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Abstract

Sorting networks are oblivious comparison based sorting algorithms for a fixed number
of elements n. They have been a topic of research for 65 years. In this thesis we consider
the problem of depth optimality, which asks for the minimum number of parallelized
steps in a sorting network. In recent years Bundala and Závodný achieved a leap by
settling optimality for n ≤ 16, which was previously only known up to n ≤ 10. They
reduced the problem to Boolean SAT where they fixed the start of the network for
different SAT instances like Parberry. For that they showed that it suffices to consider
a sufficiently small number of prefixes of a network. I propose to add constraints to the
Boolean SAT formula to break symmetries between whole networks instead of breaking
symmetries between prefixes of networks outside of the SAT problem. For this I provide
an analysis of a novel symmetry that twists inputs of comparators. Specifically I break
the symmetries between networks whose underlying graphs are isomorphic as defined by
Choi and Moon. In order to show this, I rectify isomorphism results by Choi and Moon.
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1 Introduction

Sorting is a fundamental task in computer science. It enforces an additional invariant
on sets that allows for more efficient algorithms, i.e. binary search in logarithmic time
[1, p. 409-416].

Sorting may also be used to improve caching or branch locality. In ray tracing in com-
puter graphics for example we sort rays into groups of coherent rays [2]. Coherent rays
are reflected into the same direction. Ray coherence improves the locality of their sub-
sequent computation paths as well as the spatial locality of their memory accesses on
those paths.

Notably succeeding algorithms are not the only use case for that sorted data improves
efficiency. Humans profit similarly from data being sorted, i.e. a sorted phone book is
more usable. In this usability sense sorting is not the means to an end but rather the
end itself.

There are many sorting algorithms, such as Bubblesort and Quicksort [1, p. 106-110, 113-
122]. Most sorting algorithms, including these two, assume only a comparison operator ≤
that is used to sort. There are other sorting algorithms that make different assumptions,
e.g. they additionally restrict the domain of the values that are sorted. Such sorts are
not considered comparison sorts.

1.1 Sorting Networks

This thesis considers a special type of comparison sort that is called a sorting network.
Sorting networks only make the additional assumption that a sorting network sorts a
fixed number of elements n. Sorting algorithms, including comparison sorts, typically
sort any number of elements.

Sorting networks represent all comparison sorts that are data-oblivious [1, p. 219-221].
Data-oblivious algorithms do not branch based on the input data. In other words they
perform compare and swap operations on the same positions independent of previous
comparisons. For example Quicksort is not data-oblivious because it recursively com-
pares and swaps within a subsequence and the partitioning into subsequences depends
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vi
vj

min(vi , vj)
max(vi , vj)

Figure 1.1: Two channels with channel numbers i and j carrying the values vi and vj are sorted
by a standard gate.

Figure 1.2: Bubblesort represented as a sorting network for n = 6. Usually each iteration bubbles
the largest remaining value up to the top position. However Knuth diagrams sort
the maximum value to the lower channel. Hence the maximum bubbles down to the
bottom instead.

on the data, in particular the pivot element.

Sorting networks are commonly depicted as Knuth diagrams [1, p. 221]. Figure 1.2 shows
the Knuth diagram of the sorting network representing bubblesort. The input values
are propagated on channels (horizontal lines) from left to right through the network.
Comparator gates (vertical lines) compare and swap the values on two channels such
that the minimum value is always output on the upper channel and the maximum value
on the lower channel (see Figure 1.1). The connection is made explicit by black filled cir-
cles depicting the gate’s pins. Sorting networks are data-oblivious because comparators
always compare the same channels independent of previous comparisons.

Sorting networks work in-place. In-place algorithms get by with the space allocated for
the input and neglectible constant overhead, e.g. an auxiliary variable to perform a swap
operations. Each channel represents one memory location such that at any stage exactly
n memory locations are used.

Since sorting networks are data-oblivious, the number of comparisons in the best and
worst case coincides with the average case. This leads to predictable runtime behavior
and prevents data leaks via runtime information. Due to their oblivious nature sorting
networks can be reified as a hardware circuit or alternatively in software program code.
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1.2 Applications of Sorting Networks

There are various applications of sorting networks. They are suited to act as switching
networks for example [3].

Further sorting networks outperform other sorting algorithms in certain situations. E.g.
the standard sort in libraries is often Quicksort with insertion sort as the base case. In
this case sorting networks beat insertion sort for small, fixed n [4]. This is because correct
implementations of sorting networks can avoid negative interactions with branch predic-
tion, which is employed in every modern processor to improve pipelining of conditional
instructions.

Sorting networks are actually used to encode at-most-k constraints in Boolean SAT
because they can even be simulated in propositional logic [5]. Such constraints ensure
that at most k from a set of variables are set in a satisfying assigment.

Research on sorting networks dates back to 1954. Later sorting networks became an
important research topic in parallel complexity theory [6]. Being oblivious sorting net-
works are a good fit for parallelized sorting on the GPU because the runtime on modern
GPU architectures is particularly susceptible to branching issues. The reason aside from
branch prediction possibly failing is that modern GPUs run groups of threads in lock-
step. Threads in lockstep are synchronized and wait for each other if they enter different
branches. An example for such a parallel setting are rank order filters in image process-
ing such as the median filter [7]. In this case we have a network for each pixel that sorts
the intensity values of the surrounding pixels.

