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Abstract. In safety-critical areas the need for formal verification of software systems is ri-

sing despite being a costly task. Likewise, the popularity of concepts of functional program-

ming languages has increased. Since the functional programming paradigm is very closely

related to mathematics, the question is raised if functional programming can be beneficial

to the use of formal methods. This thesis will investigate this question by performing a ca-

se study. In the case study an existing algorithm with an imperative implementation and a

formal verification is reimplemented in a pure functional language. After that, the new imple-

mentation is formally verified. From there, a comparison between both implementations and

their verification processes is drawn to explore if a functional programming language may

accelerate the verification process while still being applicable in production environments.
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1 Introduction

1.1 Motivation

In recent years the idea of autonomous vehicles has become more popular, e.g. there is the company

Waymo, whose goal it is to develop self driving cars for the general public [26]. Since malfunc-

tions in autonomous vehicles might pose a severe danger to human lives, correctness of software

systems becomes evermore important. Thus, the need for applicable formal verification methods is

rising. However, formal verification of software systems is a costly task, since the specification of

such systems is often formalized in the language of mathematics and requires a complex series of

non-trivial mathematical proofs.

Meanwhile, functional programming has grown in popularity as well. Although there are very few

predominantly functional programming languages in the top 50 of the TIOBE Index [21], there are

features originating from declarative languages that find more adoption in imperative languages.

An example is the release of Java 8, which introduced lambda expressions and the Stream API,

which enables support for higher-order functions [16]. Functions in pure functional programming

languages are referential transparent, which means that all applications of a function can be repla-

ced with the corresponding value of the function application without changing the semantics of the

program [14, p. 78-79]. By definition, this property is shared with mathematical functions as well.

This is raising the question if the cost of formal methods, i.e. time of the verification process, can

be decreased by implementing the desired program in a pure functional programming language in

contrast to an imperative one. The present thesis will explore this question.

1.2 Scope

This thesis will investigate if an implementation in a functional programming language can ac-

celerate the time of the verification process, because of the close relations between functional

programming and mathematics. To explore if a functional language can be beneficial in this re-

gard, a case study will be performed. The case study will operate on an existing algorithm, which

has a formal specification, is implemented in an imperative programming language and is formally

verified already. The existing specification will be kept and will be used to develop a new imple-

mentation in a pure functional programming language. The implementation will then be formally

verified. Following that, a comparison will be drawn between the existing imperative implementa-

tion and the new functional one. The comparison will include the time of the verification processes

as well as the runtime performance of both implementations.

1.3 Outline

The thesis at hand is structured as follows: chapter 2 offers a brief introduction into the selected

case study. Section 2.1 provides an informal overview of the case study, while section 2.2 is adding
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the formal mathematical description. The last section of this chapter, section 2.3, describes the

actual implementation of the algorithm provided by the case study as well as a description of the

formal verification process that was involved.

Chapter 3 describes the functional implementation that was developed (section 3.1) and its formal

verification process (section 3.2). Additionally, section 3.3 presents a performance comparison bet-

ween the original implementation and the functional one.

Chapter 4 discusses the findings, provides an outlook into possible future research topics and

concludes this thesis.
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2 Case Study Description

As stated previously, the aim of this thesis is to show that programs written in a pure functional

language are significantly easier to verify. Therefore, this thesis will provide a case study, which

draws a comparison between the verification process of an imperative and a functional implemen-

tation of the same algorithm. There were three main requirements that the domain of the case

study needed to meet. First, the program had to be formally specified to compare the verification

result against a desired outcome. Second, in order to state that a functional implementation is

indeed faster to verify than an imperative implementation, a verified imperative implementation

was needed. Lastly, a sufficient insight into the verification process was necessary, such that metrics

to affirm the hypothesis could be derived. All these requirements were satisfied by an algorithm

presented in the paper Guaranteeing functional safety: design for provability and computer-aided

verification [20].

The paper and its algorithm arose as an outcome of the SAMS project (Safety Component for

Autonomous Mobile Service Robots), which was a joint project by the University Bremen, Leuze

electronic, lead by the DFKI Bremen [3]. The paper describes an algorithm for autonomous driving

vehicles, that computes a safety zone around the vehicle based on its current motion. It is therefore

a suitable measure against collisions with static objects. To ensure the correctness of the algorithm,

the authors specified the algorithm formally and then implemented a version of the algorithm in

C. Afterwards, the implementation was verified with the help of the interactive theorem prover

Isabelle [22].

The following chapter will explain said algorithm informally and formally. Finally, the imperative

reference implementation in C will be described.

2.1 Informal Description

This chapter will provide a brief overview of the safety zone algorithm. A detailed mathematical

description will follow in the next chapter.

The input of the algorithm is the current translational and rotational velocity of a vehicle at

time t0. The algorithm is then partitioned into two steps. First, the braking distance is computed.

The braking area is expressed as a length alongside a circle s and an arc α. This is a consequence of

the simplified braking model, which assumes that the vehicle is always moving either in a straight

line or in alongside a circular arc. The braking model is parameterized by a list of previously taken

braking measurements for the respective vehicle. These measurements are used to determine an

upper bound for the actual braking distance by performing a pairwise linear interpolation between

the measurements [25, p. 149].

Second, from s and α the actual safety zone, i.e. the area that covers all points that were touched by

the vehicle during braking starting at t0, is calculated. Figure 1 visualizes this. In theory this would
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Figure 1: Left: The calculated braking distance expressed as s and α. Right: The computed safety
zone, which covers the braking area of the vehicle (green area). Taken from [20].

always calculate the correct safety zone of the vehicle. Unfortunately, in reality, measuring errors

are quite common. This would result in incorrect safety zones, which could ultimately lead to the

endangerment of human lives. Therefore, the actual algorithm does not take a single translational

and rotation velocity, but rather a lower and an upper bound for both velocities. Those represent

the intervals around the actual measured velocities. Likewise, the first step of the algorithm does

not result in a single (s, α), but also in bounds representing an interval ((smin, smax), (αmin, αmax)).

The resulting safety zone is the convex hull of all the previous calculated braking areas, which is

also the first part of the final result of the algorithm. The second part is an additional buffer radius

extending the convex hull, which accounts for numerical errors due to the limitations of floating

point arithmetic.

Figure 2: Left: 1. (smin, αmin). 2. (smin, αmax). 3. (smax, αmax). 4. (smax, αmin). The green area
represents the union of the actual braking areas of intervals according to the braking model. Right:
The computed safety zone of intervals with the additional buffer radius q. Taken from [20].
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The right side of figure 2 visualizes the final result of the algorithm including the buffer radius.

In the original paper the safety zone is further processed into a laser scan representation [20, p.

19-20]. This step will be omitted in this thesis, so that only the main part of the algorithm is

implemented and verified.

2.2 Formal Specification

The following chapter will describe the formal specification of the safety zone algorithm case study.

It will only focus on the mathematics that are necessary to implement the algorithm. The proofs

and their derivation can be found in the original paper [20, p. 13-20].

The algorithm takes the bounds for the translational velocity (vmin, vmax) ∈ R × R as well as

the bounds for the rotational velocity (ωmin, ωmax) ∈ R× R as input.

Further, the first step of the algorithm is configured over variables that are specific to the vehicle.

These are the latency ∆t, which is the assumed time that the vehicle continues to drive with its

current velocity before it starts braking, a sequence of vehicle contour points R = R1, . . . , Rn, and

a sequence of straight braking measurements of the vehicle M = (v0, s0), . . . , (vm, sm) where vi re-

fers to a previous taken velocity measurement while driving straight. si refers to the corresponding

covered distance from the start of the measurement to standstill. It is assumed that the braking

measurements are in ascending order. It is also assumed that (v0, s0) = (0, 0). Additionally, one

measurement must always be taken at maximum speed of the vehicle. Because of the ascending

order, this is always (vm, sm).

The result of the first step is the bounds of the distance alongside a circle (smin, smax) ∈ R × R
and the bounds for the arc (αmin, αmax) ∈ R× R (see Figure 2) with:

smin = min
c

sc (1)

smax = max
c

sc (2)

αmin = min
c

αc (3)

αmax = max
c

αc (4)

All possible (sc, αc) are the result of the braking model function BM∆t, such that (sc, αc) =

BM∆t(vc, ωc).

(sc, αc) ∈
{
BM∆t(vc, wc) | (vc, wc) ∈ V ×Ω

}
(5)

The input of the braking model function is the calculated candidates (vc, ωc) ∈ V × Ω, which

depend on the input of the algorithm (vmin, vmax) and (ωmin, ωmax)

9



with

V =

{vmin, 0, vmax} 0 ∈ [vmin, vmax]

{vmin, vmax} 0 /∈ [vmin, vmax]
(6)

Ω =

{ωmin, 0, ωmax} 0 ∈ [ωmin, ωmax]

{ωmin, ωmax} 0 /∈ [ωmin, ωmax]
(7)

The algorithm only considers the candidates as input to the braking model function, because all

other (v′, ω′) ∈ [vmin, vmax] × [ωmin, ωmax] − V × Ω cannot result in an extreme in the braking

model function and can therefore be neglected.

The braking model function is defined in (8) where v̂s is the upper bound of the equivalent straight

velocity for a curved motion (v, ω) and ŝ(v̂s) is the corresponding upper bound for the braking

distance.

BM∆t(v, ω) =

(
ŝ(v̂s)

v̂s
+∆t

)(
v

ω

)
(8)

v̂s =
√
v2 +D2ω2 (9)

with

D = max
i
|Ri| (10)

ŝ(v) =


s1
v1
v if v ≤ v1

sm
v3m
v3 if v ≥ vm

sj−1 +
sj−sj−1

vj−vj−1
(v − vj−1) otherwise

(11)

where j is the index such that vj−1 ≤ v ≤ vj . This concludes the specification of the first step of

the algorithm.

The input of the second step of the algorithm is the distance and the arc from the previous

calculated bounds (s, α) ∈ I with I = {smin, smax} × {αmin, αmax}. The result is a sequence of

points, such that their convex hull is an upper bound approximation of the actual braking area for

all (s, α) and an additional buffer radius q, which is added on top of the safety zone.

The final result of the algorithm is captured in the function H, where the first component is
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the sequence of convex hull points and the second component is the buffer radius.

H(smin, smax, αmin, αmax) = ([[[P 1
i,s,α, P

2
i,s,α, [V

j
i,s,α]L−1j=0 ]ni=0]smaxsmin ]αmaxαmin , q) (12)

The sequence of convex hull points is not the exact braking area, but rather a conservative ap-

proximation. The approximation is done by combining the approximations of each trajectory of

each contour point of the vehicle. There are multiple ways of approximating the area of a single

trajectory. Figure 3 shows four possible alternatives, which are all supersets of that respective

trajectory. In the original paper a generalized version of figure 3(d) is used by making the number

of subarcs variable.

Figure 3: Possible approximation methods of a circular trajectory using (a) one, (b) two or (c)
three points to generate the area. In (d) the trajectory is first divided into three equal parts; then
(c) is calculated for each of them. Taken from [20].

P 1
i,s,α and P 2

i,s,α are the start and end point of a contour point Ri for the braking model (s, α)

respectively.

P 1
i,s,α = Ri (13)

P 2
i,s,α = T (s, α)Ri (14)
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The transformation matrix T (s, α) is defined as follows. It is assumed that all coordinates are

extended by 1 as a component, such that the matrix multiplication is well defined. For readability

reasons the additional component will be omitted in this thesis.

T (s, α) =

(
cosα − sinα s · sinc α

2 · cos α2
sinα cosα s · sinc α

2 · sin
α
2

)
(15)

with

sincφ =


sinφ
φ φ 6= 0

1 φ = 0
(16)

The variable V ji,s,α is the generalized version of V 1 − V 3 in figure 3(d) and is used to divide the

arc into equal parts. The number of approximation points is configured by the variable L ∈ N+.

V ji,s,α = T

(
j · s
L
,
j · α
L

)
· U3

i,s,α (17)

U1
i,s,α = Ri (18)

U2
i,s,α = T

(
s

L
,
α

L

)
·Ri (19)

U3
i,s,α = U1

i,s,α +Q(
α

L
)
1

2
(U2

i,s,α − U1
i,s,α) (20)

Q(α) =

(
1 tan α

2

− tan α
2 1

)
(21)

At last, the buffer radius q is defined in (22), which concludes the specification of the algorithm.

q = qA + qB (22)

qA =
1

6

(αmax − αmin
2

)2
max{|smin|; |smax|} (23)

qB =
(

1− cos
αmax − αmin

2

)
max
i
|Ri| (24)
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2.3 Implementation and Verification

The case study was implemented in MISRA-C, a subset of C [13]. The implementation was then

verified with a self-developed verification framework [25]. In the verification framework, functions

and loops can be annotated with their specifications directly in the C code. The annotations are

written within C comments and therefore do not interfere with the compiler [25, p. 38-40]. The

specifications are then checked by the interactive theorem prover Isabelle [22].

The final implementation consisted of 5339 lines of code. 2535 lines of those were comments and

specifications for the verification framework. The remaining 2804 lines of code were spread over

39 C functions, of which 29 where formally verified [20, p. 23]. To verify the algorithm, it was

additionally necessary to model the problem domain in Isabelle, which resulted in 11 Isabelle theory

files consisting of about 110 definitions and 510 theorems. This process took a mathematician about

5 months [25, p. 153]. The verification process of the C implementation took a SAMS project

member another 6 months [25, p. 170].

Furthermore, the SAMS software was audited by the TÜV SÜD and found to be compliant with

IEC EN 61508:3 (SIL 3 ) [4].
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3 Verification of the Functional

Reimplementation

3.1 Functional Implementation

This chapter will provide a short description of the functional implementation of the case stu-

dy presented in the previous section. Because of the close resemblance between its syntax and

mathematical definitions, Haskell [11] was chosen as the implementation language. The complete

Haskell code, which is directly involved in the algorithm, will be provided. More technical code

(e.g. printing results) will be omitted, but can be found in Appendix A. The main goal of the

implementation was to maintain the close relationship to the mathematical specification. Thus,

the implementation aims for a one to one correspondence between a mathematical definition and a

Haskell function or constant. Instances where this is not the case will be explained in the following.

no equivalent

{−#LANGUAGE OverloadedLists #−}
module SafetyZone where

import Data.Vector (Vector , (!) )

type Velocity = Float
type Distance = Float
type Time = Float
type SafetyZone = ( [ Point ] , BufferRadius)
type BufferRadius = Float
type Point = (Float , Float)

safetyZone :: (Float , Float)→(Float , Float)→SafetyZone
safetyZone vMinMax wMinMax =

let (sMinMax,aMinMax) = stepOne vMinMax wMinMax
in (stepTwo sMinMax aMinMax, calcBuffer sMinMax aMinMax)

Figure 4: Self-defined types, imports and program entry. Left - Mathematical definitions. Right -
Haskell implementation.

