meaning that for each byte read from a file, the checksum for the last 2048 bytes
since the current byte is calculated. Due to the nature of the Adler32 algorithm, this can be
done very efficiently with one addition and one subtraction for each newly read byte. The result
of the hash-value calculation is evaluated after each byte, whether or not it end with a specific
bit-pattern. For MultiRepo binary repositories, the bit pattern 1001111111111111 (or 9FFF in
hexadecimal style) was selected. Knowing that the Adler32 checksum is relatively uniformly
distributed, it statistically results in a bit-pattern matching that of 9FFF every 40 kilobyte on
average (9FFF = 40959). This algorithm has been adapted from the backup repository software
[18], which in turn adapted the algorithm from the efficient network file transfer software [TJG98].
MultiRepo uses the chunking algorithm to deterministically split the files added to a binary
repository, which results in the same chunk bounds being calculated when the content of the

40

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

CHAPTER 5. DEVELOPMENT OF A HETEROGENEOUS DATA MANAGEMENT SYSTEM

chunk is identical. This trick allows de-duplicating file contents without knowing if and where a
file with the same content has been added to the MultiRepo repository previously. MultiRepo
just verifies whether the checksum of a chunk is already known to any of the binary file systems.
If it is, a reference to the already stored chunk is used.

This technique along with the compression of chunks with the deflate algorithm [GD] allows the
efficient storage of even large files, employing multi threaded chunking and parallel file writing
capabilities. Parallel writing is done on purpose to leverage the parallel writing speed offered
by modern solid state drives, two of which are built into the host system designated to host
openEASE.

A binary repository preserves the file system structure of the files and directories added to
it by encoding it into an efficient representation of the structure. For that purpose, an own
implementation for describing, parsing and encoding objects into a byte representation has been
written (de.mh0rst.multirepo.core.binary package), using the CBOR format [BH].

MultiRepo offers basic operations for binary repositories through an API: Showing the commit
log, committing the current changes to the file system, calculating the difference between two
revisions, as well as switching the checked out repository to a named revision. Every commit to
a binary repository creates a new revision, which is simply the Secure Hash Algorithm SHA-256
hash value for the binary data representation of said revision. Binary repositories are one-
dimensional, meaning that currently no branching or having multiple parent/child revisions are
supported. This decision was made on purpose to keep the structure and the maintenance of
such repositories simple. It is not expected that binary repositories are often updated by multiple
developers, only on the release of a new software version built with the assistance of MultiRepo.

A MultiRepo repository has three different types of sub-repository collections. The first type is
the collection of all known sub-repositories. It contains information about both binary and git
repositories, like the name and (for git repositories) the upstream repository host and the tracked
branch. If a user decides to remove a sub-repository from a MultiRepo, this collection still keeps
a copy of the deleted repository. The deletion and addition of repositories is represented in the
collection of working-copy repositories. It contains a list of currently checked-out sub-repositories,
meaning that their contents are present directly in its assigned sub-directory inside the MultiRepo
repository directory. The third collection of repositories is a compilation. A MultiRepo repository
may contain any amount of repository compilations, which contain information about the sub-
repositories being part of the compilation, as well as the revision ID of said repositories. A
compilation can be checked out in a MultiRepo repository, which replaces all sub-repositories
(both git and binary) in the working copy with the exact state represented by the compilation.
Because a compilation also has an identifier, this facility can be used as a global version number
to identify a combined openEASE software state.

An example of such a compilation for openEASE can be seen in the following enumeration:

41

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
5.3. CLI

• docker (git) - Repository containing build descriptions (Dockerfiles)
• dockerbridge (git) - Repository containing the source code of the dockerbridge container
• openease-webclient (git) - Repository containing the source code of the openease-webclient

container with the KnowRob web client
• knowrob (git) - Repository of KnowRob (as example, KnowRob needs more repositories

as established previously)
• dependencies (binary) - Repository of dependencies required for building openEASE con-

tainers
• episodes (binary) - Episodic memory data
• meshes (binary) - 3D robot model data

Note that the main openEASE repository is not part of this example compilation, as it is
independent from the KnowRob client. It can still be part of the MultiRepo repository though,
even part of the working copy, thus allowing the collection of all data related to openEASE in
one place.

Additionally, apart from the actual transport itself, the client and server implementation is
prepared in the core module. It offers an abstract implementation of pushing and pulling a
complete MultiRepo repository including all sub-repositories, the transfer of one new revision to
or from the server and the publication of a new default working-copy, a new sub-repository or
the update of a git repository stored on the server from its upstream host (e.g. Github).

5.3 CLI

For easy interaction with a MultiRepo repository, a command line interface is provided. It
offers operations like the initialization of a MultiRepo, operations on single sub-repositories
(commit, diff, log) and the interaction with a MultiRepo server. To ease the interaction with the
command line interface, the library picocli1 is used. It allows the definition of commands, options
and positioned parameters and generates help text from said definitions. As a bonus feature,
command line TAB completion is offered by this library, providing the means to generate the
required shell scripts.

The CLI implements a HTTP client suitable for communication with the MultiRepo server
described in the next section. The CLI module itself only utilizes API offered by the MultiRepo
core module, to ensure the coverage of its functionality by the unit- and function tests in the core
module. In addition, some unit tests are installed to check the usage of the command line. For
this to resemble a realistic test, the unit test launches the CLI Java software as a new process
and asserts the expected output on the standard input/output.
1https://picocli.info/

42

https://picocli.info/

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

CHAPTER 5. DEVELOPMENT OF A HETEROGENEOUS DATA MANAGEMENT SYSTEM

5.4 Server

The server, as the command line interface, mostly utilizes abstract transport implementations
from the MultiRepo core. It uses the JAX-RS2 standard to provide a REST HTTP interface.

The server supports all transport operations implemented and described in the core module. For
increased accessibility It also uses the milton2 library3 to serve MultiRepo repository contents
via WebDAV. Also, a simple HTTP based repository access service is implemented, supporting
the retrieval of repository (again both git and binary repository) contents by repository revision
ID, compilation ID or the latest (HEAD) version.

Currently, no security is implemented into the server, like a role based access control preventing
unauthorized read and write access. This is easily integrateable using the JAX-RS security
extension, supported by many libraries implementing authentication and role support.