1.3 Optimal Size and Depth of a Sorting Network

From the very beginning researchers were looking for networks with a minimal number of
comparators [1, p. 225-228]. The number of comparators is called the size of a network.

Notably consecutive comparators that work on different channels can be applied in
parallel. For an example see Figure 1.3. The number of parallelized execution steps
is called the depth of a network. A single parallelized step is called a layer.

There are two optimization problems related to the size or the depth of a sorting network
respectively. Both problems assume a fixed number of channels n.

1. What is the minimal size of a sorting network with n channels? Or equivalently
what is the necessary number of data-oblivious comparisons to sort n elements?
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Figure 1.3: A parallelized version of the bubblesort network from Figure 1.2 with depth 9, that is
with 9 layers (parallelized steps), and size 15.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

sn 1 3 5 9 12 16 19 25 29 35 39 45 51 56 60 71 78 86 92
33 37 41 45 49 53 58 63 68 73

dn 1 3 3 5 5 6 6 7 7 8 8 9 9 9 9 10 11 11 11
10 10 10

Table 1.1: Table of the minimum size (sn) and minimum depth (dn) of sortings networks with
n channels. For unknown values the cell contains the known lower and upper bound
instead. Notably there are networks that are both size and depth optimal for n ≤ 9,
but this is not the case for n = 10 and n = 12 [9].

2. What is the minimal depth of a sorting network with n channels? Or equivalently
what is the necessary number of parallelized steps to sort n elements where each
step is made up of any number of independent data-oblivious comparisons?

In the theory of parallel algorithms size and depth are fundamental measures of an
algorithm [8]. In this context the size is referred to as the work of the algorithm. The
energy consumption of an algorithm depends on its work. This thesis focuses on Problem
2 (depth). However both problems are closely related.

Previous work by several authors over several decades succeeded in settling depth opti-
mality for only n ≤ 17. Table 1.1 shows the optimal size and depth for a small number
of elements, i.e. n ≤ 20. We give a detailed overview of the results in this table in Sec-
tion 4.2. While mainly of theoretical interest, such results have a small practical impact
too. There is work that uses sorting networks explicitely for small n [4, 7]. Although
great improvements for a single sorting network with few channels are not possible, we
commonly execute many networks such that the improvement scales to a higher order of
magnitude. While runtime improvements may or may not be noticeable in a massively
parallel setting, the savings in energy increase indefinitely over time.
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1.4 Symmetries in Computer Assisted Optimality Proofs

The results for 9 ≤ n ≤ 17 were obtained via computer assisted proofs [10, 11, 12]. The
state of the art approach reduces the related decision problem of each optimatization
problem to Boolean SAT. The reduced problem is then solved by a SAT solver [11, 12].

All previous computer assisted proofs for optimal networks extensively exploited sym-
metries between pairs of networks where one network sorts iff the other network sorts.
Instead of checking whether each network in a symmetry class sorts, it suffices to consider
only a single representative network from that class. The state of the art approach con-
siders various symmetries on the first two layers of a network and solves SAT instances
with the first two layers fixed for each representative prefix network.

In this thesis I propose to consider these symmetries on all layers. Specifically I propose
that the SAT solver exploits them in a single run. This is fundamentally different from
the state of the art where the symmetries on prefixes are exploited in a prior step such
that the eventual number of solver runs corresponds to the number of symmetry classes.

This thesis revolves around a certain kind of symmetry by Choi and Moon (CM) where
pairs of symmetric networks have isomorphic underlying graphs [13]. CM state that
their graph isomorphy enables a channel permutation followed by a reconnection of
comparators that transforms one network into the other. In this thesis we formalize how
permutation and untangling corresponds to an isomorphism between underlying graphs.
It turns out that yet a third transformation is necessary to be able to represent any CM-
isomorphism of the underlying graphs as a composition of such network transformations.

I believe the approach can be extended to include all previously considered symmetries
on two-layer prefixes, i.e. saturation and reflectional symmetries, but this is outside
the scope of this thesis. However I am dubious whether saturation can be handled
completely beyond the second layer. Further I believe it is possible to break suffixes
instead of prefixes in a prior step outside the SAT problem.

This thesis is structured as follows. Section 2 introduces necessary basic knowledge. This
includes SAT solvers, the concept of symmetries, how symmetries are composed and how
they are exploited in SAT solving. For additional context Section 3 gives a brief overview
on the theory of sorting networks. Section 4 considers the decision problems related to
the size and depth optimality problems and presents previous work and results for small
n. In particular we take a closer look at the state of the art approach. In Section 5 we
define the elementary transformations of the CM-symmetry and show that permuting
and untangling is better captured by input twists that are dual to untangling. We
exploit the input twists by applying standard symmetry breaking techniques from the
SAT solving domain in Section 6. Section 7 formalizes the correspondence between the
graph isomorphism and network transformations.
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2 Preliminaries

2.1 Formalization of Sorting Networks

In this section we give additional fundamental definitions related to sorting networks.
Unlike in the introduction in Section 1.1 we also highlight the differences between gen-
eralized and standard comparator networks, sorting and π-sorting networks as well as
ordered and unordered layers.