The right side of figure 4 shows the first part of the source code. The code begins with a GHC

compiler flag for turning on the OverloadedLists extension. OverloadedLists allows to treat other

container data structures syntactically as lists [8]. The implementation utilizes this to improve the

readability for functions that use the imported array type Vector. Further, the figure shows that

the implementation abstracts the types R and N to the data types Float and Int, respectively.

Lastly, the main function of the safety zone computation safetyZone is shown. It takes the bounds

for the translational and rotational velocity as an input, applies the input to the first step of the

algorithm, applies the resulting output to the second step and the calculation for the buffer radius

q, which then yields the final result.
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M = (v0, s0), . . . , (vm, sm)

∆t = . . .

R = R1, . . . , Rn

L = . . .

D = max
i
|Ri|

brakingMeasurements :: Vector (Velocity , Distance)
brakingMeasurements = [(0 ,0) , (203.86,113.5) ,

(535.131,365) ]

latency :: Time
latency = 0.06

robotPoints :: [ Point ]
robotPoints = [(−233.5,−162.5) , (193.5,−162.5) ,

(193.5 ,162.5) , (−233.5,162.5) ]

l :: Float
l = fromIntegral (8 :: Int )

d :: Float
d = maximum (map vLen robotPoints)

where
vLen (x , y) = sqrt (x∗x + y∗y)

Figure 5: Configurable variables with a specific configuration in the Haskell implementation.

Figure 5 shows the mathematical definition and the actual implementation of the configuration

variables. Despite L being a natural number, its counterpart l is of type Float. Since l is only used

in floating point calculations, frequent explicit conversions from Int to Float would be necessary,

due to Haskell ’s strict type system. This would hinder readability and could affect performance.

Considering that l still needs to be an integer, an explicit type annotation and conversion were

added to the definition.

The actual implementation of the first step of the algorithm is depicted in figure 6 with stepOne

as its main function. The function corresponds to the final result of the first step (smin, smax,

αmin, αmax) with the components defined locally within a where clause. Further, the figure shows

the greatest divergence between the implementation and the mathematical specification, since the

index j has to be found algorithmically. The implementation does this with a variation of a binary

search in the function findIndex. This is also the reason for the usage of the Vector type as a

storage of the braking measurements, since it allows to access elements in constant time.

Figure 7 displays the required matrix operations for the second step of the algorithm. Only an

ad hoc solution specialized to the necessary operations in step two was implemented. The ope-

rations rely heavily on pattern matching. Additionally, the matrix multiplication operation <...>

factors in the fact that the R2 vector
( x
y

)
is implicitly extended to its homogeneous coordinate(

x
y
1

)
.

The implementation of step two is illustrated in figure 8. The multiset that represents the convex

hull is captured by the main function of the second step stepTwo. Each point definition is trans-

lated into a function, in which the subscript is lifted to a proper argument of said function, e.g.

15



V ×Ω with

V =

{
{vmin, 0, vmax} 0 ∈ [vmin, vmax]

{vmin, vmax} 0 /∈ [vmin, vmax]

Ω =

{
{ωmin, 0, ωmax} 0 ∈ [ωmin, ωmax]

{ωmin, ωmax} 0 /∈ [ωmin, ωmax]

BM∆t(v, ω) =

(
ŝ(v̂s)

v̂s
+∆t

)(
v
ω

)

ŝ(v̂s)

v̂s
with

v̂s =
√
v2 +D2ω2

ŝ(v) =


s1
v1
v if v ≤ v1

sm
v3m

v3 if v ≥ vm

sj−1 +
sj−sj−1
vj−vj−1

(v − vj−1) otherwise

j such that vj−1 ≤ v ≤ vj

(smin, smax, αmin, αmax) with

smin = min
c

s
c

smax = max
c

s
c

αmin = min
c

α
c

αmax = max
c

α
c

and

(s
c
, α
c
) ∈

{
BM∆t(v

c
, w

c
) | (vc, wc) ∈ V ×Ω

}

mkCandidates :: (Float , Float) → (Float , Float) → [ (
Float , Float) ]

mkCandidates (vMin, vMax) (wMin, wMax) = [ ( v ,w) | v ←
velos , w ← omega] where

velos
| 0 ≥ vMin && 0 ≤ vMax = [vMin,0 ,vMax]
| otherwise = [vMin,vMax]

omega
| 0 ≥ wMin && 0 ≤ wMax = [wMin,0 ,wMax]
| otherwise = [wMin,wMax]

bm :: (Float , Float) → (Float , Float)
bm (v ,w) = let ts ’ = ts (v ,w) in (( ts ’+latency)∗v ,( ts ’+

latency)∗w)

ts :: (Float , Float) → Float
ts (v ,w)
| vs ≥ vm = sm / (vm∗vm∗vm) ∗ vs ∗ vs
| vs ≤ v1 = s1 / v1
| otherwise =

let
j ’ = findIndex vs
(vj ’ , sj ’ ) = brakingMeasurements ! j ’
( vj , s j ) = brakingMeasurements ! ( j ’+1)

in
( sj ’ + (( sj−sj ’ )/(vj−vj ’ ) ) ∗ (vs−vj ’ ) ) / vs

where
vs = sqrt (v∗v+(d∗d)∗(w∗w))
(vm,sm) = brakingMeasurements ! ( length

brakingMeasurements − 1)
(v1 , s1) = brakingMeasurements ! 1

findIndex :: Velocity → Int
findIndex v = go 0 ( length brakingMeasurements−1) where
go imin imax = let i = (imax+imin) ‘ div ‘ 2 in

i f imax−imin > 1
then i f f s t (brakingMeasurements ! i ) < v

then go i imax
else go imin i

else imin

stepOne :: (Float , Float) → (Float , Float) → ((Float ,
Float) ,(Float , Float))

stepOne (vMin, vMax) (wMin, wMax) = ((sMin,sMax) , (aMin,
aMax)) where

candidates = mkCandidates (vMin, vMax) (wMin, wMax)
(sCandidates , αCandidates) = unzip (map bm candidates)
sMin = minimum sCandidates
sMax = maximum sCandidates
aMin = minimum αCandidates
aMax = maximum αCandidates

Figure 6: Step one of the algorithm.

P 1
i,s,α = Ri becomes p1 = λRi → λ(s, α)→ Ri. stepTwo constructs the final result by applying all

combinations of elements of I and R to these functions.
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(
x1

y1

)
−
(
x2

y2

)
=

(
x1 − x2

y1 − y2

)

(
x1

y1

)
+

(
x2

y2

)
=

(
x1 + x2

y1 + y2

)

s ·
(
x
y

)
=

(
sx
sy

)

(
a0 a1
b0 b1

)
·
(
x
y

)
=

(
a0x+ a1y
b0x+ b1y

)

(
a0 a1 a2
b0 b1 b2

)
·

xy
1

 =

(
a0x+ a1y + a2
b0x+ b1y + b2

)

i n f i x l 6 <−>
(<−>) :: Num a ⇒ (a ,a) → (a ,a) → (a ,a)
(x1 ,y1) <−> (x2 ,y2) = (x1−x2 ,y1−y2)

i n f i x l 6 <+>
(<+>) :: Num a ⇒ (a ,a) → (a ,a) → (a ,a)
(x1 ,y1) <+> (x2 ,y2) = (x1+x2 ,y1+y2)

i n f i x l 7 <.>
(<.>) :: Num a ⇒ a → (a ,a) → (a ,a)
s <.> (x , y) = (s∗x , s∗y)

i n f i x l 7 <. .>
(<. .>) :: ((Float , Float) , (Float , Float)) → Point →

Point
((a0 ,a1) ,(b0,b1)) <. .> (x , y) = (a0∗x + a1∗y , b0∗x + b1∗y)

i n f i x 7 <. . .>
(<. . .>) :: ((Float , Float , Float) , (Float , Float , Float))

→ Point → Point
((a0 ,a1 ,a2) ,(b0,b1,b2)) <. . .> (x , y) =

(a0∗x+a1∗y+a2 , b0∗x+b1∗y+b2)

Figure 7: Matrix operators used in step two of the algorithm.

As mentioned before, the implementation aims to be very closely related to the specification. This

means that the implementation does not fully optimize the required definitions. For example, the

final result [[[P 1
i,s,α, P

2
i,s,α, [V

j
i,s,α]L−1j=0 ]ni=0]smaxsmin ]αmaxαmin contains each of the vehicle contour points four

times, since P 1
i,s,α is defined independently of s and α but the final result contains P 1

i,s,α for all

(s, α) ∈ I. Therefore, the implementation mimics this behaviour.

The calculation of the buffer radius q is summarized in the function calcBuffer.
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sincφ =

{
sinφ
φ φ 6= 0

1 φ = 0

T (s, α) =

(
cosα − sinα s · sinc α2 · cos

α
2

sinα cosα s · sinc α2 · sin
α
2

)

Q(α) =

(
1 tan α

2
− tan α

2 1

)

I = {smin, smax} × {αmin, αmax}

P
1
i,s,α = Ri

P
2
i,s,α = T (s, α)Ri

U
2
i,s,α = T

(
s

L
,
α

L

)
· Ri

U
3
i,s,α = U

1
i,s,α +Q(

α

L
)
1

2
(U

2
i,s,α − U

1
i,s,α)

V
j
i,s,α = T

(
j · s
L

,
j · α
L

)
· U3

i,s,α

[[[P
1
i,s,α, P

2
i,s,α, [V

j
i,s,α]

L−1
j=0 ]

n
i=0]

smax
smin

]
αmax
αmin

q = q
A

+ q
B

q
A

=
1

6

(αmax − αmin
2

)2
max{|smin|; |smax|}

q
B

=
(
1− cos

αmax − αmin
2

)
max
i
|Ri|

sinc :: Float → Float
sinc o
| o 6= 0 = sin o / o
| otherwise = 1

tMatrix :: Float → Float →
((Float , Float , Float) , (Float , Float , Float))

tMatrix s a = ((a0 ,a1 ,a2) ,(b0,b1,b2)) where
a0 = cos a
a1 =−sin a
a2 = s ∗ sinc (a/2) ∗ cos (a/2)
b0 = sin a
b1 = cos a
b2 = s ∗ sinc (a/2) ∗ sin (a/2)

qMatrix :: Float → ((Float , Float) , (Float , Float))
qMatrix a = ((1 , tan (a/2)) , (−tan (a/2) , 1))

mkInterval :: (Float , Float) → (Float , Float) → [ ( Float
, Float) ]

mkInterval (smin ,smax) (amin,amax) =
[ (s , a) | s ← [ smin ,smax] , a ← [amin,amax] ]

p1 :: Point → (Float , Float) → Point
p1 = const

p2 :: Point → (Float , Float) → Point
p2 r i (s , a) = tMatrix s a <. . .> r i

u2 :: Point → (Float , Float) → Point
u2 r i (s , a) = tMatrix (s/ l ) (a/ l ) <. . .> r i

u3 :: Point → (Float , Float) → Point
u3 u1@ri sa@(s ,a) = u1 <+> qMatrix (a/ l ) <. .> (0.5 <.> (

u2 r i sa <−> u1))

v :: Float → Point → (Float , Float) −> Point
v j r i sa@(s ,a) = tMatrix (( j∗s)/ l ) (( j∗a)/ l ) <. . .> u3 r i

sa

stepTwo :: (Float , Float) → (Float , Float) → [ Point ]
stepTwo (smin ,smax) (amin,amax) =

[ f r i sa | sa ← interval , r i ← robotPoints , f ←
p1p2v ]

where
interval = mkInterval (smin ,smax) (amin,amax)
p1p2v = p1 : p2 : map v [0 . . l−1]

calcBuffer :: (Float , Float) → (Float , Float) → Float
calcBuffer (sMin, sMax) (aMin, aMax) =
1/6 ∗ (av∗av) ∗ maxS + (1−cos av) ∗ maxR
where

av = (aMax−aMin)/2
maxS = max (abs sMin) (abs sMax)
maxR = d

Figure 8: Step two of the algorithm.
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3.2 Verification

This section will provide the actual verification of the previously presented implementation of the

algorithm. Unfortunately, the verification process was not as straightforward as expected. Hence,

this chapter will also provide insights into the verification process.

3.2.1 First Attempt in Isabelle

As a first attempt it was decided to try to verify the implementation with the aid of a theo-

rem prover, since machine-assisted proofs are less likely to contain logical errors [1, p. 142-144].

The choice for a theorem prover fell on Isabelle, because the original case study was verified in it

as well. Isabelle is an interactive theorem prover. Proofs written in Isabelle can use Higher Order

Logic (HOL), which is described as the composition of functional programming and logic, to prove

certain properties [15, p. 3]. The fact that HOL can be used as a functional programming langua-

ge was utilized to easily translate the Haskell implementation to Isabelle/HOL. Figure 9 shows

the translated implementation of the ts function as an example. Since Isabelle does not provide

syntactic sugar like guards or where clauses, the translation uses if-expressions and let-bindings,

respectively. The types Float and Int were translated to the types real and nat, which in Isabelle

denote R and N.

fun ts :: ”real ∗ real ⇒ real” where
”ts (v ,w) =

( let
vs = sqrt (v∗v+d∗d∗w∗w) ;
(vm,sm) = brakingMeasurements ! ( length brakingMeasurements − 1) ;
(v1 , s1) = brakingMeasurements ! 1

in
i f vs ≥ vm then sm / (vm∗vm∗vm) ∗ vs ∗ vs
else

i f vs ≤ v1 then s1 / v1
else
( let

j ’ = findIndex vs ;
(vj ’ , sj ’ ) = brakingMeasurements ! j ’ ;
( vj , s j ) = brakingMeasurements ! ( j ’+1)

in ( sj ’ + (( sj−sj ’ )/(vj−vj ’ ) ) ∗ (vs−vj ’ ) ) / vs))”

Figure 9: The implementation of the ts function in Isabelle.