5.5 Artifact-Recorder

The last module of MultiRepo is the artifact-recorder. It is responsible for the recording and
replication of dependencies used in various build- and dependency systems. It can be imagined
as serving as an HTTP cache, as all of the used dependency resolution mechanisms used in
openEASE use a HTTP transport. Actually, the artifact-recorder can also act as a cache,
accelerating the repeated access of dependencies (for example for subsequent builds of the same
container, or two containers sharing the same dependency).

It is currently configurable with a JSON file, in which various repository types and their original
host sources can be configured. Supported repository types are APT, Maven and npm reposito-
ries, as well as the PyPI pip repository. For these repository types, the artifact-recorder contains
special caching and response filtering rules to support the dynamic rewriting of returned absolute
host addresses to point to the artifact-repository service, as well as marking files likely to never
change as immutable, always serving them from cache regardless of the client request.

All recorded dependencies are stored in a configurable directory, which can be the working-
directory of a MultiRepo. With this method, all recorded dependencies can be stored and
restored in a binary repository, using either a revision ID or a compilation ID.

The biggest advantage of the artifact-recorder is the transparent helper script injection func-
tionality. It can supply a shell script through its HTTP service, which prepares the system it

2https://github.com/jax-rs
3https://github.com/miltonio/milton2/

43

https://github.com/jax-rs
https://github.com/miltonio/milton2/

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
5.5. ARTIFACT-RECORDER

is executed on to use the artifact-recorder instance the script was downloaded from as depen-
dency source. The supported and replaced services to prepare can be dynamically selected us-
ing query parameters. For example the URL http://localhost:8081/helper/cache/?with-service=
apt&with-service=gradle&with-service=sh provides a script which replaces all APT services con-
figured in the running artifact-server on the system it is executed on with references to the
artifact-recorder.

Another trick employed by this helper script is the replacement of the standard shell executable
/bin/sh for Docker container builds. With this facility, the helper script intercepts calls made by
the command execution function in a Dockerscript (RUN command), which is translated to a call
to (/bin/sh -c command). Only when the Docker build is active, this replacement shell searches
the supplied command for the occurrence of configured dependency services, and replaces them
with artifact-recorder service references. This allows the replacement of commands like RUN
wget http://dependency/to/install.deb, a command often used in Dockerfiles to obtain
dependencies not present in any package repository.

This comes with an advantage and a disadvantage: The advantage of such a helper script is
the easy integration into Dockerfiles. In the following evaluation chapter, an example listing of
such an integration is provided, which is enough to intercept the dependency resolution for all
dependencies used in openEASE. The disadvantage of this method is the possibility of missing
a dependency, whose source host is not configured in the artifact-recorder, or whose dependency
resolution system is not yet known to artifact-recorder. Whether or not this limitation hinders
the use of artifact-recorder and consequently the MultiRepo stack for building openEASE shall
be subject to further investigation conducted over a longer time period.

The efficiency and functionality of this MultiRepo stack is evaluated partially in the next chap-
ter.

44

http://localhost:8081/helper/cache/?with-service=apt&with-service=gradle&with-service=sh
http://localhost:8081/helper/cache/?with-service=apt&with-service=gradle&with-service=sh

Chapter 6

Evaluation

After having completed both an analysis on the subject of reproducible results in research,
especially for reproducible software, and the implementation of a new software tool designed to
achieve the goal of software reproducibility, the following sections shall provide an assessment on
the success of the documented work.

6.1 Quantitative evaluation of MultiRepo

With the implementation of the MultiRepo software suite, a tool has been created with the
target of managing and efficiently storing both binary data and text-based source code files used
and produced during the assembly of a complex software system, such as openEASE.

The evaluation of a system designed to offer long-time reproducibility of its data is particularly
difficult, as the term long-time surpasses the timespan of this thesis by far. However, testing the
realization of single goals of the software can help in evaluating the suitability for this task.

Beginning with the quantitative evaluation of MultiRepo, this section documents the archival of
the episodic memory directory, totaling in 39 Gb of size, into a binary file repository hosted by
MultiRepo. This dataset is chosen for evaluation because it is the largest binary dataset to be
archived by MultiRepo when used to archive openEASE , and it offers a diverse assortment of
data types, ranging from easily compressible but large JSON files, to badly-compressible video
files. For comparison, the same task is executed with three other data archival solutions. The
first being a plain git repository [TPH], the second being Data Science Version Control (dvc),
a data management system combining git repositories with the ability to externally store large
data [DVC] and the third being [PBZ19], a data backup software advertising its efficient storage
capabilities.

45

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
6.1. QUANTITATIVE EVALUATION OF MULTIREPO

During the addition of the episode data to those systems, the amount of time (both wall time and
CPU time) was measured, as well as snapshots of the memory consumption during the execution.
After the execution, the total storage size needed to store the episodic memory data internally
was measured. The evaluation was executed on a system with the following specification:

Component Specification

CPU 2x Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz

RAM 256GB

Hard drive 2x 1.5 TB SSD storage

Operating system Ubuntu GNU/Linux 16.04.5 LTS

Table 6.1 Specification of the evaluation test system

Starting with git version 2.7.4, adding the episode directory to a repository took 13 minutes and
23 seconds of wall time and exactly the same amount of CPU time, requiring 12,9 Gb of storage.
Git utilizes file compression during the add process, thus reducing the size of the episodic memory
data to a third of the original size. No significant memory usage was detected during this process.

1 $ time git add .
2
3 real 13m22.907s
4 user 13m3.088s
5 sys 0m19.788s
6 $ du -d0 .git/
7 12939364 .git/

An interesting behavior can be observed however when the garbage collection process of git
is started afterwards. The garbage collector of git runs periodically, to execute de-duplication
tasks and to efficiently store data in the git pack format. It is also executed when uploading git
repository data to a remote repository. The garbage collection process takes 37 minutes and 36
seconds to complete, requiring 16.5Gb of memory during peak consumption. Over 2 hours and
54 minutes of CPU time was consumed during that process.

1 $ time git gc
2 Counting objects: 1956, done.
3 Delta compression using up to 72 threads.
4 Compressing objects: 100% (1945/1945), done.)
5 Writing objects: 100% (1956/1956), done.
6 Total 1956 (delta 1080), reused 10 (delta 0)
7

46

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

CHAPTER 6. EVALUATION

8 real 37m35.884s
9 user 167m4.376s

10 sys 7m20.444s
11 $ du -d0 .git/
12 12380936 .git

Through garbage collection, the size of the internally stored episodic memory data was further
reduced to 95% of the size before the garbage collection. Both execution times combined amount
to a total CPU time consumption of 3 hours 7 minutes and 28 seconds, and a wall time of 50
minutes and 58 seconds.