In the rest of this thesis we use [x] to denote the set of all natural numbers from 0 to
x − 1. In particular we number the channels from 0 such that [n] gives us the set of
channel numbers.

We define a comparator network as a sequence of comparators. A comparator (i, j) in [n]2

with i 6= j operates on the ith and the jth channel. The n channel values at some stage in
the network are represented as a vector of n components (natural numbers). Application
of a comparator (i, j) to a vector x changes xi to min(xi,xj) and xj to max(xi,xj). Then
a comparator network is applied by sequentially applying the comparators. Note that
a comparator network yields an algorithm that modifies a vector in-place. An example
comparator network for four values is N = (0, 1), (2, 3), (0, 2), (1, 3), (0, 1), (2, 3).

A comparator c = (i, j) is a min-max comparator if i < j, otherwise if j > i it is
a max-min comparator. A comparator network without any max-min comparators is
called a standard comparator network. Generalized comparator networks may contain
max-min comparators but not necessarily, whereas any standard network is necessarily
a generalized network.

We denote the set of all generalized networks with N . Similarly we denote the set of
generalized networks with n channels and size s as N s

n. Like the channels we number
comparators from 0 such that [s] gives us all comparator numbers of a network in N s

n

respectively.

A comparator network N is called sorting if the output N(x) is sorted for every input
vector, i.e. for all x in Nn, we have yi ≤ yi+1 where y = N(x).

There is a weaker condition by that a network is called π-sorting if there exists a per-
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0 1 2 3 4

Figure 2.1: A sorting network with six channels that admits different partitions into layers.

mutation π on the channel numbers such that the output N(x) is sorted for every input
vector after applying π, i.e. for all x in Nn, we have zi ≤ zi+1 where zi = yπ(i) and
y = N(x). Later we use an equivalent less explicit notation to apply π to a vector of
values, e.g. this case is less explicitely written as z = π(N(x)).

It is well known that any generalized π-sorting network can be transformed into a stan-
dard sorting network by a standardization procedure called untangling that may recon-
nect the comparators to different channels [1, p. 238, 667-668][6]. In Section 5.1 we look
at untangling in more detail.

A subsequence of immediately consecutive comparators in a network is called a layer if
all comparators in that subsequence work on different channels. Thus comparators in
a layer are independent of each other. They may be applied in parallel and their order
within the layer is irrelevant. Therefore we distinguish between an ordered layer, that is
a sequence of comparators, and an unordered layer, that is a set of comparators.

Sometimes it is advantageous to consider a network as a sequence of layers instead of
a sequence of comparators. A network of ordered layers corresponds to exactly one
sequence of comparators and exactly one sequence of unordered layers. Note that there
may be different partitions of the same comparator sequence into layers. For example
Figure 2.1 shows a sorting network with six channels where the first comparator on the
last two channels may be partitioned into either the first or the second layer.

Each network N has several prefix and suffix networks. We call a network N ′ a prefix of
N and a network N ′′ a suffix of N if there is a decomposition of N into N ′ and N ′′, i.e.
N = N ′ ;N ′′. In particular we allow a network to have no comparators such that every
network is a prefix and a suffix of itself.

2.2 Boolean SAT Solving

In this thesis we reduce the problem of finding a sorting network with certain properties
to the Boolean SAT problem. The Boolean SAT problem asks whether one can assign
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Boolean values to all variables in a propositional logic formula such that it is satisfied.
The name SAT abbreviates SATISFIABILITY. By Cook’s Theorem the Boolean SAT
problem is NP complete.

An instance of Boolean SAT is a propositional logic formula in conjunctive normal form
(CNF). A CNF-formula is of the form

∧
i

∨
j li,j where

∨
j li,j are clauses and li,j are

literals. A literal is either positive or negative. A positive literal is a variable v. A
negative literal is a negated variable ¬v.

An assignment is a set of variable value pairs that assigns a variable exactly one truth
value. In a complete assignment every variable in the formula is assigned a truth value.
Unless stated otherwise the term assignment refers to a complete assignment. A truth
value is a Boolean value that is either true or false.

A positive literal is satified if its variable is assigned true and likewise a negative literal
is satisfied if its variable is assigned false. A clause is satisfied if at least one of its literals
is satisfied and a formula is satisfied if all of its clauses are satisfied. The Boolean SAT
decision problem asks whether there is some complete assignment under that the given
CNF-formula is satisfied.

We can represent a clause as a set of literals and a CNF-formula as a set of clauses such
that the order of literals within a clause and the order of clauses within a formula are
irrelevant.

The problem of satisfiability is more general than Boolean SAT. Other variants in-
clude constraint satisfaction problems or satisfiability modulo theories. Unless otherwise
stated, we mean Boolean SAT whenever we say SAT in this thesis.