Functions that contain list comprehensions as well as arithmetic sequences were first translated

to their kernel according to the Haskell Language Report [11, p. 21-22], before they were trans-

lated further. Figure 10 shows an example of the translated version of mkInterval. Additionally,
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functions that were not included in the Isabelle Main library, e.g. concatMap, were implemented

accordingly to the Haskell Prelude module [11, p. 105-122]. In one case, i.e. enumFromTo, an ad-

ditional termination proof was needed, because it could not be derived automatically by Isabelle.

fun mkInterval :: ”real ∗ real ⇒ real ∗ real ⇒
( real ∗ real ) l i s t ” where

”mkInterval (smin ,smax) (amin,amax) =
concatMap (λs . concatMap (λa . [( s , a) ]) [amin,amax]) [ smin ,smax]”

Figure 10: The implementation of the mkInterval function in Isabelle.

Moreover, the verification process was initiated by implementing a formal description of the cen-

tral safety guarantee of the algorithm. In the original paper this guarantee is described semi-

formally: ”The algorithm guarantees that for any velocity v ∈ [vmin, vmax] and any rotational

velocity ω ∈ [ωmin, ωmax] no part of the vehicle will leave the safety zone at any time while first

driving with constant velocity (v, ω)T for time ∆t and then braking down to standstill according to

the braking model.” [20, p. 3]. This guarantee was further formalized by using set theory notation.

The resulting main theorem and the depending definitions are shown in figure 12.

Unfortunately, this attempt was not very successful. Isabelle reported 18 unproven sub-theorems

after instructing it to solve the theorem automatically. Due to the inexperience of the author with

Isabelle and time constraints of this thesis this approach was not pursued any further. However,

Isabelle proved to be very useful over the course of the remaining verification process, since it was

possible to prove more general properties in Isabelle with ease. These properties were used to rea-

son about the implementation without the tedious act of proving them explicitly. For instance, the

property concatMap f xs = concat (map f xs) was easily accepted by Isabelle just by instructing

it to perform an induction proof over the list variable xs as seen in Figure 11.

lemma concatMapSimplified [ simp ] : ”concatMap f xs = concat (map f xs)”
apply ( induction xs)
apply auto

done

Figure 11: Example of automatic proof performed by Isabelle.
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definition segment :: ”( real ∗ real ) ⇒ ( real ∗ real ) ⇒ Point set” where
”segment u v ’ = { z . ∃α ∈ R . 0 ≤ α ∧ α ≤ 1 ∧ (z = (α <.> u <+> (1−α) <.> v ’) )
}”

definition is convex :: ”Point set ⇒ bool” where
”is convex K = (∀u ∈ K. ∀v ∈ K. segment u v ⊆ K)”

definition conv :: ”Point set ⇒ Point set” where
”conv X = ∩{K. is convex K ∧ X ⊆ K}”

definition straightBrakingDistance :: ”real ⇒ real” where
”straightBrakingDistance v ’ =

( let
j = The (λx . ( f s t (brakingMeasurements ! (x−1))) ≤ v ’

∧ v ’ ≤ ( f s t (brakingMeasurements ! x))) ;
( vj ’ , sj ’ ) = brakingMeasurements ! ( j−1);
(vj , s j ) = brakingMeasurements ! j ;
(v1 , s1) = brakingMeasurements ! 1;
(vm,sm) = brakingMeasurements ! ( length brakingMeasurements − 1)

in
( i f v ’ ≤ v1 then s1/v1∗v ’
else i f v ’ ≥ vm then sm/(vm∗vm∗vm)∗v ’∗v ’∗v ’
else sj ’ + ( sj−sj ’ ) / (vj−vj ’ ) ∗ (v’−vj ’ ) ))”

fun BM∆t :: ”real ∗ real ⇒ real ∗ real” where
”BM∆t (v ’ ,ω) =
( let
vsHat = sqrt (v’ˆ2+dˆ2∗ωˆ2) ;
sHat = straightBrakingDistance vsHat

in
(sHat / vsHat + latency) <.> (v ’ ,ω) )”

definition h :: ”real ⇒ real ⇒ ( real ∗ real ) set” where
”h s α = Union{ {tMatrix (x∗s) (x∗α) <. . .> r
| r . r ∈ ( set robotPoints)} | x . x ∈ R ∧ x ≥ 0 ∧ x ≤ 1 }”

theorem mainSafetyTheorem :
”(v ’ ,ω) ∈ R × R ∧ v ’ ≥ vMin ∧ v ’ ≤ vMax ∧ ω ≥ ω ∧ ω ≤ ω →

( let
H = conv ( set ( f s t (safetyZone (vMin,vMax) (ω , ω)))) ;
(s ,α) =BM∆t (v ’ ,ω)
in
H ⊇ (h s α))”

apply c la r i f y
apply (unfold Let def )
apply auto
sorry

Figure 12: The central safety guarantee formalized in Isabelle.
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Since the machine-aided attempt was not successful, the next approach was to try to verify the

implementation without the help of a computer by just reasoning about the code. This approach

turned out to be successful. Thus, the rest of this chapter will present this formal reasoning in

detail.

3.2.2 Verification by Formal Reasoning

Several assumptions were made beforehand. First, it is assumed that Double and Int are cor-

rectly represent R and N, respectively, which was also an assumption that the original paper made

[20, p. 5]. Further, it is assumed that the basic arithmetic operations on R and N, namely addition,

subtraction, multiplication and division, are correctly represented by the Haskell functions (+),

(-), (*) and (/).

Additionally, it is assumed that the used functions from the Prelude and the Vector packages

work correctly as well. It is also assumed that the input of the algorithm as well as the configura-

tions variables are appropriate and that they are equivalent to their mathematical counterpart. At

last, in order to prove total correctness of an algorithm, the algorithm needs to be partially correct

as well as terminating. In the following proofs, it is assumed that partial correctness implies total

correctness as well. This assumption is based on the fact that the implementation is only using

finite instances of data structures and implicit recursion through library higher-order functions,

e.g. map, which are assumed to be totally correct for finite inputs1.

Furthermore, in each of the following proofs it is necessary to show that the implementation is

equivalent to the specification. Since the specification describes its definitions in the terms of mul-

tisets whereas the implementation uses more efficient data structures like lists or arrays, proofs

of equivalence between terms of the implementation and the specification would in general not

be possible. Hence, the proofs are restricted to equivalence up to isomorphism. Informally a spe-

cification term tspec is equivalent up to isomorphism to its implementation term timpl (written:

tspec ∼= timpl) if tspec would be equal to timpl if the type of structure for both terms is neglected.

Thus, tspec is assumed to be equal to timpl if both are isomorphic.

The following proof will refer to the Haskell implementation shown in chapter 3.1 in the figu-

res 4-8. Despite that, for ease of readability, the rest of the section will repeat definitions from the

specification (chapter 2.2) and the implementation (chapter 3.1) if necessary.

The proof starts by looking at the entry function safetyZone. As one can see, the input of the

function is passed to stepOne, which yields the result of the first step (sMinMax,wMinMax). The

result is then the input of the main function of the second step of the algorithm stepTwo and

the buffer calculation calcBuffer. The composition of both function applications yields the final

1 The function findIndex is an exception to that assumption, since it introduces explicit recursion.
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result. Hence, in order to prove that the final result is correct, it first needs to be shown that the

result of stepOne is correct.

safetyZone :: (Float , Float) → (Float , Float) → SafetyZone
safetyZone vMinMax wMinMax =

let (sMinMax,aMinMax) = stepOne vMinMax wMinMax
in (stepTwo sMinMax aMinMax, calcBuffer sMinMax aMinMax)

Figure 13: Entry function of the implementation.

The definition of stepOne is shown in figure 14. The results of the function are the extremes of the

(smin, smax, αmin, αmax) with

smin = min
c

s
c

smax = max
c

s
c

αmin = min
c

α
c

αmax = max
c

α
c

and

(s
c
, α
c
) ∈

{
BM∆t(v

c
, w

c
) | (vc, wc) ∈ V ×Ω

}

stepOne :: (Float , Float) → (Float , Float) → ((Float ,
Float) ,(Float , Float))

stepOne (vMin, vMax) (wMin, wMax) = ((sMin,sMax) , (aMin,
aMax)) where

candidates = mkCandidates (vMin, vMax) (wMin, wMax)
(sCandidates , αCandidates) = unzip (map bm candidates)
sMin = minimum sCandidates
sMax = maximum sCandidates
aMin = minimum αCandidates
aMax = maximum αCandidates

Figure 14: Entry function of the first step.

sCandidates and the αCandidates lists. These lists are themselves results of the computation of

map bm, which takes the candidates list as an input. candidates is defined in terms of mkCandidates

(see figure 15 right).

V ×Ω with

V =

{
{vmin, 0, vmax} 0 ∈ [vmin, vmax]

{vmin, vmax} 0 /∈ [vmin, vmax]

Ω =

{
{ωmin, 0, ωmax} 0 ∈ [ωmin, ωmax]

{ωmin, ωmax} 0 /∈ [ωmin, ωmax]

mkCandidates :: (Float , Float) → (Float , Float) → [ (
Float , Float) ]

mkCandidates (vMin, vMax) (wMin, wMax) =
[ ( v ,w) | v ← velos , w ← omega] where
velos
| 0 ≥ vMin && 0 ≤ vMax = [vMin,0 ,vMax]
| otherwise = [vMin,vMax]

omega
| 0 ≥ wMin && 0 ≤ wMax = [wMin,0 ,wMax]
| otherwise = [wMin,wMax]

Figure 15: Definition of the candidates.
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It was shown via Isabelle’s simplification mechanism how the candidates are constructed based on

their input2. The exhausting construction of the candidates are shown in the equations (25)-(28).

0 ∈ [vMin, vMax] ∧ 0 ∈ [ωMin, ωMax]⇒

mkCandidates (vMin, vMax) (ωMin, ωMax) = [(vMin, ωMin), (vMin, 0),

(vMin, ωMax), (0, ωMin), (0, 0), (0, ωMax), (vMax, ωMin), (vMax, 0), (vMax, ωMax)] (25)

0 /∈ [vMin, vMax] ∧ 0 ∈ [ωMin, ωMax]⇒

mkCandidates (vMin, vMax) (ωMin, ωMax) = [(vMin, ωMin), (vMin, 0),

(vMin, ωMax), (vMax, ωMin), (vMax, 0), (vMax, ωMax)] (26)

0 ∈ [vMin, vMax] ∧ 0 /∈ [ωMin, ωMax]⇒

mkCandidates (vMin, vMax) (ωMin, ωMax) = [(vMin, ωMin), (vMin, ωMax),

(0, ωMin), (0, ωMax), (vMax, ωMin), (vMax, ωMax)] (27)

0 /∈ [vMin, vMax] ∧ 0 /∈ [ωMin, ωMax]⇒

mkCandidates (vMin, vMax) (ωMin, ωMax) =

[(vMin, ωMin), (vMin, ωMax), (vMax, ωMin), (vMax, ωMax)] (28)

This thesis refrains from unfolding V × Ω (see figure 15 left) based on (vmin, vmax, ωmin, ωmax),

but a trained reader can easily see, that (29) holds by considering (25)-(28).

mkCandidates (vMin,vMax) (wMin,wMax) ∼= V ×Ω (29)

ut
candidates is applied to map bm. Hence, every element of candidates is applied to bm, which is

why bm needs to be inspected next.

2 The lemmas can be found in Appendix B in the Isabelle theory code under the names
mkCandidatesResult 1 - mkCandidatesResult 4.
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BM∆t(v, ω) =

(
ŝ(v̂s)

v̂s
+∆t

)(
v
ω

)

ŝ(v̂s)

v̂s
with

v̂s =
√
v2 +D2ω2

ŝ(v) =


s1
v1
v if v ≤ v1

sm
v3m

v3 if v ≥ vm

sj−1 +
sj−sj−1
vj−vj−1

(v − vj−1) otherwise

j such that vj−1 ≤ v ≤ vj

bm :: (Float , Float) → (Float , Float)
bm (v ,w) = let ts ’ = ts (v ,w) in (( ts ’+latency)∗v ,( ts ’+

latency)∗w)

ts :: (Float , Float) → Float
ts (v ,w)
| vs ≥ vm = sm / (vm∗vm∗vm) ∗ vs ∗ vs
| vs ≤ v1 = s1 / v1
| otherwise =

let
j ’ = findIndex vs
(vj ’ , sj ’ ) = brakingMeasurements ! j ’
( vj , s j ) = brakingMeasurements ! ( j ’+1)

in
( sj ’ + (( sj−sj ’ )/(vj−vj ’ ) ) ∗ (vs−vj ’ ) ) / vs

where
vs = sqrt (v∗v+(d∗d)∗(w∗w))
(vm,sm) = brakingMeasurements ! ( length

brakingMeasurements − 1)
(v1 , s1) = brakingMeasurements ! 1

findIndex :: Velocity → Int
findIndex v = go 0 ( length brakingMeasurements−1) where
go imin imax = let i = (imax+imin) ‘ div ‘ 2 in

i f imax−imin > 1
then i f f s t (brakingMeasurements ! i ) < v

then go i imax
else go imin i

else imin

Figure 16: Definition of bm.

One can see by looking at figure 16 that bm (v ,w) would be isomorphic to BM∆t(v, w) if ts ’ is

isomorphic to ŝ(v̂s)
v̂s

. Thus, this needs to be shown first. Since ts ’ is the result of ts (v ,w), ts needs

to be inspected. ts locally defines three variables in its where-clause (see figure 16). The first one

vs would be equivalent to the equivalent straight velocity v̂s, if d is equivalent to D.

D = max
i
|Ri|

d :: Float
d = maximum (map vLen robotPoints)

where
vLen (x , y) = sqrt (x∗x + y∗y)

Figure 17: Definition of d.
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The definitions of D and d are displayed in figure 17. From (30) one arrives at (32), by applying

equational reasoning.

d = maximum (map vLen robotPoints) (30)

where vLen(x, y) = sqrt (x ∗ x + y ∗ y)

= maximum (map (λ(x, y)→ sqrt (x ∗ x + y ∗ y)) robotPoints) (31)

= maximum [sqrt(x1 ∗ x1 + y1 ∗ y1), . . . , sqrt(xn ∗ xn + yn ∗ yn)] (32)

Since it is assumed that maximum and sqrt work correctly as well as R being isomorphic to

robotPoints, vs ∼= v̂s follows. (v1 , s1) ∼= (v1, s1) and (vm,sm) ∼= (vm, sm) follows, because of

the assumptions that brakingMeasurements is isomorphic to M and that the library functions, i.e.

(!) and length, work correctly. Next, ts (v ,w) ∼= ŝ(v̂s)
v̂s

needs to be shown. Because ts (v ,w) as

well as ŝ(v̂s) are piecewise functions sharing the same conditions, both directions (”⇒” and ”⇐”)

of the equivalence proof will be dealt with at the same time.