The next candidate is dvc in version 0.23.2 . It allows the management of large data inside a git
repository by storing the data itself outside the git repository and keeps only references to the
data. Adding the episode data to dvc required less time than git, totaling to 24 minutes and 48
seconds, but offered no compression or de-duplication savings:

1 /episodes$ time dvc add -R .
2 real 23m22.487s
3 user 8m50.216s
4 sys 14m8.080s
5
6 $ du -d0 .dvc
7 39096676 .dvc
8
9 $ time dvc push

10 real 1m26.740s
11 user 1m11.336s
12 sys 3m29.008s
13
14 $ du -d0 /tmp/dvc-storage
15 39095944 /tmp/dvc-storage

The amount of storage required by dvc equals the size of the episode directory, 39 Gb, showing
no significant memory usage or CPU usage during the storage process.

The last candidate for comparison, bup, was tested in version 0.29-3. Originally advertised as
a backup solution for binary data, the comparison against MultiRpo is especially interesting,
because MultiRepo uses a similar de-duplication algorithm as bup, although with different pa-
rameters. It took 15 minutes and 10 seconds to add the episodes directory to the bup repository,
requiring 14.9 Gb of storage. The CPU time totals to 14 minutes and 45 seconds, showing the
single-threaded implementation of bup.

1 $ time bup save -n episode -image /episodes
2 Reading index: 2112, done.

47

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
6.1. QUANTITATIVE EVALUATION OF MULTIREPO

3 bloom: creating from 1 file (200000 objects).
4 bloom: adding 1 file (200000 objects).
5 bloom: creating from 3 files (600000 objects).
6 bloom: adding 1 file (200000 objects).
7 bloom: adding 1 file (200000 objects).
8 bloom: adding 1 file (200000 objects).
9 bloom: adding 1 file (200000 objects).

10 bloom: adding 1 file (200000 objects).
11 bloom: creating from 9 files (1800000 objects).
12 bloom: adding 1 file (200000 objects).
13 bloom: adding 1 file (200000 objects).
14 bloom: adding 1 file (200000 objects).
15 bloom: adding 1 file (200000 objects).
16 bloom: adding 1 file (200000 objects).
17 bloom: adding 1 file (181062 objects).
18 bloom: adding 1 file (132299 objects).
19 bloom: adding 1 file (132581 objects).
20 bloom: adding 1 file (131621 objects).
21 bloom: creating from 19 files (3510177 objects).
22 bloom: adding 1 file (132097 objects).
23 bloom: adding 1 file (131334 objects).
24 bloom: adding 1 file (200000 objects).
25 bloom: adding 1 file (200000 objects).
26 bloom: adding 1 file (200000 objects).
27 bloom: adding 1 file (200000 objects).
28 bloom: adding 1 file (200000 objects).
29 Saving: 100.00% (39096530/39096530k, 2112/2112 files), done.
30 bloom: adding 1 file (176771 objects).
31
32 real 15m10.327s
33 user 14m2.348s
34 sys 0m43.232s
35
36 $ du -d0 .bup
37 14919044 .bup

Finally, the episode directory was added to a MultiRepo repository. The used Java runtime
version for this test was the OpenJDK 11.0.2 version from Oracle, and the used version MultiRepo
matches that of the latest commit from the source code repository multirepo.zip attached to
this work. The test shows that MultiRepo completes the addition of the episode data in the least
amount of time, requiring only 10 minutes and 17 seconds to save the data to the internal storage
directory. The required CPU time of 58 minutes and 49 seconds proves that the optimization of

48

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

CHAPTER 6. EVALUATION

MultiRepo for multi threaded operation is working, occupying five threads on average. 13.9 Gb
of storage are required by MultiRepo to store the episode data.

1 $ time mr rc -m "initial commit episode directory"
2 [Repo episodes initial revision] bd48b73d043d1d49
3
4 real 10m17.052s
5 user 54m3.544s
6 sys 4m45.988s
7 $ du -d0 .mr/fsBin/
8 13949480 .mr/fsBin/

On a note about memory utilization of MultiRepo: As no limitations were configured for the
Java runtime, the memory usage peaked to 20 Gb during the test. This can be explained with
the garbage collection mechanism of Java, allocating as much memory it is allowed to consume.
The default memory limit for the Java runtime used on the test machine was 32 Gb, which was
selected based on the total memory size available in the system (ca. 12.5% of the total size).
To verify whether MultiRepo can archive the episodes directory with less available memory, the
test was repeated while limiting the available memory to the Java runtime to 2.4 Gb:

1 $ export MR_OPTS=-Xmx2G
2 $ time mr rc -m "initial commit episode directory"
3 [Repo episodes initial revision] b9277983d30eaf24
4
5 real 10m20.822s
6 user 67m32.824s
7 sys 4m16.264s

The repeated test shows an increase in consumed CPU time to 1 hour and 7 minutes, which
amounts to the average concurrent occupation of around 7 threads. The elapsed wall time only
increased slightly by 3 seconds compared to the previous run.

Summing up the evaluation of the different data storage programs, MultiRepo ranks on the
second position regarding space efficiency: The least amount of required storage is used by git
with 12.3 Gb of occupied space, at the price of needing the same amount of memory as used by
the internal data storage format. This behavior is explained by the fact that the deduplication
and difference-building algorithm of git, xdelta, requires all data to be present in memory, as it
is is optimized for operation on small, text-based files. The other data storage solutions required
one gigabyte (bup) and 25.1 Gb (dvc) additional space. Referring to the required wall time to
archive the episode data, MultiRepo was the fastest system to complete the storage process, with
all compared systems requiring at least five additional minutes - clearly showing the unsuitability
of git to store large amounts of binary data, such as the episodic memory, with over 50 minutes
of runtime. This test shows that MultiRepo is suitable for the current worst case storage scenario

49

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
6.2. IMPROVEMENTS FOR OPENEASE REPRODUCIBILITY

of openEASE.

Another measurement relevant for this evaluation is the test coverage for MultiRepo. Using
the EclEmma code coverage tool it can be shown, that the unit tests of MultiRepo cover over
82% of the instructions present in the core module. As the uncovered lines mostly consist of
unreachable exception blocks and code added for evaluation, it can be considered a well tested
and high quality software.