SAT solvers are computer programs that specialize in solving instances of the Boolean
SAT problem efficiently. Although SAT is NP complete, SAT solvers solve instances
with millions of variables in practice. Progress of SAT solvers is tracked in annual SAT
competitions [14].

Most competing modern SAT solvers build on the Davis-Putnam-Logemann-Loveland
(DPLL) algorithm [15]. At its core the DPLL algorithm is a backtracking algorithm
that repeatedly guesses the truth assigment for a single variable. Assigning variable v to
be true removes all occurrences of v as a positive literal as well as all clauses containing
the literal ¬v. If this yields an empty set of clauses, we have satisfied the formula. If
this yields a conflict, that is an unsatisfiable empty clause, we backtrack to assign the
other truth value to a previously assigned variable. If we cannot backtrack, the formula
is unsatisfiable.

DPLL improves the simple backtracking algorithm by taking unit clauses into account.
Such clauses contain exactly one literal and can only be satisfied by satisfying that literal.
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The DPLL algorithm defers guessing in the presence of unit clauses. Instead it assigns
the truth value for the corresponding variable such that the literal of the unit clause is
satisfied. This is called Unit Propagation.

Another improvement of DPLL is Conflict Driven Clause Learning (CDCL) [16]. The
idea is that the cause of a conflict can be a much earlier guess of a variable’s truth value.
In this case we have to backtrack a lot of times before we invert the early erroneous guess
and thus solve the conflict. If a CDCL solver encounters a conflict, it identifies variables
involved in the conflict. Then it learns a new clause that prevents the conflict and
rewinds its truth value guess decisions accordingly. Rewinding is called non-chronological
backtracking.

Let us consider an example taken from an acessible talk on SAT solvers [17]. The problem
has the clauses.

1. x1 ∨ x2

2. x1 ∨ x3 ∨ x8

3. ¬x2 ∨ ¬x3 ∨ x4

4. ¬x4 ∨ x5 ∨ x7

5. ¬x4 ∨ x6 ∨ x8

6. ¬x5 ∨ ¬x6

7. x7 ∨ ¬x8

8. x7 ∨ ¬x9 ∨ x10

A possible run of the CDCL algorithm may first guess x7 is false. Then unit propagation
(UP) in clause 7 infers x8 to be false. The next guess may be that x9 is true. Then UP
in clause 8 infers x10 to be true. Another guess may be that x1 is false. Then x1 is true
by UP in clause 1, x3 is true by UP in clause 2, x4 is true by UP in clause 3, x5 is true
by UP in clause 4. However there is a conflict, because x6 is false by UP in clause 6 and
true by UP in clause 5. Analyzing the conflict a CDCL solver may learn that setting x4
and x5 to true and x8 to false leads to this conflict. Notably this holds independent of
any previously guessed truth values of a variable. Alternatively setting x4 to true and
x7 and x8 leads to the same conflict because of clause 4. By the contrapositive being
conflict free implies that ¬x4 ∨ x7 ∨ x8. Hence we add this clause and rewind to before
guessing x7 (and inferring x4 and x5). With the learned clause we infer that x4 is false at
an early stage after guessing x7 is false. This can prevent costly repeated backtracking
in the decision tree of the truth value guesses.

14



Learned clauses take part in unit propagation. Consequently a lot of additional learned
clauses slow down unit propagation. Thus SAT solvers employ different clause man-
agement strategies, e.g. heuristics to identify useful learned clauses and discard useless
ones.

The next important performance factor is the order, in which variables take part in
truth value guessing [18]. For CDCL solvers the Variable State Independent Decaying
Sum branching heuristic (VSIDS) has proven to be the most successful heuristic [19].
The point here is that guessing the truth values of the variables in a static order of the
variables is in principle suboptimal.

2.3 Symmetries

In this section we consider symmetries, their relation to group theory and equivalence
relations as well as their role in speeding up SAT solvers. A more comprehensive intro-
duction to symmetries in satisfiability solving is given in [20].

A transformation is a function f that maps a set S to itself, i.e. f : S → S. Recal that
N s
n is the set of all comparator networks with n channels and size s. Then we call a

function f : N s
n → N s

n a network transformation.

A symmetry is an invertible transformation of a particular set preserving a certain prop-
erty. Typically a symmetry preserves some structure of the elements. As a consequence
the symmetry then also preserves properties that are derived from that structure.

Continuing the first example a sorting network symmetry is an invertible network trans-
formation preserving the property that a network sorts. In other words for all networks
N in Nn we have that N is a sorting network if and only if f(N) is a sorting network.
In this thesis we consider sorting network symmetries that preserve an underlying graph
structure of a comparator network. Whether a network sorts is determined by that
graph structure.
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2.3.1 Symmetry Group Representations

Symmetries, group theory and representation theory are closely related. A group G is a
set together with a binary operation ◦ that satisfies the group laws

∀ f , g ∈ G. f ◦ g ∈ G (2.1)
∃ id ∈ G ∀ f ∈ G. f ◦ id = f = id ◦f (2.2)

∀ f ∈ G ∃ f−1 ∈ G. f ◦ f−1 = id = f−1 ◦ f (2.3)
∀ f , g,h ∈ G. (f ◦ g) ◦ h = f ◦ (g ◦ h) (2.4)

2.1 G is closed under ◦.
2.2 There is an identity element id.
2.3 Every element g has an inverse g−1 that cancels it.
2.4 The binary operation ◦ is associative.