Case 1: v̂s ≥ vm:

(33) shows the result of ŝ(v̂s)
v̂s

for this case.

ŝ(v̂s)

v̂s
=

sm
v3m
v̂3s

v̂s
=

sm
v3m

v̂2s = sm / (vm · vm · vm) · v̂s · v̂s (33)

ts (v ,w) evaluates to sm / (vm∗vm∗vm) ∗ vs ∗ vs, which is equivalent to (33).

Case 2: v̂s ≤ v1:

(34) shows the result of ŝ(v̂s)
v̂s

for this case.

ŝ(v̂s)

v̂s
=

s1
v1
v̂s

v̂s
=

s1
v1

(34)

ts (v ,w) evaluates to s1 / v1, which is equivalent to (34).

Case 3: otherwise (v̂s < vm ∧ v̂s > v1):

(35) shows the result of ŝ(v̂s)
v̂s

for this case.

ŝ(v̂s)

v̂s
=

sj−1 +
sj−sj−1

vj−vj−1
(v̂s − vj−1)

v̂s
with j such that vj−1 ≤ v̂s ≤ vj (35)
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ts (v ,w) evaluates to (36), which would be isomorphic to ŝ(v̂s)
v̂s

if j ’ would satisfy the same property

that j − 1 from (35) does.

ts (v, ω) = let

j′ = findIndex vs

(vj′, sj′) = brakingMeasurements ! j′

(vj, sj) = brakingMeasurements ! (j′ + 1)

in (sj′ + ((sj − sj′)/(vj − vj′)) ∗ (vs− vj′)) / vs (36)

Hence, it needs to be shown that findIndex v results in an index j ’ such that vj′ ≤ v ≤ vj′+1.

This will be done by strong induction over the difference of the arguments of the locally defi-

ned go function. The definition of findIndex (and therefore go) is displayed in figure 16. In the

following proof it will again be assumed that brakingMeasurements refers to M . By definition

of M , breakingMeasurements is an ascending order and contains at least 2 elements3. Because

v̂s < vm ∧ v̂s > v1 and therefore vs < vm ∧ vs > v1, one can assume that there exists always an

index with the desired property within the range of 0 and length brakingMeasurements −1.

Base case: imax − imin = 0. go imin imax = imin. Because of the assumptions, findIndex v

works correctly for this case.

Induction Hypothesis: Assume that findIndex v works correctly, i.e. it results in an index j′ such

that vj′ ≤ v ≤ vj′+1 for imax− imin ≤ n.

Induction Step: imax− imin = n+ 1.

Case 1: fst (brakingMeasurements ! i) < v

go imin imax = let i = (imax+ imin) ‘div‘ 2 in go i imax (37)

= go ((imax+ imin) ‘div‘ 2) imax (38)

Case 1.1: imax+ imin is even.

One can define the new difference of the arguments of the next go application k.

k = imax− i = imax− ((imax+ imin) / 2) (39)

3 Actually, brakingMeasurements needs to contain at least 3 elements, since v̂s < vm∧ v̂s > v1 ⇒ v1 6= vm.

27



By definition of ts one can assume imax− imin ≥ 2 and therefore imax ≥ imin+2, which is used

in the following to show that i > imin.

(imax+ imin) / 2 ≥ (imin+ imin+ 2) / 2 (40)

⇔ (imax+ imin) / 2 ≥ imin+ 1 (41)

⇔ i ≥ imin+ 1 (42)

⇒ i > imin (43)

Because of (43) k < n+ 1 follows and therefore the IH applies. Case 1.2: imax+ imin is odd.

One can define the new difference of the arguments of the next go application k.

k = imax− i = imax− ((imax+ imin− 1) / 2) (44)

By definition of ts one can assume imax − imin ≥ 2. Further, imax − imin ≥ 3 follows, since

imax + imin is odd. Therefore, imax ≥ imin + 3 follows, which is used in the following to show

that i > imin.

(imax+ imin− 1) / 2 ≥ (imin+ imin+ 2) / 2 (45)

⇔ (imax+ imin− 1) / 2 ≥ imin+ 1 (46)

⇔ i ≥ imin+ 1 (47)

⇒ i > imin (48)

Because of (48) k < n+ 1 follows and therefore the IH applies.

Case 2: fst (brakingMeasurements ! i) ≥ v

go imin imax = let i = (imax+ imin) ‘div‘ 2 in go imin i (49)

= go imin ((imax+ imin) ‘div‘ 2) (50)

Since the rest of the case is symmetrical to the first case, it is omitted here for brevity.

By case 1 and 2 it is concluded that findIndex v results in an index j′ such that vj′ ≤ v ≤ vj′+1

and is therefore regarded as partially correct. Termination and thus total correctness is derived by

the fact that the metric imax − imin is decreasing with every application of go. Combined with

the terminating base case imax− imin ≤ 1, this yields termination4.

ut

4 In addtion to this rather informal reasoning, there is a termination proof accepted by Isabelle, which
can be found in Appendix B on page 56.
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Therefore, (36) satisfies (35), since (vj ’ , sj ’ ) ∼= (vj−1, sj−1) and (vj , s j ) ∼= (vj , sj).

Further, by case 1-3 (51) is concluded.

ts (v ,w) ∼=
ŝ(v̂s)

v̂s
(51)

ut

With (51) one can conclude (52).

bm (v ,w) ∼= BM∆t(v, w) (52)

Since map f [x1 , . . . ,xn ] results in the list [ f x1 , . . . , f xn ] and (52) as well as (29), map bm

candidates is isomorphic to the set of braking model candidates:

map bm candidates ∼=
{
BM∆t(vc, wc) | (vc, wc) ∈ V ×Ω

}
(53)

As mentioned previously, Isabelle was used to show more general theorems. Two of those were the

following two equations (54) and (55), which were proven by induction over xs and simplification,

respectively.

unzip xs = (map fst xs, map snd xs) (54)

map f (map g xs) = map (f . g) xs (55)

Hence, (sCandidates , αCandidates) can be rewritten as in (57).

(sCandidates ,αCandidates)

= unzip (map bm candidates) (56)

= (map ( fs t ◦bm) candidates , map (snd ◦bm) candidates) (57)

By considering (53) one arrives at (58) and (59).

sCandidates ∼= {s1, . . . , sb} (58)

αCandidates ∼= {α1, . . . , αb} (59)

with
{

(s1, α1), . . . , (sb, αb)
}

=
{
BM∆t(vc, wc) | (vc, wc) ∈ V × Ω

}
. Since it is assumed that the

library functions minimum and maximum work correctly and sCandidates as well as aCandidates are

not empty, (sMin,sMax,aMin,aMax) refers to the extremes of the braking model. Thus, resulting
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in (60)-(63).

sMin = minimum sCandidates ∼= min
c

sc = smin (60)

sMax = maximum sCandidates ∼= max
c

sc = smax (61)

aMin = minimum αCandidates ∼= min
c

αc = αmin (62)

aMax = maximum αCandidates ∼= max
c

αc = αmax (63)

Because ((sMin,sMax) ,(aMin,aMax)) is also the result of stepOne vMinMax wMinMax (see figure

14), the verification of the first step of the algorithm is finally concluded by (64).

stepOne vMinMax wMinMax∼= (smin, smax, αmin, αmax) (64)

ut
The equation (64) states that stepOne satisfies the specification of the first step of the algorithm.

Therefore, stepOne is regarded as correct. Hence, in the following it is assumed that the output of

the function stepOne computes a correct result. Referring back to figure 13, the verification will

proceed with the second step of the algorithm, namely stepTwo. Afterwards, the correctness of the

buffer radius calculation will be shown.
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sincφ =

{
sinφ
φ φ 6= 0

1 φ = 0

T (s, α) =

(
cosα − sinα s · sinc α2 · cos

α
2

sinα cosα s · sinc α2 · sin
α
2

)

Q(α) =

(
1 tan α

2
− tan α

2 1

)

I = {smin, smax} × {αmin, αmax}

P
1
i,s,α = Ri

P
2
i,s,α = T (s, α)Ri

U
2
i,s,α = T

(
s

L
,
α

L

)
· Ri

U
3
i,s,α = U

1
i,s,α +Q(

α

L
)
1

2
(U

2
i,s,α − U

1
i,s,α)

V
j
i,s,α = T

(
j · s
L

,
j · α
L

)
· U3

i,s,α

[[[P
1
i,s,α, P

2
i,s,α, [V

j
i,s,α]

L−1
j=0 ]

n
i=0]

smax
smin

]
αmax
αmin

sinc :: Float → Float
sinc o
| o 6= 0 = sin o / o
| otherwise = 1

tMatrix :: Float → Float →
((Float , Float , Float) , (Float , Float , Float))

tMatrix s a = ((a0 ,a1 ,a2) ,(b0,b1,b2)) where
a0 = cos a
a1 =−sin a
a2 = s ∗ sinc (a/2) ∗ cos (a/2)
b0 = sin a
b1 = cos a
b2 = s ∗ sinc (a/2) ∗ sin (a/2)

qMatrix :: Float → ((Float , Float) , (Float , Float))
qMatrix a = ((1 , tan (a/2)) , (−tan (a/2) , 1))

mkInterval :: (Float , Float) → (Float , Float) → [ ( Float
, Float) ]

mkInterval (smin ,smax) (amin,amax) =
[ (s , a) | s ← [ smin ,smax] , a ← [amin,amax] ]

p1 :: Point → (Float , Float) → Point
p1 = const

p2 :: Point → (Float , Float) → Point
p2 r i (s , a) = tMatrix s a <. . .> r i

u2 :: Point → (Float , Float) → Point
u2 r i (s , a) = tMatrix (s/ l ) (a/ l ) <. . .> r i

u3 :: Point → (Float , Float) → Point
u3 u1@ri sa@(s ,a) = u1 <+> qMatrix (a/ l ) <. .> (0.5 <.> (

u2 r i sa <−> u1))

v :: Float → Point → (Float , Float) −> Point
v j r i sa@(s ,a) = tMatrix (( j∗s)/ l ) (( j∗a)/ l ) <. . .> u3 r i

sa

stepTwo :: (Float , Float) → (Float , Float) → [ Point ]
stepTwo (smin ,smax) (amin,amax) =

[ f r i sa | sa ← interval , r i ← robotPoints , f ←
p1p2v ]

where
interval = mkInterval (smin ,smax) (amin,amax)
p1p2v = p1 : p2 : map v [0 . . l−1]

Figure 18: Definition of stepTwo.

The definitions belonging to stepTwo are shown in figure 18, while the self defined matrix operation

are shown in figure 7. The result of the second step of the algorithm is a multiset of points repre-

senting the convex hull [[[P 1
i,s,α, P

2
i,s,α, [V

j
i,s,α]L−1j=0 ]ni=0]smaxsmin ]αmaxαmin . It needs to be shown that stepTwo

calculates the same points. This will be done via a bottom-up approach.

The proof starts by showing that P 1
i,s,α and P 2

i,s,α are isomorphic to p1 Ri (s, α) and p2 Ri (s, α),
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respectively.

P 1
i,s,α is defined as Ri. Since p1 can be rewritten as p1 = const = λRi → λ → Ri, p1 Ri (s, α)

and P 1
i,s,α are isomorphic.

p1 Ri (s, α) ∼= P 1
i,s,α (65)

ut

The proof for the later assumption involves a little bit more work. First, just by looking at the

definition, one can see that the definition of sincφ and sinc o are almost identical. Hence, sinc
∼= sinc follows. Next, p2 Ri (s, α) can be rewritten by applying equational reasoning as seen in

(66)-(69) using the definitions of the figures 7 and 18.

p2 Ri (s, α) = tMatrix s α <...> Ri (66)

= let (xRi , yRi) = Ri

in tMatrix s α <...> (xRi , yRi) (67)

= let (xRi , yRi) = Ri

in ((a0, a1, a2), (b0, b1, b2)) <...> (xRi , yRi) (68)

where

a0 = cos α

a1 = − sin α

a2 = s ∗ sinc (α/2) ∗ cos (α/2)

b0 = sin α

b1 = cos α

b2 = s ∗ sinc (α/2) ∗ sin (α/2)

= let

(xRi , yRi) = Ri

xv = cos α ∗ xRi + (− sin α) ∗ yRi + (s ∗ sinc (α/2) ∗ cos (α/2))

yv = sin α ∗ xRi + cos α ∗ yRi + (s ∗ sinc (α/2) ∗ sin (α/2))

in (xv, yv) (69)
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Similarly, P 2
i,s,α can be rewritten as well by applying the definitions and mathematical matrix

operations.

P 2
i,s,α = T (s, α)Ri (70)

=

(
cosα − sinα s · sinc α

2 · cos α2
sinα cosα s · sinc α

2 · sin
α
2

)xRiyRi

1

 (71)

=

(
cosα · xRi + (− sinα) · yRi + s · sinc α

2 · cos α2
sinα · xRi + cosα · yRi + s · sinc α

2 · sin
α
2

)
(72)

By comparing (69) and (72), it is obvious that both expressions are isomorphic up to structure.

p2 Ri (s, α) ∼= P 2
i,s,α (73)

ut

Next, it needs to be shown that V ji,s,α is isomorphic to v j Ri (s, α). To show that, it comes in handy

to proof first that U2
i,s,α and U3

i,s,α are isomorphic to u2 Ri (s, α) and u3 Ri (s, α), respectively.

The method used for showing all three lemmas is similar to the previous proof with the difference

that the proof for the correctness of v depends on the correctness of u2 and u3. Thus, the proofs

are omitted here and (74) follows5.

v ∼= V ji,s,α (74)

ut

The proof continues with the rewrite of the stepTwo function (figure 18). First, the local definitions

interval and p1p2v are rewritten. The arguments for the rewrite of the list comprehension is based

on the Haskell Report [11, p. 22].

interval = mkInterval (smin, smax) (amin, amax) (75)

= [(s, a)|s← [smin, smax], a← [amin, amax]] (76)

= concatMap (λs→ concatMap (λa→ [(s, a)]) [amin, amax]) [smin, smax] (77)

= concat (map (λs→ concat (map (λa→ [(s, a)]) [amin, amax])) [smin, smax]) (78)

= concat (map (λs→ [(s, amin), (s, amax)]) [smin, smax]) (79)

= [(smin, amin), (smin, amax), (smax, amin), (smax, amax)] (80)

5 The proofs can be found in Appendix C.
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The step from (77) to (78) was justified with (81), which was proven via induction over xs in

Isabelle.

concatMap f xs = concat (map f xs) (81)

As one can see, interval is isomorphic to the set {smin, smax}×{αmin, αmax} assuming (smin, smax) =

(smin, smax) and (amin, amax) = (αmin, αmax), which was proven in step one.