Figure 6.1 MultiRepo unit test code coverage

6.2 Improvements for openEASE reproducibility

The standalone storage performance of MultiRepo is just one aspect of the evaluation, as there
are is also the implemented architecture improvement of the openease-webclient, providing a
clean separation between the openEASE as a service and the used research software compo-
nents KnowRoband the web-client. The loose coupling between the openEASE web interface
and the openease-webclient container is an important step towards achieving research result re-
producibility, while being independent from the MultiRepo implementation. MultiRepo is an
experimental tool to produce efficient recordings of container build processes and the repeti-
tion of such recorded build processes, with no long-term experience. Therefore, the standalone
architectural improvement of openEASE components is a notable advantage.

For a demonstration of the MultiRepo software to record and reconstruct container build pro-
cesses, the build process of openEASE was modified such that the resolution of all dependen-
cies was done with the artifact-recorder from MultiRepo. The required changes to the build
scripts are documented in the attached repository openease.zip in the file tree of the commit
0ba9dbbe307a3ac8bb7efed66f8d5ab043fccdd5. All Dockerfiles of openEASE were modified
to download the documented helper script from the artifact-recorder service using the same three
lines:

1 ARG AR=""
2 ADD $AR /tmp/ar-helper

50

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

CHAPTER 6. EVALUATION

3 RUN test -f /tmp/ar-helper && chmod +x /tmp/ar-helper && /tmp/ar-helper ||
true

These lines define the argument AR as build parameter, which defaults to an empty string. When
this parameter is omitted, the artifact-recorder service is not used. When the parameter is
specified, the build process will attempt to download the dynamically generated helper script from
the artifact-recorder service and execute it, which transparently modifies the build environment
to request all specified dependencies from all supported dependency management systems from
artifact-recorder.

Furthermore, the build script scripts/build was modified to pass both the URL of the artifact-
recorder and the operation mode (cache, archive or rebuild) to the Dockerfiles, as well as the
required dependency providers needed by each container. With a running instance of the artifact-
recorder server using the provided demoConfig.json configuration file, a complete build of ope-
nEASE could be performed:

1 ./build --ar-url http://192.168.122.1:8081 --ar-mode cache nocache all
2 [...]

During the build, the artifact-recorder saved the dependencies from all openEASE containers
into the configured directory (arcache), which then could be archived inside a MultiRepo binary
repository.

1 $ du -hd0 arcache/
2 902M arcache/
3 $ find arcache -type f | wc
4 5645 5645 463048

The artifact recorder was able to record 5645 dependencies from APT, pip, npm and Maven
repositories, as well as a few plain HTTP resources, totaling to 902 megabytes of used storage
space. This is less than a fourth of the knowrob container image size alone required for the
complete build of openEASE . The results indicate the feasibility of the MultiRepo software
stack to operate as central dependency archive, and with the collection feature which combines
multiple repository resources, the assignment of a referencable openEASE version across all
required dependencies brings the openEASE system a step closer to offer it as a valuable
research service tool.

6.3 Conclusion

During the creation of this thesis, an existing research software was analyzed for its suitability to
conduct reproducible research with it, working out the value of research reproducibility in general,

51

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
6.3. CONCLUSION

and the value of reproducible research software. The analysis showed both design decisions
fostering that goal (like the use of Docker for the service organization and build description) and
properties that prevented such an endeavor. The first steps to allow results of openEASE to
be repeated have been completed with this thesis, but there is still a lot of work to be done.

MultiRepo still needs some improvement regarding its performance and security properties. A
long-term test phase evaluating the suitability of MultiRepo to serve as the sole data archival
system for openEASE is recommended before deploying it in productive systems. Regarding
the user experience of MultiRepo, an integration of the functions currently only available through
its command line interface into the administrative web interface should be considered. With the
introduction of role based access control in the MultiRepo server implementation, it is feasible
to use MultiRepo for the hosting and management of user-provided data (even large experience
data), as well.

If the MultiRepo suite proves itself to be insufficient to reproduce research results during further
tests, the archival of Docker images as explained in chapter 4 on page 31 could serve as a last
resort.

52

Appendix A

Appendix

A.1 List of Figures

2.1 A taxonomy of open science [Pon+15] . 5

3.1 openEASE GUI . 17

4.1 Right menu of openEASE with episodic memory selection 32
4.2 Left menu of openEASE with different selectable views 33

6.1 MultiRepo unit test code coverage . 50

A.2 List of Tables

3.1 Data sources used during openEASE build, deployment and operation 22
3.2 Issues interfering or preventing software reproducibility in openEASE 30

6.1 Specification of the evaluation test system . 46

A.3 Bibliography

[18] bup: Very efficient backup system based on the git packfile format, providing fast
incremental saves and global deduplication (among and within files, including virtual
machine images). Current re.. original-date: 2012-09-03T22:51:40Z. Feb. 14, 2018.
url: https://github.com/bup/bup (visited on 01/12/2019).

53

https://github.com/bup/bup

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
A.3. BIBLIOGRAPHY

[AD16] Patrick Aerts and Peter Doorn. “Responsibilities - Data Stewardship and Software
Sustainability”. Research Software Sustainability: Report on a Knowledge Exchange
Workshop. DFB Berlin, 2016. url: https://pure.knaw.nl/portal/en/publications/a-
conceptual - approach- to- data- stewardship- and- software- sustainability(59c24848-
9cf7-437c-b2d5-e943e9e4a35e).html (visited on 01/12/2019).

[Awe19] AwesomeData. A topic-centric list of HQ open datasets in public domains. PR ���:
awesomedata/awesome-public-datasets. original-date: 2014-11-20T06:20:50Z. Jan. 23,
2019. url: https://github.com/awesomedata/awesome-public-datasets (visited on
01/12/2019).

[Bal19] Ferenc Balint-Benczedi. Kinetic gradlew fix by bbferka · Pull Request #210 ·
knowrob/knowrob. GitHub. Jan. 4, 2019. url: https://github.com/knowrob/knowrob/
pull/210 (visited on 01/12/2019).

[Bee+15] M. Beetz, F. Bálint-Benczédi, N. Blodow, D. Nyga, T. Wiedemeyer, and Z. Márton.
“RoboSherlock: Unstructured information processing for robot perception”. In: 2015
IEEE International Conference on Robotics and Automation (ICRA). 2015 IEEE
International Conference on Robotics and Automation (ICRA). May 2015, pp. 1549–
1556. doi: 10.1109/ICRA.2015.7139395.