We recall that symmetries are invertible and note that there is an identity transforma-
tion. Composing two transformations that preserve the same property yields a transfor-
mation that preserves that property too. Composition is associative. Hence symmetries
form a group under composition.

The symmetric group Sym(S) of a set S contains all permutations of S, that is all
invertible transformations of elements in S. Note that Sym(S) unlike symmetry groups
preserves no properties.

The concept of a group action further involves the elements of the set S on that the
transformations of a group work. Let G be a set of transformations that is a group
under composition. Then a left action is a binary operator · : G × S → S. We write
f · x to say that f acts on x (from the left). A left group action must satisfy the group
action laws

∀ f , g ∈ G, x ∈ S. f · (g · x) = (f ◦ g) · x
∀ x ∈ S. id ·x = x.

An analogous definition of a right action exists, but we limit ourselves to considering
only left actions without loss of generality. Note that · is right associative. We may omit
parantheses and ·, i.e. write gfx instead of g · (f · x).

For example if the group G contains transformations of S, then a suitable action is
transformation application, that is f · x 7→ f(x). This is the natural group action and
we say that G acts naturally on S.

However the group G may instead contain transformations of a set T unrelated to S.
Then a suitable definition of a group action enables G to act on S anyway. For ex-
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ample in Section 5 we consider an action that enables the group of all channel number
permutations to act as network transformations on the set of networks.

Strictly speaking the definition of a group action does not require G to be a set of
transformations that is a group under composition. Actually G may be any group, but
this generalization is not relevant to this thesis.

The orbit of a point x contains all of its possible destinations points through a transfor-
mation in G. The orbit is denoted by G · x.

G · x = {g · x | g ∈ G}

Proposition 1

1. A group G acting on a set S with some action · induces an equivalence relation on
S where the equivalence class of an element in S is its orbit.

2. An equivalence relation R on a set S induces a group of transformations of S
such that the group acts naturally on S where the orbit of an element in S is its
equivalence class.

Proof.

1. The proof can be found in standard literature, e.g. [21, p. 202].

2 We define the set GR such that it contains a transformation f of S if x R f(x) for
all x in S. Next we show that GR is a group under composition. This implies that
it is acting on S because we have an appropriate definition for · at hand.

The identity of GR is the identity transformation. An inverse exists because R is
a symmetric relation. Composition is associative. The set of transformations GR
is closed under composition because R is a transitive relation.

We observe that the orbit of an element in S is its equivalence class by definition
of GR.

This means we can alternatively define a symmetry as an equivalence relation whose
equivalence classes are preserve a particular property.
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Note that Proposition 1.1 and Proposition 1.2 reverse each other except that 2 induces
only the natural group action. Thus every group G acting on a set S with some action
· induces another group acting naturally on S where the two orbits of each element in
S are the same. We say that the group G is represented on S or more explicitely that
G is represented as another group that acts naturally on S. Alternatively we say that
G acts as another group on S. Although Proposition 1.2 is relevant because it states
that every equivalence relation induces a group of transformations, it is actually not the
most suitable definition for this concept of group representation by an action as the next
example shows.

We consider the sets A = {0, 1, 2} and the set B = {a0, a1, a2}. The following trans-
formations of A shift every element in a cycle and form a group G under composition,
that is G = {id,x 7→ x + 1 mod 3,x 7→ x − 1 mod 3}. For G there is a single orbit,
that is A. We can define an action ∗ : G× B → B as f ∗ ai = af(i). Then for G acting
on B with the action ∗ there is similarly a single orbit, that is B. Hence the induced
equivalence relation is B2 because all elements in B are in the same equivalence class
(orbit). Further G is represented as another group H on B. Note that H contains all of
the 3! = 6 transformation of B, i.e. it additionally contains all the swaps of two elements
in B respectively. Next we revise the concept of representation such that the group rep-
resentation H does not contain the swaps and every transformation in G corresponds to
exactly one transformation in H.

There is an alternative equivalent definition of the group action · : G×S → S in curried
notation with the signature act : G→ (S → S) [21]. With the earlier assumption that G
contains transformations of a set T this yields the signature act : (T → T ) → (S → S).
This alternative definition illustrates that a transformation of T from a group G acting on
S induces a transformation of S. We say a transformation of T acts as a transformation
of S or that it is represented as a transformation of S. Be aware that act is only total if
G contains all transformations of T . If we recall that G is represented on S as another
group H acting naturally on S, then we can define the signature more precisely as
act : G→ H. With this signature act is not only total but also surjective.