Further, p1p2v can be rewritten as (84).

p1p2v = p1 : p2 : map v [0..l − 1] (82)

= p1 : p2 : : v 0 : . . . : v (l − 1) : [] (83)

= [p1, p2, v 0 , . . . , v (l − 1)] (84)

Next, stepTwo can be unfolded. The where-clause definitions will be omitted, since they were just
unfolded.

stepTwo (smin, smax) (amin, amax)

= [f ri sa|sa← interval, ri← robotPoints, f ← p1p2v] (85)

= let ok sa =

let ok
′
ri =

let ok
′′
f = [f ri sa]

in concatMap ok
′′
p1p2v

in concatMap ok
′
robotPoints

in concatMap ok interval (86)

= concatMap (λsa→ concatMap (λri→ concatMap (λf → [f ri sa]) p1p2v) robotPoints) interval (87)

= concat (map (λsa→ concat (map (λri→ concat (map (λf → [f ri sa]) p1p2v)) robotPoints)) interval) (88)

= concat (map (λsa→ concat (map (λri→ concat (map (λf → [f ri sa]) p1p2v)) robotPoints)) interval) (89)

= concat (map (λsa→ concat (map (λri→ concat ([[p1 ri sa], [p2 ri sa],

[v 0 ri sa], . . . , [v (l− 1) ri sa]])) robotPoints)) interval) (90)

= concat (map (λsa→ concat (map (λri→ [p1 ri sa, p2 ri sa,

v 0 ri sa, . . . , v (l− 1) ri sa]) robotPoints)) interval) (91)

= concat (map (λsa→ concat (map (λri→ [p1 ri sa, p2 ri sa,

v 0 ri sa, . . . , v (l− 1) ri sa]) [r1, . . . , rn])) interval) (92)

= concat (map (λsa→ concat [xsr1,sa, . . . , xsrn,sa]) interval) (93)

= concat (map (λsa→ xsr1,sa++ . . .++ xsrn,sa) interval) (94)

= concat (map (λsa→ xsr1,sa++ . . .++ xsrn,sa) [(smin, amin), (smin, amax), (smax, amin), (smax, amax)]) (95)

= concat [xss(smin,amin), xss(smin,amax), xss(smax,amin), xss(smax,amax)] (96)

= xss(smin,amin)++ xss(smin,amax)++ xss(smax,amin)++ xss(smax,amax) (97)

with

xsri,sa = [p1 ri sa, p2 ri sa, v 0 ri sa, . . . , v (l− 1) ri sa] (98)

xss(s,a) = xsr1,(s,a)++ . . .++ xsrn,(s,a) (99)
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Similarly, the final result of the specification of step two can be rewritten.

[[[P
1
i,s,α, P

2
i,s,α, [V

j
i,s,α]

L−1
j=0 ]

n
i=0]

smax
smin

]
αmax
αmin

(100)

=
⋃

(s,α)
∈I

{P 1
1,s,α, . . . , P

1
n,s,α} ∪ [[[P

2
i,s,α, [V

j
i,s,α]

L−1
j=0 ]

n
i=0]

smax
smin

]
αmax
αmin

(101)

=
⋃

(s,α)
∈I

{P 1
1,s,α, . . . , P

1
n,s,α} ∪

⋃
(s,α)
∈I

{P 2
1,s,α, . . . , P

2
n,s,α}

∪ [[[[V
j
i,s,α]

L−1
j=0 ]

n
i=0]

smax
smin

]
αmax
αmin

(102)

=
⋃

(s,α)
∈I

n⋃
i=1

P
1
i,s,α ∪ P

2
i,s,α ∪

L−1⋃
j=0

V
j
1,s,α (103)

with I = {smin, smax} × {αmin, αmax}. By considering (65), (73) and (74), one can infer another

relation of xsri,(s,α):

xsri,(s,α)
∼= xs′Ri,(s,α) (104)

with xs′Ri,(s,α) =
{
P 1
i,s,α, P

2
i,s,α, V

0
i,s,α, . . . , V

L−1
i,s,α

}
. This implies another isomorphic relation:

xss(s,α) ∼= xss′(s,α) (105)

with xss′(s,α) =
{
xs′R1,(s,α)

∪ . . .∪ xs′Rn,(s,α)
}

. Which in turn gives rise to (106) by considering the

transformation of stepTwo in (97).

stepTwo (smin, smax) (amin, amax) ∼= XSsmin,smax,amin,amax (106)

with

XSs,s′,a,a′ = xss′(s,a) ∪ xss
′
(s,a′) ∪ xss

′
(s′,a) ∪ xss

′
(s′,a′) (107)

Since (smin ,smax,amin,amax) ∼= (smin, smax, αmin, αmax) was shown in the verification of the first

step, all four variables can be substituted in XSsmin,smax,amin,amax. After that, one can transform
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XSsmin,smax,αmin,αmax by unfolding the definitions of xss′s,α and xs′Ri,s,α.

XSsmin,smax,αmin,αmax

= xss′(smin,αmin) ∪ xss
′
(smin,αmax) ∪ xss

′
(smax,αmin) ∪ xss

′
(smax,αmax) (108)

=
{
xs′R1,(smin,αmin) ∪ . . . ∪ xs

′
Rn,(smin,αmin)

}
∪
{
xs′R1,(smin,αmax) ∪ . . . ∪ xs

′
Rn,(smin,αmax)

}
∪
{
xs′R1,(smax,αmin) ∪ . . . ∪ xs

′
Rn,(smax,αmin)

}
∪
{
xs′R1,(smax,αmax) ∪ . . . ∪ xs

′
Rn,(smax,αmax)

}
(109)

=
{{
P 1
1,smin,αmin , P

2
1,smin,αmin , V

0
1,smin,αmin , . . . , V

L−1
1,smin,αmin

}
∪ . . . ∪

{
P 1
n,smin,αmin , P

2
n,smin,αmin , V

0
n,smin,αmin , . . . , V

L−1
n,smin,αmin

}}
∪
{{
P 1
1,smin,αmax , P

2
1,smin,αmax , V

0
1,smin,αmax , . . . , V

L−1
1,smin,αmax

}
∪ . . . ∪

{
P 1
n,smin,αmax , P

2
n,smin,αmax , V

0
n,smin,αmax , . . . , V

L−1
n,smin,αmax

}}
∪
{{
P 1
1,smax,αmin , P

2
1,smax,αmin , V

0
1,smax,αmin , . . . , V

L−1
1,smax,αmin

}
∪ . . . ∪

{
P 1
n,smax,αmin , P

2
n,smax,αmin , V

0
n,smax,αmin , . . . , V

L−1
n,smax,αmin

}}
∪
{{
P 1
1,smax,αmax , P

2
1,smax,αmax , V

0
1,smax,αmax , . . . , V

L−1
1,smax,αmax

}
∪ . . . ∪

{
P 1
n,smax,αmax , P

2
n,smax,αmax , V

0
n,smax,αmax , . . . , V

L−1
n,smax,αmax

}}
(110)

If the inner structure of the multiset in (110) is dismissed and it is just taken as a multiset of

tuples, additional rewrites can be performed by rearranging the elements and applying definitions

from set theory.

XSsmin,smax,αmin,αmax

∼=
{
P 1
1,smin,αmin , P

2
1,smin,αmin , V

0
1,smin,αmin , . . . , V

L−1
1,smin,αmin

}
∪ . . . ∪

{
P 1
n,smin,αmin , P

2
n,smin,αmin , V

0
n,smin,αmin , . . . , V

L−1
n,smin,αmin

}
∪
{
P 1
1,smin,αmax , P

2
1,smin,αmax , V

0
1,smin,αmax , . . . , V

L−1
1,smin,αmax

}
∪ . . . ∪

{
P 1
n,smin,αmax , P

2
n,smin,αmax , V

0
n,smin,αmax , . . . , V

L−1
n,smin,αmax

}
∪
{
P 1
1,smax,αmin , P

2
1,smax,αmin , V

0
1,smax,αmin , . . . , V

L−1
1,smax,αmin

}
∪ . . . ∪

{
P 1
n,smax,αmin , P

2
n,smax,αmin , V

0
n,smax,αmin , . . . , V

L−1
n,smax,αmin

}
∪
{
P 1
1,smax,αmax , P

2
1,smax,αmax , V

0
1,smax,αmax , . . . , V

L−1
1,smax,αmax

}
∪ . . . ∪

{
P 1
n,smax,αmax , P

2
n,smax,αmax , V

0
n,smax,αmax , . . . , V

L−1
n,smax,αmax

}
(111)

=
⋃

(s,α)
∈I

n⋃
i=1

P 1
i,s,α ∪ P 2

i,s,α ∪
L−1⋃
j=0

V j1,s,α (112)

(112) is equivalent to the transformation of the specification of the second step in (103). Be-

cause (112) is isomorphic to XSsmin,smax,αmin,αmax and XSsmin,smax,αmin,αmax is isomorphic to

stepTwo(smin, smax) (αmin, αmax), one can finally conclude that the implementation of the second
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step of the algorithm calculates a correct sequence of points.

stepTwo(smin, smax) (αmin, αmax) ∼= [[[P 1
i,s,α, P

2
i,s,α, [V

j
i,s,α]L−1j=0 ]ni=0]smaxsmin ]αmaxαmin (113)

ut

It remains to be shown that the implementation of the buffer radius calculation calcBuffer is

correct as well. The definition of the relevant specification and implementation is shown in figure

19.

q = q
A

+ q
B

q
A

=
1

6

(αmax − αmin
2

)2
max{|smin|; |smax|}

q
B

=
(
1− cos

αmax − αmin
2

)
max
i
|Ri|

calcBuffer :: (Float , Float) → (Float , Float) → Float
calcBuffer (sMin, sMax) (aMin, aMax) =
1/6 ∗ (av∗av) ∗ maxS + (1−cos av) ∗ maxR
where

av = (aMax−aMin)/2
maxS = max (abs sMin) (abs sMax)
maxR = d

d :: Float
d = maximum (map vLen robotPoints)

where
vLen (x , y) = sqrt (x∗x + y∗y)

Figure 19: Definition of calcBuffer.

The relation d ∼= D was shown earlier on page 26. Because D is defined as maxi |Ri|, d is isomorphic

to the local definition maxR as well. Hence, (114) follows, since both definition q and calcBuffer

are almost identical if every locally bound name within calcBuffer is substituted with their local

definition.

calcBuffer(smin, smax) (αmin, αmax) ∼= q (114)

ut
The composition of the calculated list of points and the buffer radius are the result of the main

function safetyZone as displayed in figure 13. Since (113) and (114) were shown previously, the

composition is certainly isomorphic to the composition of [[[P 1
i,s,α, P

2
i,s,α, [V

j
i,s,α]L−1j=0 ]ni=0]smaxsmin ]αmaxαmin

and q, which is defined as the end result of the specification (see (12)). It is thereby concluded that

the implementation of the algorithm calculates a result as defined by the specification under the

made assumptions.

ut
The whole pen and paper proof including its formalization was done over a period of five weeks by

the author of this thesis.
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3.2.3 Additional Assurance through Types

As seen in the previous section, most of the verification process was based on equational rea-

soning, where a (sub-)expression is substituted with an equivalent expression, e.g. map f ◦map g

can be replaced with map ( f ◦ g). The exception to that is the proof for the binary search in the

findIndex function, which is proven by induction over the difference of the range indices. This the-

sis argues that the former proof method is considerably less likely to contain human-induced logical

errors, since the method relies completely on the almost mechanically substitution of definitions,

which can be easily checked for errors. Whereas the later could contain undiscovered mathematical

fallacies. Hence, it was decided to support the proof of correctness of findIndex by an additional

machine-aided proof.

Naturally, there are many different options and approaches for a machine-supported proof. The

first intuitive approach would be to use a generic theorem prover like Isabelle, which was used in

the previous section to show trivial lemmas. Nevertheless, this was not the preferred solution, be-

cause of the previously mentioned inexperience of the author with Isabelle. Furthermore, it would

be necessary to translate all involved functions from the implementation language to HOL. This

would either open up another possible source of errors if the translation itself is not verified, or

mean an additional proving-effort by verifying the translation.

Therefore, a better option would operate on the actual Haskell implementation of findIndex. One

way of doing this would be to embed the specification directly into the implementation by utili-

zing dependent types. Dependent types are types that contain value expressions, i.e. types that are

dependent on values [2, p. 1-3]. Unfortunately, Haskell ’s type system does not support dependent

types. Nonetheless, there are ways to simulate dependent types by combining several language

extensions that extend or modify the type system [6, 12]. Additionally, there are efforts to integra-

te them fully into Haskell [5]. However, all these approaches require a refactoring of the existing

implementation. In addition to that, in their current state they arguably make the program less

readable. Hence, it was decided to not verify findIndex using dependent types, but rather refine-

ment types as they are provided by Liquid Haskell.

Refinement types are types that include a predicate, which needs to hold for every instance of

this type [24]. Liquid Haskell is a standalone application that implements these types by checking

if the implementation and the input of functions are consistent with their refinements types. The

provided types extend Haskell ’s type system but they are not interfering with it, i.e. they are not

known by the compiler. Rather, the refinement types are written in specially formatted Haskell

comments, which can be interpreted by Liquid Haskell. Hence, a compilation would still be pos-

sible, even if Liquid Haskell would reject the program [23, p. 1-2]. In addition to the type check,

termination of functions is checked as well. The decreasing measure for this check can be specified

by the programmer [23, p. 5-6].
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As stated previously, Liquid Haskell was used to verify the binary search algorithm used by

findIndex. The verification was done in isolation, because otherwise all other parts of the pro-

gram, which depend on findIndex, would have been needed to be verified by Liquid Haskell as

well. To further simplify the matter, the braking measurements were reduced to a sequence of just

the velocities. The necessary adaptions that this change caused were implemented as well.

Figure 20 shows the modified version of findIndex with added refinement types. The first necessary

refinement concerns the variable brakingMeasurements6, whose type is not only Vector (Double ,

Double) anymore, but a Vector (Double , Double) with a fixed length, three in this case7. Next,

the measure function at is specified. Measurements are uninterpreted functions, that can generate

refinement types for data constructors [23, p. 3]. In this case, the only thing Liquid Haskell can state

about at is its referential transparency, since no implementation of the measure was supplied. Still,

at is necessary to create a connection between the vector accessor function (!) on the expression

level and the refinements on the type level. This connection is established in the next definition,

which creates an assumption that states that x ! i results in value v, which is within the refine-

ments equal to at x i . This is only the case if i lies within the ranges of the vector, i.e. x ! i 6= ⊥.