[Bee+16] M. Beetz, D. Beßler, J. Winkler, J. Worch, F. Bálint-Benczédi, G. Bartels, A. Bil-
lard, A. K. Bozcuoğlu, Zhou Fang, N. Figueroa, A. Haidu, H. Langer, A. Maldonado,
A. L. P. Ureche, M. Tenorth, and T. Wiedemeyer. “Open robotics research using
web-based knowledge services”. In: 2016 IEEE International Conference on Robotics
and Automation (ICRA). 2016 IEEE International Conference on Robotics and Au-
tomation (ICRA). May 2016, pp. 5380–5387. doi: 10.1109/ICRA.2016.7487749.

[Beß16] Daniel Beßler. knowrob/docker git repository, file flask/Dockerfile, line 11. GitHub.
Oct. 29, 2016. url: https : / / github . com/ knowrob / docker / blob / 528f433 / flask /
Dockerfile#L11 (visited on 01/12/2019).

[BH] Carsten Bormann and Paul Hoffman. Concise Binary Object Representation (CBOR).
url: https://tools.ietf.org/html/rfc7049 (visited on 01/12/2019).

[BMT10] M. Beetz, L. Mösenlechner, and M. Tenorth. “CRAM — A Cognitive Robot Abstract
Machine for everyday manipulation in human environments”. In: 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems. 2010 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. Oct. 2010, pp. 1012–1017.
doi: 10.1109/IROS.2010.5650146.

[BN06] Eric W. Biederman and Linux Networx. “Multiple instances of the global linux names-
paces”. In: Proceedings of the Linux Symposium. Vol. 1. Citeseer, 2006, pp. 101–112.

[Boe15] Carl Boettiger. “An Introduction to Docker for Reproducible Research”. In: SIGOPS
Oper. Syst. Rev. 49.1 (Jan. 2015), pp. 71–79. issn: 0163-5980. doi: 10 . 1145 /
2723872 .2723882. url: http ://doi . acm.org/10 .1145/2723872 .2723882 (visited
on 01/12/2019).

54

https://pure.knaw.nl/portal/en/publications/a-conceptual-approach-to-data-stewardship-and-software-sustainability(59c24848-9cf7-437c-b2d5-e943e9e4a35e).html
https://pure.knaw.nl/portal/en/publications/a-conceptual-approach-to-data-stewardship-and-software-sustainability(59c24848-9cf7-437c-b2d5-e943e9e4a35e).html
https://pure.knaw.nl/portal/en/publications/a-conceptual-approach-to-data-stewardship-and-software-sustainability(59c24848-9cf7-437c-b2d5-e943e9e4a35e).html
https://github.com/awesomedata/awesome-public-datasets
https://github.com/knowrob/knowrob/pull/210
https://github.com/knowrob/knowrob/pull/210
https://doi.org/10.1109/ICRA.2015.7139395
https://doi.org/10.1109/ICRA.2016.7487749
https://github.com/knowrob/docker/blob/528f433/flask/Dockerfile#L11
https://github.com/knowrob/docker/blob/528f433/flask/Dockerfile#L11
https://tools.ietf.org/html/rfc7049
https://doi.org/10.1109/IROS.2010.5650146
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1145/2723872.2723882
http://doi.acm.org/10.1145/2723872.2723882

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

APPENDIX A. APPENDIX

[Boz18] Asil Kaan Bozcuoglu. knowrob/docker git repository, directory flask/webrob/tem-
plates. original-date: 2014-06-24T15:41:02Z. Apr. 11, 2018. url: https://github.com/
knowrob/docker/tree/fe8659e/flask/webrob/templates (visited on 01/12/2019).

[BPB18] Daniel Beßler, Mihai Pomarlan, and Michael Beetz. “OWL-enabled Assembly Plan-
ning for Robotic Agents”. In: Proceedings of the 2018 International Conference on
Autonomous Agents. 2018.

[Bro+98] William H. Brown, Raphael C. Malveau, Hays W. ”Skip” McCormick, and Thomas J.
Mowbray. AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis.
1st. New York, NY, USA: John Wiley & Sons, Inc., 1998. isbn: 978-0-471-19713-3.

[BTW15] M. Beetz, M. Tenorth, and J. Winkler. “Open-EASE – A Knowledge Processing
Service for Robots and Robotics/AI Researchers”. In: IEEE International Conference
on Robotics and Automation (ICRA), Seattle, Washington, USA. 2015.

[CER] CERN. Storage | CERN. url: https://home.cern/science/computing/storage (visited
on 01/12/2019).

[CFG16] Jürgen Cito, Vincenzo Ferme, and Harald C. Gall. “Using Docker Containers to
Improve Reproducibility in Software and Web Engineering Research”. In: Web Engi-
neering. Ed. by Alessandro Bozzon, Philippe Cudre-Maroux, and Cesare Pautasso.
Lecture Notes in Computer Science. Springer International Publishing, 2016, pp. 609–
612. isbn: 978-3-319-38791-8.

[DVC] DVC. Data Science Version Control System. url: https : / / dvc . org/ (visited on
01/12/2019).

[FF14] Benedikt Fecher and Sascha Friesike. “Open Science: One Term, Five Schools of
Thought”. In: Opening Science: The Evolving Guide on How the Internet is Changing
Research, Collaboration and Scholarly Publishing. Ed. by Sönke Bartling and Sascha
Friesike. Cham: Springer International Publishing, 2014, pp. 17–47. isbn: 978-3-319-
00026-8. doi: 10.1007/978-3-319-00026-8_2. url: https://doi.org/10.1007/978-3-
319-00026-8_2 (visited on 01/12/2019).

[GD] J.-L. Gailly and P. Deutsch. ZLIB Compressed Data Format Specification version
3.3. url: https://tools.ietf.org/html/rfc1950 (visited on 01/12/2019).

[GH] Anthony Goldbloom and Ben Hamner. Kaggle: Your Home for Data Science. url:
https://www.kaggle.com/ (visited on 01/12/2019).

[Gin91] Paul Ginsparg. The physics e-print arxiv. 1991. url: www.arxiv.org.
[Gro+10] Robert L. Grossman, Yunhong Gu, Joe Mambretti, Michal Sabala, Alex Szalay, and

Kevin White. “An Overview of the Open Science Data Cloud”. In: Proceedings of the
19th ACM International Symposium on High Performance Distributed Computing.
HPDC ’10. New York, NY, USA: ACM, 2010, pp. 377–384. isbn: 978-1-60558-942-8.
doi: 10.1145/1851476.1851533. url: http://doi.acm.org/10.1145/1851476.1851533
(visited on 01/12/2019).