We call a representation faithful if act is injective too. Then there is an inverse group
action act−1 : H → G. That is if a group G with transformations of T is represented as
a group H on S by an injective action act : G→ H, then H likewise is represented as the
group G on T by the action act−1 : H → G. For an example we continue the previous
remark that in Section 5 the group of all permutations of channel numbers is faithfully
represented as a group of network transformations on the set of networks. That group of
network transformations is likewise represented as that permutation group on the set of
channel numbers. The latter representation is also called a permutation representation
because a group is represented as a permutation group.
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2.3.2 Symmetry Breaking in SAT

Previous work on optimal sorting networks encodes a comparator network as an instance
of the Boolean SAT problem. SAT solving can be sped up by pruning the search space
based on symmetries. This is also called symmetry breaking.

SAT Symmetries

In the context of SAT a symmetry preserves satisfiability. It is a permutation π of pairs
of variables and truth values. We observe that a literal l corresponds to a pair of a
variable x and a truth value v, i.e. we can define a bijection f that converts between
them.

f(l) =

{
f(x, true), l = x

f(x, false), l = ¬x

f−1(x, v) =

{
x, v = true

¬x, v = false

Hence we can faithfully represent a permutation π of a variable value pair as a permu-
tation of a literal l with the action

π · l = (f−1 ◦ π ◦ f)(l).

Specifically a SAT symmetry has to satisfy a condition that is commonly called Boolean
consistency. Boolean consistency states that for any variables x and x′ and truth values v
and v′ with π(x, v) = (x′, v′) we have that π(x,¬v) = (x′,¬v′), i.e. negation is preserved
by π. A symmetry group in SAT either acts on constraints or on solutions. Conversely
a symmetry group containing transformations of constraints or solutions respectively is
represented as a permutation group of variable-value pairs.

A constraint transformation is a function on the set of constraints, i.e. a formula φ.
Since a formula is a set of clauses and a clause is a set of literals, we can faithfully
represent a permutation of literals π as a constraint transformation with the action
that applies π pointwise

π · φ = {{π(l) | l ∈ c} | c ∈ φ}.

Equivalently we can say

π ·
∧
i

∨
j

li,j =
∧
i

∨
j

π(li,j).
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A solution transformation is a function on the set of assignments satisfying a given
formula. We can represent a permutation π of a variable value pair (x, v) as a
solution transformation, that is a transformation of an assignment S, with the
action

π · S = {π(x, v) | (x, v) ∈ S}

We consider common notions of symmetry in satisfiability solving [20].

A constraint symmetry is a constraint transformation that maps the formula such
that its representation as a set of clauses stays the same, i.e. it preserves the
problem’s clause set representation. Clearly this preserves satisfiability as the set
of clauses is the same. For example the permutation that only swaps literal x1
with ¬x3 (and x3 with ¬x1) in the formula (x1 ∨ ¬x2) ∧ (¬x2 ∨ ¬x3) ∧ x1 ∧ ¬x3
preserves the set of clauses

{{x1,¬x2}, {¬x2,¬x3}, {x1}, {¬x3}} = {{¬x3,¬x2}, {¬x2,x1}, {¬x3}, {x1}}.

A solution symmetry is a solution transformation that maps every satisfying assign-
ment to the same assignment, i.e. it is preserves the solution. For an example we
again consider the formula (x1∨¬x2)∧(¬x2∨¬x3)∧x1∧¬x3. The set of satisfying
assignments is

{{(x1, true), (x2, false), (x3, false)}, {(x1, true), (x2, true), (x3, false)}}.

The permutation that only swaps (x2, true) with (x2, false) is a solution symmetry
because it preserves this set of solutions. We already know that swapping (x1, true)
with (x3, false) is a constraint symmetry for this formula. It is a solution symmetry
too.

A more general SAT symmetry is a transformation that simply preserves satisfiability
instead of preserving the problem or the solution.

Notably the same formula has the same set of solutions, while the same set of solutions
can be described by different formulas. Hence every constraint symmetry is a solution
symmetry but not the other way around. For example the formulas x1∧x2 and x1∧x2∧
(x1 ∨¬x2) have the same set of solutions and thus admit the same solution symmetries,
but they do not admit the same constraint symmetries. As we see in the example
minor changes like adding redundant clauses can prohibit constraint symmetries. For
this reason constraint symmetries are also called syntactic symmetries, while solution
symmetries are called semantic symmetries.

We may consider restricted notions of a symmetry group in SAT, e.g. a subgroup that
acts as a permutation group on the variables only or the truth values only. This yields
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the notion of a variable symmetry and a value symmetry respectively. In particular
for Boolean SAT value symmetries are sometimes called phase-shift symmetries. For
example the permutation that swaps (x1, false) with (x1, true) acts only on the truth
values. The permutation that swaps (x1, false) with (x2, false) as well as (x1, true) with
(x2, true) acts only on the variables.

Detecting Symmetries

There are many attempts in the literature where authors try to automatically detect
symmetries with the goal to break them later. The standard approach to detect sym-
metries is to represent formulas as a colored graph such that symmetries correspond to
automorphisms on this graph and then use a dedicated tool to detect graph automor-
phisms [22, 23, 24]. This yields constraint symmetries.

In general determining whether a solution transformation is a solution symmetry is
coNP-complete, that is at least as hard as determining whether a formula is unsatisfiable
[25]. Determining whether a whole group of problem transformations is a group of
problem symmetries does not make the problem easier.