Following that, findIndex and its local definition go get annotated with additional refinement

types. The refinement type of findIndex captures the specification: if given a v, which lies wi-

thin the ranges of the braking measurements, the function results in an index ind such that

vind ≤ v ≤ vind+1. go captures the specification as well but adds predicates in the refinements

of the argument types about the relationship between the arguments. In order to let Liquid Has-

kell show termination of go the decreasing measure imax− imin had to be supplied.

All these additional types were developed incrementally, starting with just the refinement type

of the result of findIndex. From there, every other refinement type was added or modified because

of the type mismatch error messages of Liquid Haskell. The resulting types as seen in figure 20 are

verified and accepted by Liquid Haskell. It is therefore assumed that the provided implementation

of findIndex is correct under the assumptions made. Furthermore, this reinforces the confidence

in the correctness of the verification process.

The additional verification of findIndex took about two weeks to complete. This includes the

time to learn the basics of the syntax and semantics of Liquid Haskell.

6 For brevity renamed to bms here.
7 In the isolation module the type is just Vector Double.
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module Liquid where

import Data.Vector (Vector , (!) , fromList , length)
import Prelude hiding ( length)

{−@ bms :: {vec : Vector Double | vlen vec == 3 } @−}
bms :: Vector Double
bms = fromList [0 , 203.86, 535.131]

{−@ measure at :: Vector a → Int → a @−}
{−@ assume (!) :: x:Vector a → i :{Nat | 0 ≤ i && i < vlen x}

→ {v:a | v = at x i} @−}

{−@ findIndex ::
v:{d:Double | (at bms 0) ≤ d && d ≤ (at bms (vlen bms−1)) }
→ {ind : Int | (at bms ind) ≤ v && v ≤ (at bms (ind + 1)) }

@−}
findIndex :: Double → Int
findIndex v = go 0 ( length bms − 1) where
{−@ go ::

imin:{im: Int | im < vlen bms && (at bms im) ≤ v}
→ imax:{imm: Int | imm > imin && imm < vlen bms

&& v ≤ (at bms imm)}
→ {indRes : Int | (at bms indRes) ≤ v && v ≤ (at bms (indRes+1))}
/ [ imax−imin ]

@−}
go imin imax = let i = (imax+imin) ‘ div ‘ 2 in

i f imax−imin > 1
then

i f bms ! i < v
then go i imax
else go imin i

else imin

Figure 20: Implementation of findIndex with refinements types. Accepted by Liquid Haskell.
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3.3 Performance Comparison

The presented algorithm is meant to be run on an autonomous vehicle in real time, such that dan-

gerous collisions with other objects can be avoided. This shows that performance plays an equally

important role as correctness, since correctness alone does not matter much if the algorithm is not

applicable.

In theory, the first step of the functional implementation stepOne has a time complexity of O(log b)

with b being the number of previously recorded braking measurements, because every computation

in the first step is bound by a constant number with the exception of the binary search algorithm

in findIndex. Since the effect of an increase in the number of braking measurements is rather

small [20, p. 22-23] and taking accurate braking measurements is an effortful task, it is rather

unlikely that this number grows significantly. Hence, it is assumed that the first part of the al-

gorithm has a time complexity of O(1). The second part of the algorithm stepTwo has a time

complexity of O(n ·m) with n being the number of contour points and m being the approximation

points per circular arc L. The reason for this classification is the growth of the list comprehension

in stepTwo. Its size and therefore the number of computations can be described by the function

f(n,m) = 4 ·n · (2 +m). f(n,m) cannot be bound by the term c · (n+m) for some constant c, but

can be bound by the function g(n,m) = c · (n ·m) for all m > m0, n > n0 with c = 12,m0 = 0 and

n0 = 0. All other operations as well as the calcBuffer function have a constant time complexity.

Hence, the overall time complexity of the implementation is O(n ·m).

In real-time systems theoretical time complexity is often not as important as actual runtime. The-

refore, the actual runtime of the Haskell implementation as well as the original C implementation

were measured. All tests were done on a 2.7GHz dual-core Intel Core i5 processor. Both programs

were compiled with the highest available optimization options without breaking compliance, which

means -O2 for GHC and -O3 for Clang. Since Haskell uses a lazy evaluation strategy by default

[11, p. 75], it was necessary to ensure that the results during the performance tests are fully eva-

luated. To make sure that this is the case, the criterion library was used. The library provides

an interface for measuring Haskell functions. Additionally, it provides a way of ensuring that the

result of a pure function application is evaluated to its normal form [17]. In contrast to the origi-

nal implementation where only the function schutzfeld berechnen up to the finished call to the

schutzfeld huelle plus radius function was measured, the complete Haskell implementation in

the form of safetyZone was measured8.

Figure 21 and 22 show the results of the performance tests of the original and the functional

implementation, respectively. While the aforementioned figures show the complete result, figure 23

depicts a more detailed comparison for two fixed numbers of approximation points per arc. Both

8 The function names are referring to the publicly available safety component library accessible online at
https://www-cps.hb.dfki.de/sams/software.en.html (Accessed: 03.07.2018).
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implementations seem to grow in a similar manner, but the functional implementation is always

slower than its imperative counterpart. In detail, the Haskell implementation is 7% (|R| = 4, L = 8)

to 308% (|R| = 25, L = 25) slower than the C implementation. The decline of the time factor with

increasing |R| and L is expected, since the implementation is not optimized and performs calcu-

lations that are not necessary as mentioned on page 17. In absolute numbers this translates to a

runtime of under 2 ms with a rather detailed vehicle shape |R| = 25 and a closed-meshed appro-

ximation of the arcs L = 25, which should still be sufficient at least for slow-moving vehicles. For

rather realistic vehicle shapes (|R| < 10, as stated by the original paper [20, p. 23]) and a conser-

vative approximation of arcs (L = 8) the algorithm runs in under 0.17 ms, which would correspond

to a traveled distance of 4.72 mm for a vehicle traveling with 100 km/h.

Figure 21: Runtime of the C implementation.

Figure 22: Runtime of the Haskell implementation.
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(a) L = 8 (b) L = 25

Figure 23: Runtime comparison for two fixed numbers of approximation points per arc.
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4 Conclusion, Discussion and Outlook

This thesis investigated whether an implementation in a functional, as opposed to an imperative

programming language, would improve the speed of the verification process, assuming that its

specification is mathematically formalized. To explore this hypothesis a case study was performed.

The topic of the case study was the development of a safety zone algorithm for autonomous ve-

hicles. The original algorithm was implemented in the imperative programming language C using

the MISRA-C guidelines. Afterwards, the implementation was formally verified using mostly the

interactive theorem prover Isabelle [20].

Based on the specification of the case study, an implementation in the pure functional program-

ming language Haskell was developed. After that, the implementation was verified via a pen and

paper proof. Furthermore, critical parts of the program were verified again with the help of Liquid

Haskell, which is a standalone extension to Haskell’s type system. An initial attempt to verify the

implementation in Isabelle failed due to the inexperience of the author and time constraints of this

work. Finally, the runtime performance of both implementations was measured.

A comparison of the time it took to verify both implementations shows that the functional im-

plementation was indeed faster to verify. Prior to the verification of the C implementation the

domain needed to be modeled in Isabelle. This development took 5 month and was done mostly by

a mathematician [25, p.153]. After that, the actual implementation was verified over a period of 6

month by a member of the SAMS project [25, p.170], whereas the functional implementation was

verified within 5 weeks on paper by the author of this thesis. Additional 2 weeks were necessary

to proof the correctness of the implementation of the binary search algorithm with Liquid Haskell.

However, the performance comparison shows that the Haskell implementation is roughly up to 3

times slower than the original version.

Yet, the correlation between the time spans of the verification processes and the programming

paradigm might not imply causality. There are several points concerning the results that need to

be critically discussed. First, equational reasoning can be a simple but powerful technique to prove

correctness of pure functional programs as shown by previous chapters. It is also not possible to

use equational reasoning outside of referential transparent functions. Since idiomatic C code ma-

kes heavy use of effectful procedures, which are by definition referential opaque, it is not possible

to utilize equational reasoning within idiomatic C code. Hence, equational reasoning is a proof

technique which is most likely not applicable when verifying imperative implementations.

On the other hand, the realized case study may just be a perfectly fitting example for an ideal

verification of a functional implementation, because the specification is just based on terms, which

could be directly implemented. Nevertheless, other algorithms may have specifications, which make

a direct and efficient implementation impossible. An example of such an algorithm could be one

that relies heavily on stateful computation, e.g. simulation of a Turing machine. Further research

is necessary to inspect if functional implementations lead to an easier verification process in such
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cases as well.

Another point that needs to be addressed is the comparability of both verification processes.

While the verification of the original implementation was done with the help of an interactive

theorem prover, the verification in this thesis was only partly machine-aided and was mostly done

on pen and paper. This may lead to comparability issues, since it is not clear in which time the

functional implementation could have been proven in Isabelle or in what time span the imperative

implementation could have been verified with pen and paper. Another problem is the comparability

of the backgrounds of the authors, since both kinds of verification processes (machine-assisted or

not) rely heavily on the ideas and methodology of the user. Thus, the background knowledge and

experience of the user introduces another independent variable that should be considered in future

research when a general statement regarding the time of the verification process is the goal.

Furthermore, the additional machine-aided proof of correctness of the binary search implemen-

tation encoded in Liquid Haskell’s refinement type system is not unique to Haskell or to functional

programming languages in general. While the usage of refinement types to automatically prove

properties in a lazy language like Haskell may be exclusive to Liquid Haskell, the general notion of

annotating programs with properties that must hold is not. For instance, there is the imperative

programming language Dafny developed by Microsoft Research. The language features a program

verifier that automatically checks if program properties (e.g. measurements or loop invariants)

that the user can specify, hold [10]. Further, there are also formal verification environments even

to existing imperative languages such as the Frama-C platform [9] or the Verifying C Compiler

(VCC) [19]. Both frameworks allow a direct encoding of correctness properties into existing C

code with the ability to automatically verify said properties. Additionally, some of the authors of

Liquid Haskell worked previously on CSolve, a framework which implements liquid types for C

[18]. Therefore, even though Liquid Haskell was beneficial to the verification process in this case,

the general usage of automatic program verifiers is not bound to the programming paradigm.

With regards to the runtime, the performance tests show that the developed functional imple-

mentation, even in its current state, should be fast enough to compute safety zones in real time if

one considers the fact that the autonomous vehicle for which the original algorithm was developed,

only needs to perform a safety zone calculation every 40 ms [25, p.150]. However, the performance

tests show also that the original implementation is up to 3 times faster. This definitely can be

improved algorithmically, e.g. not computing points that are already present in the safety zone,

and technically, e.g. using GHC’s unboxed primitive data types instead of the boxed primitives [7].

Additionally, there may be computations within the current implementation that would benefit

from a strict evaluation, but in order to detect these further analysis of the runtime and space

behavior is necessary.
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At last, there is the issue of the scope of the verification. All variables that are specific to a vehicle

configuration are just assumed to be correct. This is practical and reasonable for a verification

setting, but in an actual production environment this could still lead to incorrect results, which

could ultimately endanger human lives. Therefore, a more safe solution to ensure that entities in

the code meet the assumption would be welcome. Additional tools like Liquid Haskell at first seem

like a solution to solve that problem, but since they are external extensions to the compiler, they

do not need to be run to compile a program. Hence, there still remains the risk that developers

intentionally or unintentionally do not run these external checkers. Thus, a solution that is inte-

grated into the compiler would be favorable, e.g. dependent types.

Ultimately, the results of this thesis show that in this particular case under the chosen methods

the functional implementation was indeed faster to verify than its imperative implementation with

its verification methods. In contrast, the runtime performance of the reimplementation was si-

gnificantly slower than its counterpart, while still being applicable in production environments.

However, due to the previously mentioned reasons the assertion that functional implementations

in general are faster to verify than imperative implementations cannot be derived. Future research,

in the form of empirical studies, are necessary to investigate this claim.
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Appendix

A Complete Haskell Implementation

Main.hs

module Main where

import Control .Monad

import ConvexHull

import qualified SafetyZone as S

import System.Environment

main :: IO ()

main = do

args <− getArgs

let

[vmin,vmax,wmin,wmax] = map read args

(zone , q) = S. safetyZone (vmin,vmax) (wmin,wmax)

print ”Points :”

mapM print zone

putStrLn $ ”Q: ” ++ show q

SafetyZone.hs

{−#LANGUAGE OverloadedLists #−}
module SafetyZone where

import Data.Vector (Vector , (!) )

−− Configurations

type Velocity = Float

type Distance = Float

type Time = Float

type SafetyZone = ( [ Point ] , BufferRadius)

type BufferRadius = Float

type Point = (Float , Float)

brakingMeasurements :: Vector (Velocity , Distance)

brakingMeasurements = [(0 , 0) , (203.86, 113.5) , (535.131, 365.0) ]
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−− delta t

latency :: Time

latency = 0.06

robotPoints :: [ Point ]

robotPoints = [(−233.5,−162.5) , (193.5,−162.5) , (193.5 ,162.5) , (−233.5,162.5) ]

l :: Float

l = fromIntegral (8 :: Int )

−−D

d :: Float

d = maximum (map vLen robotPoints)

where

vLen (x , y) = sqrt (x∗x + y∗y)

in f ix l 6 <−>
(<−>) :: Num a ⇒ (a ,a) −> (a ,a) −> (a ,a)

(x1 ,y1) <−> (x2 ,y2) = (x1−x2 ,y1−y2)

in f ix l 6 <+>

(<+>) :: Num a ⇒ (a ,a) −> (a ,a) −> (a ,a)

(x1 ,y1) <+> (x2 ,y2) = (x1+x2 ,y1+y2)

in f ix l 7 <.>

(<.>) :: Num a ⇒ a −> (a ,a) −> (a ,a)

s <.> (x , y) = (s∗x , s∗y)

in f ix l 7 <. .>

(<. .>) :: ((Float , Float) , (Float , Float)) −> Point −> Point

((a0 ,a1) ,(b0,b1)) <. .> (x , y) = (a0∗x + a1∗y , b0∗x + b1∗y)

inf ix 7 <. . .>

(<. . .>) :: ((Float , Float , Float) , (Float , Float , Float)) −> Point −> Point