55

https://github.com/knowrob/docker/tree/fe8659e/flask/webrob/templates
https://github.com/knowrob/docker/tree/fe8659e/flask/webrob/templates
https://home.cern/science/computing/storage
https://dvc.org/
https://doi.org/10.1007/978-3-319-00026-8_2
https://doi.org/10.1007/978-3-319-00026-8_2
https://doi.org/10.1007/978-3-319-00026-8_2
https://tools.ietf.org/html/rfc1950
https://www.kaggle.com/
www.arxiv.org
https://doi.org/10.1145/1851476.1851533
http://doi.acm.org/10.1145/1851476.1851533

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
A.3. BIBLIOGRAPHY

[Gro+12] Robert L. Grossman, Matthew Greenway, Allison P. Heath, Ray Powell, Rafael D.
Suarez, Walt Wells, Kevin White, Malcolm Atkinson, Iraklis Klampanos, Heidi L.
Alvarez, Christine Harvey, and Joe J. Mambretti. “The Design of a Community Sci-
ence Cloud: The Open Science Data Cloud Perspective”. In: 2012 SC Companion:
High Performance Computing, Networking Storage and Analysis. 2012 SC Compan-
ion: High-Performance Computing, Networking, Storage and Analysis (SCC). Salt
Lake City, UT: IEEE, Nov. 2012, pp. 1051–1057. isbn: 978-1-4673-6218-4 978-0-
7695-4956-9. doi: 10.1109/SC.Companion.2012.127. url: http://ieeexplore.ieee.
org/document/6495909/ (visited on 01/12/2019).

[Hai+18] Andrei Haidu, Daniel Beßler, Asil Kaan Bozcuoglu, and Michael Beetz. “KNOWROB-
SIM a Game Engine-enabled Knowledge Processing for Cognition-enabled Robot
Control”. In: International Conference on Intelligent Robots and Systems (IROS).
2018.

[Har14] Tim Harford. “Big data: A big mistake?” In: Significance 11.5 (2014), pp. 14–19. issn:
1740-9713. doi: 10.1111/j.1740-9713.2014.00778.x. url: https://rss.onlinelibrary.
wiley.com/doi/abs/10.1111/j.1740-9713.2014.00778.x (visited on 01/12/2019).

[Het16] Simon Hettrick. “Research Software Sustainability: Report on a Knowledge Exchange
Workshop”. In: Copyright, Fair Use, Scholarly Communication, etc. (Feb. 1, 2016).
url: http://digitalcommons.unl.edu/scholcom/6.

[Isa+07] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. “Dryad:
Distributed Data-parallel Programs from Sequential Building Blocks”. In: Proceedings
of the 2Nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007.
EuroSys ’07. New York, NY, USA: ACM, 2007, pp. 59–72. isbn: 978-1-59593-636-3.
doi: 10.1145/1272996.1273005. url: http://doi.acm.org/10.1145/1272996.1273005
(visited on 01/12/2019).

[KH] James G. Kim and Michael Hausenblas. 5-star Open Data. url: https://5stardata.
info/en/ (visited on 01/12/2019).

[Lan16] Alex Lancaster. Open Science and its Discontents | Ronin Institute. June 28, 2016.
url: http://ronininstitute.org/open-science-and-its-discontents/1383/ (visited on
01/12/2019).

[Leh80] M. M. Lehman. “Programs, life cycles, and laws of software evolution”. In: Proceedings
of the IEEE 68.9 (Sept. 1980), pp. 1060–1076. issn: 0018-9219. doi: 10.1109/PROC.
1980.11805.

[McK84] James R. McKee. “Maintenance As a Function of Design”. In: Proceedings of the
July 9-12, 1984, National Computer Conference and Exposition. AFIPS ’84. New
York, NY, USA: ACM, 1984, pp. 187–193. isbn: 978-0-88283-043-8. doi: 10.1145/
1499310.1499334. url: http://doi.acm.org/10.1145/1499310.1499334 (visited on
01/12/2019).

56

https://doi.org/10.1109/SC.Companion.2012.127
http://ieeexplore.ieee.org/document/6495909/
http://ieeexplore.ieee.org/document/6495909/
https://doi.org/10.1111/j.1740-9713.2014.00778.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1740-9713.2014.00778.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1740-9713.2014.00778.x
http://digitalcommons.unl.edu/scholcom/6
https://doi.org/10.1145/1272996.1273005
http://doi.acm.org/10.1145/1272996.1273005
https://5stardata.info/en/
https://5stardata.info/en/
http://ronininstitute.org/open-science-and-its-discontents/1383/
https://doi.org/10.1109/PROC.1980.11805
https://doi.org/10.1109/PROC.1980.11805
https://doi.org/10.1145/1499310.1499334
https://doi.org/10.1145/1499310.1499334
http://doi.acm.org/10.1145/1499310.1499334

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

APPENDIX A. APPENDIX

[Men07] Paul B. Menage. “Adding generic process containers to the linux kernel”. In: Proceed-
ings of the Linux Symposium. Vol. 2. Citeseer, 2007, pp. 45–57.

[Mer14] Dirk Merkel. “Docker: Lightweight Linux Containers for Consistent Development
and Deployment”. In: Linux J. 2014.239 (Mar. 2014). issn: 1075-3583. url: http :
//dl.acm.org/citation.cfm?id=2600239.2600241 (visited on 01/12/2019).

[Mül97] Bernd Müller. Reengineering: eine Einführung. Stuttgart: Teubner, 1997. isbn: 978-
3-519-02942-7. url: http://katalog.suub.uni-bremen.de/DB=1/LNG=DU/CMD?
ACT=SRCHA&IKT=8000&TRM=31196285*.

[Nie11] Michael Nielsen. Reinventing Discovery: The New Era of Networked Science. Prince-
ton, UNITED STATES: Princeton University Press, 2011. isbn: 978-1-4008-3945-2.
url: http://ebookcentral.proquest.com/lib/suub-shib/detail.action?docID=773462
(visited on 01/12/2019).

[OC] OpenAIRE and CERN. Zenodo - Research. Shared. url: http://about.zenodo.org/
(visited on 01/12/2019).

[PBZ19] Avery Pennarun, Rob Browning, and Zoran Zaric. bup. Version 0.29.2. original-date:
2012-09-03T22:51:40Z. Jan. 21, 2019. url: https://github.com/bup/bup/ (visited on
01/12/2019).