Besides domain oblivious automated symmetry detection the human knowledge of the
domain may include knowledge of symmetries. As an example the k-coloring problem
can be solved with a SAT-solver that utilizes a Theorem about the chromatic number
that relates symmetric cases [26].

Symmetry Breaking

Solving a SAT problem with many symmetries leads to a redundant exploration of
search space. If we know about pairs of symmetric assignments beforehand, then we
may consider only one assignment representative for each equivalence class of symmetric
assignments. Since symmetry preserves satisfiability, we know that if the representative
does not satisfy the formula, then none of the symmetric assignments satisfies the formula
either.

The most common approach to prune the search space based on symmetries is to add
additional symmetry breaking constraints in an initial preprocessing step. A symmetry
breaking constraint must preserve satisfiability and should ideally reduce the search
space to only the representative assignment.

A symmetry breaking constraint φ is correct if for every equivalence class of assign-
ments under that symmetry there is at least one assignment that satisfies φ.

21



A symmetry breaking constraint φ is complete if for every equivalence class of as-
signments under that symmetry there is at most one assignment that satisfies φ.

A straightforward, correct and complete symmetry breaking constraint is the lex-leader
constraint [22]. We assume an order of the variables x1 < x2 < · · · < xk of the input
formula with k variables. With this order we can consider an assignment as a binary
number. This yields a lexicographic order < of the assignments. Let π be the symmetry
that transforms every assignment X into the assignment π ·X. The lex-leader constraint
chooses the smallest assignment by some lexicographic ordering as the representative.
Specifically it adds constraints that disallow π ·X for every X with X ≤ π(X).

k∧
i=1

 i∧
j=1

xj ↔ π(xj)

→ (¬xi ∨ π(xi))

The constraint ensures that xi is always smaller than π(xi) if all preceding literals xj
and π(xj) evaluate to the same truth value.

Then for every such pair of symmetric assignments X and π ·X it is still satisfied by the
smaller assignment X. And the lex-leader constraint is correct because for every class
of symmetric assignments the lexicographically minimal assignment satisfies the lex-
leader constraint. Further the lexicographically minimal assignment is the only satisfying
assignment in its class because every symmetric and lexicographically greater assignment
is disallowed by the lex-leader constraint. Thus the lex-leader constraint is a correct and
complete symmetry breaking constraint for any symmetry π.

Such a lex-leader constraint is added for any symmetry π in the symmetry group and
any assignment X where X < π(X). It turns out that such a symmetry breaking
constraint adds too many large clauses that are rarely utilized. Rather they slow down
unit propagation. Efficient approaches only use a small subset of the constraints with
small clauses [24, 27]. This does not break the symmetry completely but avoids the great
overhead such that a speedup can be achieved. This incomplete breaking of symmetries
is also called partial symmetry breaking. Another optimization is to introduce auxiliary
variables to achieve a more compact encoding of the lex-leader constraint [28].

Adding symmetry breaking constraints in a preprocessing step is called static symmetry
breaking. In contrast to that dynamic symmetry breaking reduces the clause overhead
by adding symmetry breaking constraints during the search when appropriate [26, 29].
This requires modification of the SAT-solver and has to integrate with other SAT-solving
techniques such as backjumping. Hence it is difficult to profit from progress in SAT
competitions. Fixing the order in which variable assignments are guessed can reduce
the size of dynamically added symmetry breaking constraints. However static variable
orders are inferior to the VSIDS heuristic.
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2.4 Relational Composition

In this thesis we consider various symmetries as equivalence relations between compara-
tor networks. For an equivalence relation R we may write x ≡R y instead of x R y or
(x, y) ∈ R. On several occasions we combine different kinds of equivalences to obtain a
generalized one. For a straightforward formalization we draw on the concept of a relation
algebra [30], which provides us with a composition operator ; for two relations.

Definition 2 (Composition of relations)
The composition of two relations R ⊆ X × Y and S ⊆ Y × Z is defined as

R ; S = {(x, z) ∈ X × Z | ∃ y ∈ Y such that x R y and y S z}.

Proposition 3
The composition of two reflexive relations R ⊆ X2 and S ⊆ X2 is a superset of R and
S respectively.

R ⊆ R ; S

S ⊆ R ; S

Proof. Given either xRz or xSz we show that x (R ; S) z. In the former case we have xRz
and zSz by reflexivity of S such that there is an y in X with xRy and ySz, in particular
y = z. This proves x (R ; S) z. The latter case can be argued analogously.

Proposition 4
Relational composition is idempotent if and only if it works on a transitive relation, i.e.
for any relation R ⊆ X2

R ;R = R ⇐⇒ R is transitive.

Proof.

=⇒ Let R ;R = R. We prove that R is transitive, i.e. we show that for any x,y and z
from X, if xRy and yRz, then xRz. By Definition 2 we have x (R ;R) z, that is
xRz by the premiss R ;R = R.