((a0 ,a1 ,a2) ,(b0,b1,b2)) <. . .> (x , y) = (a0∗x+a1∗y+a2 , b0∗x+b1∗y+b2)

safetyZone :: (Float , Float) −> (Float , Float) −> SafetyZone
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safetyZone vMinMax wMinMax =

let (sMinMax,aMinMax) = stepOne vMinMax wMinMax

in (stepTwo sMinMax aMinMax, calcBuffer sMinMax aMinMax)

stepOne :: (Float , Float) −> (Float , Float) −> ((Float , Float) ,(Float , Float))

stepOne (vMin, vMax) (wMin, wMax) = ((sMin,sMax) , (aMin,aMax)) where

candidates = mkCandidates (vMin, vMax) (wMin, wMax)

(sCandidates , αCandidates) = unzip (map bm candidates)

sMin = minimum sCandidates

sMax = maximum sCandidates

aMin = minimum αCandidates

aMax = maximum αCandidates

bm :: (Float , Float) −> (Float , Float)

bm (v ,w) = let ts ’ = ts (v ,w) in (( ts ’+latency)∗v ,( ts ’+latency)∗w)

mkCandidates :: (Float , Float) −> (Float , Float) −> [ ( Float , Float) ]

mkCandidates (vMin, vMax) (wMin, wMax) = [ ( v ,w) | v <− velos , w <− omega] where

velos

| 0 ≥ vMin && 0 ≤ vMax = [vMin,0 ,vMax]

| otherwise = [vMin,vMax]

omega

| 0 ≥ wMin && 0 ≤ wMax = [wMin,0 ,wMax]

| otherwise = [wMin,wMax]

ts :: (Float , Float) −> Float

ts (v ,w)

| vs ≥ vm = sm / (vm∗vm∗vm) ∗ vs ∗ vs

| vs ≤ v1 = s1 / v1

| otherwise =

let

j ’ = findIndex vs

(vj ’ , sj ’ ) = brakingMeasurements ! j ’

( vj , s j ) = brakingMeasurements ! ( j ’+1)

in

( sj ’ + (( sj−sj ’ )/(vj−vj ’ ) ) ∗ (vs−vj ’ ) ) / vs

where

vs = sqrt (v∗v+(d∗d)∗(w∗w))
(vm,sm) = brakingMeasurements ! ( length brakingMeasurements − 1)
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(v1 , s1) = brakingMeasurements ! 1

findIndex :: Velocity −> Int

findIndex v = go 0 ( length brakingMeasurements−1) where

go imin imax = let i = (imax+imin) ‘ div ‘ 2 in

i f imax−imin > 1

then i f f s t (brakingMeasurements ! i ) < v

then go i imax

else go imin i

else imin

stepTwo :: (Float , Float) −> (Float , Float) −> [ Point ]

stepTwo (smin ,smax) (amin,amax) = [ f r i sa | sa <− interval , r i <− robotPoints , f <−
p1p2v ]

where

interval = mkInterval (smin ,smax) (amin,amax)

p1p2v = p1 : p2 : map v [0 . . l−1]

mkInterval :: (Float , Float) −> (Float , Float) −> [ ( Float , Float) ]

mkInterval (smin ,smax) (amin,amax) = [ (s , a) | s <− [ smin ,smax] , a <− [amin,amax] ]

p1 :: Point −> (Float , Float) −> Point

p1 = const

p2 :: Point −> (Float , Float) −> Point

p2 r i (s , a) = tMatrix s a <. . .> r i

u2 :: Point −> (Float , Float) −> Point

u2 r i (s , a) = tMatrix (s/ l ) (a/ l ) <. . .> r i

u3 :: Point −> (Float , Float) −> Point

u3 u1@ri sa@(s ,a) = u1 <+> qMatrix (a/ l ) <. .> (0.5 <.> (u2 r i sa <−> u1))

v :: Float −> Point −> (Float , Float) −> Point

v j r i sa@(s ,a) = tMatrix (( j∗s)/ l ) (( j∗a)/ l ) <. . .> u3 r i sa

tMatrix :: Float −> Float −> ((Float , Float , Float) , (Float , Float , Float))

tMatrix s a = ((a0 ,a1 ,a2) ,(b0,b1,b2)) where

a0 = cos a
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a1 =−sin a

a2 = s ∗ sinc (a/2) ∗ cos (a/2)

b0 = sin a

b1 = cos a

b2 = s ∗ sinc (a/2) ∗ sin (a/2)

sinc :: Float −> Float

sinc o

| o 6= 0 = sin o / o

| otherwise = 1

qMatrix :: Float −> ((Float , Float) , (Float , Float))

qMatrix a = ((1 , tan (a/2)) , (−tan (a/2) , 1))

calcBuffer :: (Float , Float) −> (Float , Float) −> Float

calcBuffer (sMin, sMax) (aMin, aMax) = 1/6 ∗ (av∗av) ∗ maxS + (1−cos av) ∗ maxR

where

av = (aMax−aMin)/2

maxS = max (abs sMin) (abs sMax)

maxR = d

B Isabelle Implementation

theory SafetyZoneTwo

imports Complex Main

begin

no notation Sum Type. Plus ( inf ixr ”<+>” 65)

function enumFromTo :: ”nat ⇒ nat ⇒ nat l i s t ” where

”enumFromTo b l = ( i f b ≤ l then b # enumFromTo (Suc b) l else [ ] )” by auto

termination enumFromTo

apply ( re lat ion ”measure (λ(b, l ) . l+1 −b)”)
apply (auto)

done

fun maximum :: ”( ’a l i s t ) ⇒ ’a :: {ord}”
where
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”maximum [ ] = undefined” |
”maximum (x # [ ]) = x” |
”maximum (x # xs) = ( i f x > maximum xs then x else maximum xs)”

fun minimum :: ”( ’a l i s t ) ⇒ ’a :: {ord}”
where

”minimum [ ] = undefined” |
”minimum (x # [ ]) = x” |
”minimum (x # xs) = ( i f x < minimum xs then x else minimum xs)”

fun concatMap :: ”( ’a ⇒ ’b l i s t ) ⇒ ’a l i s t ⇒ ’b l i s t ” where

”concatMap f xs = fo ldr (λ acc . ( f x) @ acc) xs [ ]”

fun zipWith :: ”( ’a ⇒ ’b ⇒ ’c) ⇒ ’a l i s t ⇒ ’b l i s t ⇒ ’c l i s t ” where

”zipWith f [ ] ys = [ ]” |
”zipWith f xs [ ] = [ ]” |
”zipWith f (x#xs) (y#ys) = f x y # zipWith f xs ys”

fun unzip :: ”( ’a ∗ ’b) l i s t ⇒ ’a l i s t ∗ ’b l i s t ” where

”unzip xs = fo ldr (λ(a ,b) (as , bs) . (a#as ,b#bs)) xs ( [ ] , [ ] )”

type synonym Velocity = ”real”

type synonym Distance = ”real”

type synonym Time = ”real”

type synonym BufferRadius = ”real”

type synonym Point = ”( real ∗ real )”

type synonym SafetyZone = ”(Point l i s t ∗ BufferRadius)”

definition brakingMeasurements :: ”(Velocity ∗ Distance) l i s t ” where

”brakingMeasurements = [(0 , 0) , (203.86, 113.5) , (535.131, 365.0) ]”

definition latency :: ”Time” where

”latency = 0.06”

definition robotPoints :: ”Point l i s t ” where

”robotPoints = [(−233.5,−162.5) , (193.5,−162.5) , (193.5 ,162.5) , (−233.5,162.5) ]”

definition l :: ”nat” where

” l = 8”
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definition d :: ”real” where

”d = ( let vLen = (λ(x , y) . sqrt (x∗x + y∗y))
in maximum (map vLen robotPoints))”

fun mminus :: ”real ∗ real ⇒ real ∗ real ⇒ real ∗ real” ( in f ix l ”<−>” 6) where

”mminus (x1 ,y1) (x2 ,y2) = (x1−x2 ,y1−y2)”

fun mplus :: ”real ∗ real ⇒ real ∗ real ⇒ real ∗ real” ( in f ix l ”<+>” 6) where

”mplus (x1 ,y1) (x2 ,y2) = (x1+x2 , y1+y2)”

¡.¿

fun mdot :: ”real ⇒ real ∗ real ⇒ real ∗ real” ( in f ix l ”<.>” 7) where

”mdot s (x , y) = (s∗x , s∗y)”

fun mmdot :: ”(( real ∗ real ) ∗ ( real ∗ real )) ⇒ real ∗ real ⇒ real ∗ real” ( in f ix l

”<. .>” 7) where

”mmdot ((a0 ,a1) ,(b0,b1)) (x , y) = (a0∗x + a1∗y , b0∗x + b1∗y)”

fun mmmdot :: ”(( real ∗ real ∗ real ) ∗ ( real ∗ real ∗ real )) ⇒ real ∗ real ⇒ real

∗ real” ( in f ix l ”<. . .>” 7) where

”mmmdot ((a0 ,a1 ,a2) ,(b0,b1,b2)) (x , y) = (a0∗x + a1∗y + a2 , b0∗x + b1∗y + b2)”

fun mkCandidates :: ”real ∗ real ⇒ real ∗ real ⇒ ( real ∗ real ) l i s t ” where

”mkCandidates (vMin,vMax) (wMin,wMax) = (

let

velos = i f 0 ≥ vMin ∧ 0 ≤ vMax then [vMin,0 ,vMax] else [vMin,vMax] ;

omega = i f 0 ≥ wMin ∧ 0 ≤ wMax then [wMin,0 ,wMax] else [wMin,wMax]

in concatMap (λ . concatMap (λ . [ ( v ,w) ]) omega) velos )”

function findIndexGo :: ”Velocity ⇒ nat ⇒ nat ⇒ nat” where

”findIndexGo v imin imax =

( let i = ((imax+imin) div 2) in

i f imax−imin > 1

then i f ( f s t (brakingMeasurements ! i ) ) < v

then findIndexGo v i imax

else findIndexGo v imin i

else imin)” by pat completeness auto
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termination findIndexGo

apply ( re lat ion ”measure (λ(v , imin , imax) . imax−imin)”)

apply (auto)

done

fun findIndex :: ”Velocity ⇒ nat” where

”findIndex v = findIndexGo v 0 ( length brakingMeasurements−1)”

fun ts :: ”real ∗ real ⇒ real” where

”ts (v ,w) =

( let

vs = sqrt (v∗v+d∗d∗w∗w) ;
(vm,sm) = brakingMeasurements ! ( length brakingMeasurements − 1) ;

(v1 , s1) = brakingMeasurements ! 1

in

i f vs ≥ vm then sm / (vm∗vm∗vm) ∗ vs ∗ vs

else

i f vs ≤ v1 then s1 / v1

else

( let

j ’ = findIndex vs ;

(vj ’ , sj ’ ) = brakingMeasurements ! j ’ ;

( vj , s j ) = brakingMeasurements ! ( j ’+1)

in ( sj ’ + (( sj−sj ’ )/(vj−vj ’ ) ) ∗ (vs−vj ’ ) ) / vs))”

fun bm :: ”( real ∗ real ) ⇒ ( real ∗ real )” where

”bm (v ,w) = ( let ts ’ = ts (v ,w) in (( ts ’+latency)∗v ,( ts ’+latency)∗w))”

fun stepOne :: ”real ∗ real ⇒ real ∗ real ⇒ ( real ∗ real ) ∗ ( real ∗ real )” where

”stepOne (vMin,vMax) (wMin, wMax) =

( let

candidates = mkCandidates (vMin,vMax) (wMin, wMax) ;

(sCandidates , αCandidates) = unzip (map bm candidates) ;

sMin = minimum sCandidates ;

sMax = maximum sCandidates ;

aMin = minimum αCandidates ;

aMax = maximum αCandidates

in ((sMin,sMax) , (aMin,aMax)) )”
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fun sinc :: ”real ⇒ real” where

”sinc o = ( i f o = 0 then 1 else ( sin o) / o)”

fun mkInterval :: ”real ∗ real ⇒ real ∗ real ⇒ ( real ∗ real ) l i s t ” where

”mkInterval (smin ,smax) (amin,amax) =

concatMap (λ . concatMap (λ . [ ( s , a) ]) [amin,amax]) [ smin ,smax]”

fun tMatrix :: ”real ⇒ real ⇒ (( real ∗ real ∗ real ) ∗ ( real ∗ real ∗ real ))” where

”tMatrix s a = ( let

a0 = cos a ;

a1 =−sin a ;

a2 = s ∗ sinc (a/2) ∗ cos (a/2) ;

b0 = sin a ;

b1 = cos a ;

b2 = s ∗ sinc (a/2) ∗ sin (a/2) in ((a0 ,a1 ,a2) ,(b0,b1,b2)))”

fun qMatrix :: ”real ⇒ (( real ∗ real ) ∗ ( real ∗ real ))” where

”qMatrix a = ((1 , tan (a/2)) , (−tan (a/2) , 1))”

fun p1 :: ”Point ⇒ ( real ∗ real ) ⇒ Point” where

”p1 p t = t”

fun p2 :: ”Point ⇒ ( real ∗ real ) ⇒ Point” where

”p2 r i (s ,a) = mmmdot (tMatrix s a) r i ”

fun u2 :: ”Point ⇒ ( real ∗ real ) ⇒ Point” where

”u2 r i (s ,a) = mmmdot (tMatrix (s/ l ) (a/ l ) ) r i ”

fun u3 :: ”Point ⇒ ( real ∗ real ) ⇒ Point” where

”u3 r i (s ,a) = mplus r i (mmdot (qMatrix (a/ l ) ) (0.5 <.> ((u2 r i (s , a)) <−> r i ) ))”
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fun v :: ”real ⇒ Point ⇒ ( real ∗ real ) ⇒ Point” where

”v j r i (s ,a) = mmmdot (tMatrix (( j∗s)/ l ) (( j∗a)/ l ) ) (u3 r i (s , a))”

fun stepTwo :: ”( real ∗ real ) ⇒ ( real ∗ real ) ⇒ Point l i s t ” where

”stepTwo (smin ,smax) (amin,amax) =

( let

interval = mkInterval (smin ,smax) (amin,amax) ;

p1p2v = p1 # p2 # (map v (enumFromTo 0 ( l−1)))
in concatMap (λ ◦ concatMap (λ ◦ concatMap (λ . [ f r i sa ]) p1p2v) robotPoints)

interval )”

fun calcBuffer :: ”real ∗ real ⇒ real ∗ real ⇒ real” where

”calcBuffer (sMin,sMax) (aMin,aMax) =

( let

av = (aMax−aMin) / 2;

maxS = max (abs sMin) (abs sMax)

in 1/6 ∗ (av∗av) ∗ maxS + (1−cos av) ∗ d)”

fun safetyZone :: ”real ∗ real ⇒ real ∗ real ⇒ SafetyZone” where

”safetyZone vMinMax wMinMax =

( let

(sMinMax, aMinMax) = stepOne vMinMax wMinMax

in (stepTwo sMinMax aMinMax, calcBuffer sMinMax aMinMax))”

lemma unzipEqualDoubleMap [simp ] : ”unzip xs = (map fst xs , map snd xs)”

apply ( induction xs)

apply (auto)

done

lemma fstMap [simp ] : ”∀(x , y) ∈ ( set xs) ◦ x ∈ set (map fst xs)” by (simp add:

case prod unfold)

lemma sndMap [simp ] : ”∀(x , y) ∈ ( set xs) ◦ y ∈ set (map snd xs)” by (simp add:

case prod unfold)

lemma mapStructure [ simp ] : ”length xs = length (map f xs)” by simp

lemma mkCandidatesResult 1 [ simp] :