[Pon+15] Nancy Pontika, Petr Knoth, Matteo Cancellieri, and Samuel Pearce. “Fostering Open
Science to Research Using a Taxonomy and an eLearning Portal”. In: Proceedings
of the 15th International Conference on Knowledge Technologies and Data-driven
Business. i-KNOW ’15. New York, NY, USA: ACM, 2015, 11:1–11:8. isbn: 978-1-
4503-3721-2. doi: 10.1145/2809563.2809571. url: http://doi.acm.org/10.1145/
2809563.2809571 (visited on 01/12/2019).

[PTF08] Gordon Paynter, Len Trigg, and Eibe Frank. ARFF (stable version) - Weka Wiki.
Nov. 2008. url: https : / /waikato . github . io /weka - wiki / arff_ stable/ (visited on
01/12/2019).

[Rij+13] Jan N. van Rijn, Bernd Bischl, Luis Torgo, Bo Gao, Venkatesh Umaashankar, Si-
mon Fischer, Patrick Winter, Bernd Wiswedel, Michael R. Berthold, and Joaquin
Vanschoren. “OpenML: A Collaborative Science Platform”. In: Machine Learning
and Knowledge Discovery in Databases. Ed. by Hendrik Blockeel, Kristian Kersting,
Siegfried Nijssen, and Filip Železný. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2013, pp. 645–649. isbn: 978-3-642-40994-3.

[Sch14] Jonathan W. Schooler. “Metascience could rescue the ‘replication crisis’”. In: Nature
News 515.7525 (Nov. 6, 2014), p. 9. doi: 10.1038/515009a. url: http://www.nature.
com/news/metascience - could - rescue - the - replication- crisis - 1 .16275 (visited on
01/12/2019).

[SS13] S. Sagiroglu and D. Sinanc. “Big data: A review”. In: 2013 International Conference
on Collaboration Technologies and Systems (CTS). 2013 International Conference on

57

http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://katalog.suub.uni-bremen.de/DB=1/LNG=DU/CMD?ACT=SRCHA&IKT=8000&TRM=31196285*
http://katalog.suub.uni-bremen.de/DB=1/LNG=DU/CMD?ACT=SRCHA&IKT=8000&TRM=31196285*
http://ebookcentral.proquest.com/lib/suub-shib/detail.action?docID=773462
http://about.zenodo.org/
https://github.com/bup/bup/
https://doi.org/10.1145/2809563.2809571
http://doi.acm.org/10.1145/2809563.2809571
http://doi.acm.org/10.1145/2809563.2809571
https://waikato.github.io/weka-wiki/arff_stable/
https://doi.org/10.1038/515009a
http://www.nature.com/news/metascience-could-rescue-the-replication-crisis-1.16275
http://www.nature.com/news/metascience-could-rescue-the-replication-crisis-1.16275

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
A.4. LIST OF ABBREVIATIONS

Collaboration Technologies and Systems (CTS). May 2013, pp. 42–47. doi: 10.1109/
CTS.2013.6567202.

[Tec17] Akamai Technologies. Vergleich der durchschnittlichen Verbindungsgeschwindigkeit
der Internetanschlüsse in Deutschland, Österreich und der Schweiz vom 3. Quartal
2007 bis zum 1. Quartal 2017. Statista. May 2017. url: https://de.statista.com/
statistik/daten/studie/416684/umfrage/durchschnittliche- internetgeschwindigkeit-
in-dach/ (visited on 01/12/2019).

[Ten+15] Moritz Tenorth, Jan Winkler, Daniel Beßler, and Michael Beetz. “Open-EASE: A
Cloud-Based Knowledge Service for Autonomous Learning”. In: KI - Künstliche In-
telligenz 29.4 (Nov. 1, 2015), pp. 407–411. issn: 1610-1987. doi: 10.1007/s13218-015-
0364-1. url: https://doi.org/10.1007/s13218-015-0364-1 (visited on 01/12/2019).

[TJG98] Richard Taylor, Rittwik Jana, and Mark Grigg. Checksum Testing of Remote Synchro-
nisation Tool. DSTO-TR-0627. DEFENCE SCIENCE AND TECHNOLOGY OR-
GANISATION CANBERRA (AUSTRALIA), DEFENCE SCIENCE AND TECH-
NOLOGY ORGANISATION CANBERRA (AUSTRALIA), Mar. 1998. url: http:
//www.dtic.mil/docs/citations/ADA355894 (visited on 01/12/2019).

[TPH] Linus Torvalds, Shawn O. Pearce, and Junio Hamano. git. Version 2.7.4. url: https:
//mirrors.edge.kernel.org/pub/software/scm/git/git-2.7.4.tar.gz.

[Wes93] Richard West. Reverse engineering: An overview. HM Stationery Office, 1993.
[Wie+12] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. “SWI-Prolog”.

In: Theory and Practice of Logic Programming 12.1 (Jan. 2012), pp. 67–96. issn: 1475-
3081, 1471-0684. doi: 10.1017/S1471068411000494. url: https://www.cambridge.
org/core/journals/theory-and-practice-of- logic-programming/article/swiprolog/
1A18020C8CA2A2EE389BE6A714D6A148 (visited on 01/12/2019).

[Wil16] Chris Williams. How one developer just broke Node, Babel and thousands of projects
in 11 lines of JavaScript. Mar. 23, 2016. url: https://www.theregister.co.uk/2016/
03/23/npm_left_pad_chaos/ (visited on 01/12/2019).

[Yaz+18] Fereshta Yazdani, Gayane Kazhoyan, Asil Kaan Bozcuoglu, Andrei Haidu, Ferenc
Balint-Benczedi, Daniel Beßler, Mihai Pomarlan, and Michael Beetz. “Cognition-
enabled Framework for Mixed Human-Robot Rescue Team”. In: International Con-
ference on Intelligent Robots and Systems (IROS). 2018.

A.4 List of Abbreviations

API Application Programming Interface, S. 13, 18, 19, 28, 36, 41, 42

CSS Cascading Style Sheets, S. 24, 32, 34

58

https://doi.org/10.1109/CTS.2013.6567202
https://doi.org/10.1109/CTS.2013.6567202
https://de.statista.com/statistik/daten/studie/416684/umfrage/durchschnittliche-internetgeschwindigkeit-in-dach/
https://de.statista.com/statistik/daten/studie/416684/umfrage/durchschnittliche-internetgeschwindigkeit-in-dach/
https://de.statista.com/statistik/daten/studie/416684/umfrage/durchschnittliche-internetgeschwindigkeit-in-dach/
https://doi.org/10.1007/s13218-015-0364-1
https://doi.org/10.1007/s13218-015-0364-1
https://doi.org/10.1007/s13218-015-0364-1
http://www.dtic.mil/docs/citations/ADA355894
http://www.dtic.mil/docs/citations/ADA355894
https://mirrors.edge.kernel.org/pub/software/scm/git/git-2.7.4.tar.gz
https://mirrors.edge.kernel.org/pub/software/scm/git/git-2.7.4.tar.gz
https://doi.org/10.1017/S1471068411000494
https://www.cambridge.org/core/journals/theory-and-practice-of-logic-programming/article/swiprolog/1A18020C8CA2A2EE389BE6A714D6A148
https://www.cambridge.org/core/journals/theory-and-practice-of-logic-programming/article/swiprolog/1A18020C8CA2A2EE389BE6A714D6A148
https://www.cambridge.org/core/journals/theory-and-practice-of-logic-programming/article/swiprolog/1A18020C8CA2A2EE389BE6A714D6A148
https://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/
https://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

Glossary

DOI Digital Object Identifier, S. 8
dvc Data Science Version Control, S. 45, 47

FTP File Transfer Protocol, S. 20, 22, 26

GUI Graphical User Interface, S. 16, 17, 24, 31–36, 53

IAI Institute for Artificial Intelligence, S. 12, 13, 15, 18, 20, 26

PyPI Python Package Index, S. 24, 43

ROS Robot Operating System, S. 16–21, 24, 26–28, 32–34
RPC Remote Procedure Call, S. 19

TLS Transport Layer Security, S. 19

URL Uniform Resource Locator, S. 33, 34

vcs version control system, S. 27

XML eXtensible Markup Language, S. 60

A.5 Glossary

APT
Short for Advanced Packaging Tool, a package distribution system. It is used in Debian
GNU/Linux operating systems (and derivates) to distribute binary packages, such as soft-
ware and updates. APT uses dpkg for the actual package management.
S. 20–22, 25, 27, 38, 43, 44, 51

dpkg
Short for Debian Package Manager. It is a software package manager used in the GNU/Linux
distribution Debian and its derivates. It defines its own package format, files of this format
have the file-ending .deb
S. 59

git A de-central data repository initially created by Linus Torvalds for the development of the
Linux kernel [TPH]
S. 20, 22, 25–27, 31, 34, 40, 45, 49

59

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
Glossary

Gradle
Gradle is a Java build management tool. The description of the software to assemble is done
in a domain specific language based on the Groovy language. Gradle is used in popular
frameworks and development kits, like the mobile operating system Android by Google.
S. 24

Java
An object oriented programming language. It features automated, garbage collection based
memory management and platform portability through the use of byte code, which is exe-
cuted on a Java Runtime Environment available for many common operating systems and
processor instruction sets.
S. 20, 21, 59, 60

JSON
Short for Java Script Object Notation, a format allowing the textual representation of
strings, numbers, lists and maps in an unstructured way.
S. 19, 35, 43, 45, 60

Maven
Maven is a widely-used automated Java build and dependency management tool developed
by the Apache Software Foundation. It assembles Java software based on an eXtensible
Markup Language (XML) description of the software. Maven defines a repository structure
for hosting and resolving dependencies of Java software, which has been adopted by other
build management tools for Java, as well.
S. 20, 22, 24, 25, 38, 43, 51

Node.js
Platform for running JavaScript code as standalone software. It uses the V8 runtime from
the web-browser Google Chrome and is mainly used for server-side development.
S. 20, 21, 24, 60

NoSQL
A database offering the representation and querying of data in a non-relational way. It
includes the capability to process unstructured data, such as JSON
S. 16

npm
Package manager for Node.js
S. 20, 21, 24, 25, 27, 34, 38, 43, 51

pip
Package manager for Python
S. 20, 21, 24, 25, 27, 38, 43, 51

60

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service

Glossary

Prolog
A logic programming language. Programs written in Prolog comprise of rules and facts,
which are declaration of predicates that evaluate to true when the given condition is also
true. Prolog runs within an interpreter, which takes Prolog statements and searches the
declared rules for variable configurations which let the statement evaluate to true (back-
tracking).
S. 12, 16–19, 28, 32

Python
A dynamically typed programming language interpreted at runtime. It is notable for its
relatively simple syntax using indentation for structuring code blocks, and thus being very
popular among software development beginners and widely used for fast prototyping and
advanced scripting.
S. 9, 18–21, 24, 32, 34, 60

svn
Short for subversion, a centralized version control system.
S. 20, 22, 27

61

Master’s Thesis Long-term analysis and visualization reproducibility of heterogeneous robotic
experience data in a continuously developed knowledge processing service
A.6. CONTENT OF THE DISC

A.6 Content of the disc

• thesis.pdf - This document
• openease.zip - A copy of the openEASE main repository from https://github.com/

daniel86/docker, last updated on 2nd Aug 2018, containing both the analyzed source code
of openEASE and the amendments and improvements described in this document.

• openease-dependencies.zip - A copy of the dependencies of openEASE, excluding the
large datasets, as described in 3.1 on page 22, downloaded on 25th Jan 2019

• multirepo.zip - A copy of the main repository of the MultiRepo software suite developed
during the creation of this thesis.

• multirepo-bin.zip - A compiled and runnable version of the MultiRepo software with all
required dependencies included.

62

https://github.com/daniel86/docker
https://github.com/daniel86/docker

	Contents
	Introduction
	Motivation
	Reproducibility in research
	Open science
	Open Data
	Software in research
	Open Science Tools

	Open Science, reproducibility and openEASE

	Sustainability analysis of openEASE
	Introduction of openEASE
	Architecture
	Source code and data
	Build process

	System review

	Achieving software reproducibility in openEASE
	Combined KnowRob client and openEASE management
	Current state
	Separation into openEASE and openEASE-webclient

	Versioning and dependency management

	Development of a heterogeneous data management system
	Design and quality requirements
	Core
	CLI
	Server
	Artifact-Recorder

	Evaluation
	Quantitative evaluation of MultiRepo
	Improvements for openEASE reproducibility
	Conclusion

	Appendix
	List of Figures
	List of Tables
	Bibliography
	List of Abbreviations
	Glossary
	Content of the disc