”0 ≥ vMin ∧ 0 ≤ vMax ∧ 0 ≥ ωMin ∧ 0 ≤ ωMax →
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mkCandidates (vMin, vMax) (ωMin, ωMax) =

[ (vMin, ωMin) , (vMin, 0) , (vMin, ωMax) ,

(0 , ωMin) , (0 , 0) , (0 , ωMax) ,

(vMax, ωMin) , (vMax, 0) , (vMax, ωMax) ]” by simp

lemma mkCandidatesResult 2 [ simp] :

”¬(0 ≥ vMin ∧ 0 ≤ vMax) ∧ 0 ≥ ωMin ∧ 0 ≤ ωMax →
mkCandidates (vMin, vMax) (ωMin, ωMax) =

[ (vMin, ωMin) , (vMin, 0) , (vMin, ωMax) ,

(vMax, ωMin) , (vMax, 0) , (vMax, ωMax) ]” by simp

lemma mkCandidatesResult 3 [ simp] :

”0 ≥ vMin ∧ 0 ≤ vMax ∧ ¬(0 ≥ ωMin ∧ 0 ≤ ωMax) →
mkCandidates (vMin, vMax) (ωMin, ωMax) =

[ (vMin, ωMin) , (vMin, ωMax) ,

(0 , ωMin) , (0 , ωMax) ,

(vMax, ωMin) , (vMax, ωMax) ]” by simp

lemma mkCandidatesResult 4 [ simp] :

”¬(0 ≥ vMin ∧ 0 ≤ vMax) ∧ ¬(0 ≥ ωMin ∧ 0 ≤ ωMax) →
mkCandidates (vMin, vMax) (ωMin, ωMax) =

[ (vMin, ωMin) , (vMin, ωMax) ,

(vMax, ωMin) , (vMax, ωMax) ]” by simp

lemma functorLaw 2 [simp ] : ”map f (map g xs) = map (λx . f (g x)) xs” by simp

lemma concatMapSimplified [ simp ] : ”concatMap f xs = concat (map f xs)”

apply ( induction xs)

apply (auto)

done

lemma mkLimitMovementsResult [ simp ] : ”mkInterval (sMin, sMax) (aMin, aMax) = [

(sMin,aMin) , (sMin,aMax) , (sMax,aMin) , (sMax,aMax) ]” by simp

definition segment :: ”( real ∗ real ) ⇒ ( real ∗ real ) ⇒ Point set” where

”segment u v ’ = λ{ z . ∃α ∈ R ◦ 0 ≤ α ∧ α ≤ 1 ∧ (z = (α <.> u <+> (1−α) <.> v ’) ) λ}”
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definition is convex :: ”Point set ⇒ bool” where

”is convex K = (∀u ∈ K . ∀v ∈ K . segment u v ⊂ K)”

convex hull is the smallest convex set

definition conv :: ”Point set ⇒ Point set” where

”conv X = ∩{K ◦ is convex K ∧ X ⊂ K}”

definition straightBrakingDistance :: ”real ⇒ real” where

”straightBrakingDistance v ’ =

( let

j = The (λx . ( f s t (brakingMeasurements ! (x−1))) ≤ v ’

∧ v ’ ≤ ( f s t (brakingMeasurements ! x))) ;

( vj ’ , sj ’ ) = brakingMeasurements ! ( j−1);
(vj , s j ) = brakingMeasurements ! j ;

(v1 , s1) = brakingMeasurements ! 1;

(vm,sm) = brakingMeasurements ! ( length brakingMeasurements − 1)

in

( i f v ’ ≤ v1 then s1/v1∗v ’
else i f v ’ ≥ vm then sm/(vm∗vm∗vm)∗v ’∗v ’∗v ’
else sj ’ + ( sj−sj ’ ) / (vj−vj ’ ) ∗ (v’−vj ’ ) ))”

fun BM∆t :: ”real ∗ real ⇒ real ∗ real” where

”BM∆t (v ’ ,ω) =

( let

vsHat = sqrt (v’ˆ2+dˆ2∗ωˆ2) ;
sHat = straightBrakingDistance vsHat

in

(sHat / vsHat + latency) <.> (v ’ ,ω) )”

definition h :: ”real ⇒ real ⇒ ( real ∗ real ) set” where

”h s α = Union{ {tMatrix (x∗s) (x∗α) <. . .> r

| r . r ∈ ( set robotPoints)} | x . x ∈ R ∧ x ≥ 0 ∧ x ≤ 1 }”

theorem mainSafetyTheorem :

”(v ’ ,ω) ∈ R× R ∧ v ’ ≥ vMin ∧ v ’ ≤ vMax ∧ ω ≥ ωMin ∧ ω ≤ ωMax →
( let

H= conv ( set ( f s t (safetyZone (vMin,vMax) (ωMin, ωMax)))) ;

(s ,α) =BM∆t (v ’ ,ω)
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in

H ⊃ (h s α) )”

apply c la r i f y

apply (unfold Let def )

apply auto
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C Additional Proof Material

Unfolding u2 Ri (s, α) with l being the configuration variable L.

u2 Ri (s, α) = tMatrix (s/l) (α/l) <...> Ri

= let (xRi , yRi) = Ri

in tMatrix (s/l) (α/l) <...> (xRi , yRi)

= let (xRi , yRi) = Ri

in ((a0, a1, a2), (b0, b1, b2)) <...> (xRi , yRi)

where

a0 = cos (α/l)

a1 = − sin (α/l)

a2 = (s/l) ∗ sinc ((α/l)/2) ∗ cos ((α/l)/2)

b0 = sin ((α/l)/l)

b1 = cos ((α/l)/l)

b2 = (s/l) ∗ sinc ((α/l)/2) ∗ sin ((α/l)/2)

= let

(xRi , yRi) = Ri

xv = cos (α/l) ∗ xRi + (− sin (α/l)) ∗ yRi + ((s/l) ∗ sinc ((α/l)/2) ∗ cos ((α/l)/2))

yv = sin (α/l) ∗ xRi + (cos (α/l)) ∗ yRi + ((s/l) ∗ sinc ((α/l)/2) ∗ sin ((α/l)/2))

in (xv, yv)

Next, unfolding U2
i,s,α.

U2
i,s,α = T (

s

L
,
α

L
)Ri

=

(
cos αL − sin α

L
s
L · sinc

α
L

2 · cos
α
L

2

sin α
L cos αL

s
L · sinc

α
L

2 · sin
α
L

2

)xRiyRi

1


=

(
cos αL · xRi + (− sin α

L ) · yRi + s
L · sinc

α
L

2 · cos
α
L

2

sin α
L · xRi + cos αL · yRi + s

L · sinc
α
L

2 · sin
α
L

2

)

Hence, u2 Ri (s, α) ∼= U2
i,s,α.

ut
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Unfolding u3 Ri (s, α).

u3 u1@ri sa@(s, α) = u1 <+> qMatrix (α/l) <..> (0.5 <.> ( u2 Ri sa <-> u1))

= Ri <+> qMatrix (α/l) <..> (0.5 <.> ( u2 Ri sa <-> Ri))

= let (u2x, u2y) = u2 Ri sa

in Ri <+> qMatrix (α/l) <..> (0.5 <.> ((u2x, u2y) <-> Ri))

= let

(u2x, u2y) = u2 Ri sa

(xRi
, yRi

) = Ri

in (xRi
, yRi

) <+> qMatrix (α/l) <..> (0.5 <.> ((u2x, u2y) <-> (xRi
, yRi

)))

= let

(u2x, u2y) = u2 Ri sa

(xRi
, yRi

) = Ri

in (xRi
, yRi

) <+> qMatrix (α/l) <..> (0.5 <.> (u2x − xRi , u2y − yRi ))

= let

(u2x, u2y) = u2 Ri sa

(xRi
, yRi

) = Ri

in (xRi
, yRi

) <+> qMatrix (α/l) <..> (0.5 ∗ (u2x − xRi ), 0.5 ∗ (u2y − yRi ))

= let

(u2x, u2y) = u2 Ri sa

(xRi
, yRi

) = Ri

in (xRi
, yRi

) <+> ((1, tan ((α/l)/2)), (− tan ((α/l)/2), 1)) <..> (0.5 ∗ (u2x − xRi ), 0.5 ∗ (u2y − yRi ))

= let

(u2x, u2y) = u2 Ri sa

(xRi
, yRi

) = Ri

x = 1 ∗ (0.5 ∗ (u2x − xRi )) + (tan ((α/l)/2)) ∗ (0.5 ∗ (u2y − yRi ))

y = (− tan ((α/l)/2)) ∗ (0.5 ∗ (u2x − xRi )) + 1 ∗ (0.5 ∗ (u2y − yRi ))

in (xRi
, yRi

) <+> (x, y)

= let

(u2x, u2y) = u2 Ri sa

(xRi
, yRi

) = Ri

x = 1 ∗ (0.5 ∗ (u2x − xRi )) + (tan ((α/l)/2)) ∗ (0.5 ∗ (u2y − yRi ))

y = (− tan ((α/l)/2)) ∗ (0.5 ∗ (u2x − xRi )) + 1 ∗ (0.5 ∗ (u2y − yRi ))

in (xRi
+ x, yRi

+ y)
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Next,unfolding U3
i,s,α.

U3
i,s,α = U1

i,s,α +Q(
α

L
)
1

2
(U2

i,s,α − U1
i,s,α)

= Ri +Q(
α

L
)
1

2
(U2

i,s,α −Ri)

=

(
xRi

yRi

)
+

(
1 tan α

2L

− tan α
2L 1

)
1

2

((
xU2

i,s,α

yU2
i,s,α

)
−

(
xRi

yRi

))

=

(
xRi

yRi

)
+

(
1 tan α

2L

− tan α
2L 1

)
1

2

(
xU2

i,s,α
− xRi

yU2
i,s,α
− yRi

)

=

(
xRi

yRi

)
+

(
1xvi + (tan α

2L )yvi

(− tan α
2L )xvi + 1yvi

)

=

(
xRi + 1xvi + (tan α

2L )yvi

yRi + (− tan α
2L )xvi + 1yvi

)

with

Ri =

(
xRi

yRi

)

xvi =
1

2
(xU2

i,s,α
− xRi)

yvi =
1

2
(yU2

i,s,α
− yRi)

Thus, u3 Ri (s, α) ∼= U3
i,s,α.
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Next, one can unfold v j Ri (s, α).

v j Ri sa@(s, α) = tMatrix ((j ∗ s)/l) ((j ∗ α)/l) <...> u3 Ri sa

= let

(x
U3
i,s,alpha

, y
U3
i,s,alpha

) = u3 Ri sa

in tMatrix ((j ∗ s)/l) ((j ∗ α)/l) <...> (x
U3
i,s,alpha

, y
U3
i,s,alpha

)

= let

(x
U3
i,s,alpha

, y
U3
i,s,alpha

) = u3 Ri sa

in ((a0, a1, a2), (b0, b1, b2)) <...> (x
U3
i,s,alpha

, y
U3
i,s,alpha

)

where

a0 = cos ((j ∗ α)/l)

a1 = − sin ((j ∗ α)/l)

a2 = ((j ∗ s)/l) ∗ sinc (((j ∗ α)/l)/2) ∗ cos (((j ∗ α)/l)/2)

b0 = sin (((j ∗ α)/l)/l)

b1 = cos (((j ∗ α)/l)/l)

b2 = ((j ∗ s)/l) ∗ sinc (((j ∗ α)/l)/2) ∗ sin (((j ∗ α)/l)/2)

= let

(x
U3
i,s,alpha

, y
U3
i,s,alpha

) = u3 Ri sa

xv = (cos ((j ∗ α)/l)) ∗ x
U3
i,s,alpha

+ (− sin ((j ∗ α)/l)) ∗ y
U3
i,s,alpha

+ (((j ∗ s)/l) ∗ sinc (((j ∗ α)/l)/2) ∗ cos (((j ∗ α)/l)/2))

yv = (sin (((j ∗ α)/l)/l)) ∗ x
U3
i,s,alpha

+ (cos (((j ∗ α)/l)/l)) ∗ y
U3
i,s,alpha

+ (((j ∗ s)/l) ∗ sinc (((j ∗ α)/l)/2) ∗ sin (((j ∗ α)/l)/2))

in (xv, yv)

After that, one can unfold V ji,s,α.

V
j
i,s,α

= T

( j · s
L

,
j · α

L

)
· U3
i,s,α

=

cos
j·α
L
− sin

j·α
L

j·s
L
· sinc

j·α
L
2
· cos

j·α
L
2

sin
j·α
L

cos
j·α
L

j·s
L
· sinc

j·α
L
2
· sin

j·α
L
2

 ·

x
U3
i,s,α

y
U3
i,s,α
1



=


(cos

j·α
L

) x
U3
i,s,α

+ (− sin
j·α
L

) y
U3
i,s,α

+ (
j·s
L
· sinc

j·α
L
2
· cos

j·α
L
2

)

(sin
j·α
L

) x
U3
i,s,α

+ (cos
j·α
L

) y
U3
i,s,α

+ (
j·s
L
· sinc

j·α
L
2
· sin

j·α
L
2

)



Therefore, v j Ri (s, α) ∼= V ji,s,α follows.

ut

65


	Introduction
	Motivation
	Scope
	Outline

	Case Study Description
	Informal Description
	Formal Specification
	Implementation and Verification

	Verification of the Functional Reimplementation
	Functional Implementation
	Verification
	First Attempt in Isabelle
	Verification by Formal Reasoning
	Additional Assurance through Types

	Performance Comparison

	Conclusion, Discussion and Outlook
	Bibliography
	Appendix
	Complete Haskell Implementation
	Isabelle Implementation
	Additional Proof Material