⇐= Let R be transitive. We prove that R ; R = R. By Proposition 3 we know that
R ;R ⊇ R. For the other inclusion R ;R ⊆ R we show that x (R ;R) z implies xRz.
By Definition 2 there is an y such that xRy and yRz, that is xRz by transitivity
of R.
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Note that the composition of two equivalence relations may not yield an equivalence
relation. Consider the equivalence relations R = {(x,x), (y, y), (z, z), (x, y), (y,x)} and
S = {(x,x), (y, y), (z, z), (y, z), (z, y)}. We have that (x, z) is in the composition R ; S,
but (z,x) is not. Thus R ; S is not symmetric and hence cannot be an equivalence
relation. Symmetrically we have that (z,x) is in the composition S ;R, but (x, z) is not.

Proposition 5
For all equivalence relations R,S ⊆ X2 the following are equivalent:

1. R ; S is a symmetric relation.

2. Composition of R and S is commutative, i.e. R ; S = S ;R.

3. R ; S is an equivalence relation.

Proof.

1 =⇒ 2 Let R ; S be a symmetric relation. We show that R ; S = S ;R. In detail we show
that x (R ; S) y if and only if x (S ;R) y for all x and y in X. First we utilize
symmetry of R ; S and finally symmetry of R and S. Recall that by the premiss
R ; S is an equivalence relation and thus symmetric.

x (R ; S) y ⇐⇒ y (R ; S) x

⇐⇒ ∃ z ∈ X s.t. yRz and zSx

⇐⇒ ∃ z ∈ X s.t. zSx and yRz

⇐⇒ ∃ z ∈ X s.t. xSz and zRy

⇐⇒ x (S ;R) y

2 =⇒ 3 Let the composition of R and S be commutative such that R ; S = S ; R. We
prove that R ; S is an equivalence relation, i.e. that R ; S is reflexive, symmetric
and transitive.

To show reflexivity of R ; S, it must hold that x (R ; S) x for all x in X. This
holds because we have xSx and xRx by reflexivity of S and R such that there is
an element y with xSy and yRx, in particular y = x.

To show symmetry of R ; S, it must hold for all x and y in X that x (R ; S) y iff
y (R ; S) x. This can be shown by first utilizing symmetry of R and S and finally
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the premiss R ; S = S ;R.

x (R ; S) y ⇐⇒ ∃ z ∈ X such that xRz and zSy

⇐⇒ ∃ z ∈ X such that zRx and ySz

⇐⇒ ∃ z ∈ X such that ySz and zRx

⇐⇒ y (S ;R) x

⇐⇒ y (R ; S) x

To show transitivity of R ; S, it must hold for all x, y, z in X that x (R ; S) y
and y (R ; S) z imply x(R ; S)z. This can be shown by first utilizing the premiss
R ; S = S ;R and finally the transitivity of R and S.

x (R ; S) y ∧ y (R ; S) z ⇐⇒ ∃ v,w ∈ X s.t. xRv and vSy and yRw and wSz

⇐⇒ x (R ; S ;R ; S) z

⇐⇒ x (R ; (S ;R) ; S) z

⇐⇒ x (R ; (R ; S) ; S) z

⇐⇒ x (R ;R ; S ; S) z

⇐⇒ ∃ v,w ∈ X s.t. xRv and vRy and ySw and wSz

⇐⇒ ∃ v,w ∈ X s.t. (xRv and vRy) and (ySw and wSz)

=⇒ xRy and ySz

=⇒ x (R ; S) z

3 =⇒ 1 The equivalence relation R ;S is symmetric by definition of an equivalence relation.

Let two groups G and H each act on the same set S with the actions · : G × S → S
and ∗ : H × S → S respectively. Their induced equivalence relations RG ⊆ S2 and
RH ⊆ S2 commute under composition, i.e. RG ;RH = RH ;RG, iff their representations
commute under composition, i.e. for all g in G, all h in H and all x in S we have that
g·h∗x = h∗g·x. Remember that actions are right associative, i.e. it is g·(h∗x) = h∗(g·x),
and the second group law states for all f1, f2 in some group that f1 · (f2 ·x) = (f1 ◦f2) ·x.
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3 Sorting Networks

In this section we give a brief overview on the theory of sorting networks. We already
introduced sorting networks as data-oblivious in-place sorting algorithms depicted as
Knuth diagrams in Section 1.1. To complete this introduction we first consider a certain
subclass of sorting networks called primitive networks that induce stability. Afterwards
we list various known sorting network construction schemes. This includes practical
constructions, but we also identify asymptotic bounds for the size and depth of sorting
networks with theoretical constructions.

3.1 Stable Sorting Networks

A stable sorting algorithm retains the order of equal elements. Generally sorting networks
are not stable sorts. For a counterexample see Figure 3.1. However a sorting network
is stable if all of its comparators work on adjacent channels. Knuth calls such networks
primitive [1, p. 240]. For example the bubblesort network from Figure 1.2 is primitive.
In primitive networks the channel number of a value can change at most by 1 in each
step. Thus the order (by channel numbers) of two values can only change by a direct
comparison. Therefore the order of equal values is retained.

Some authors restrict their notion of sorting networks to primitive sorting networks [31].
However this thesis is neither concerned with stability nor with primitive networks. Thus
we allow comparators between any two channels.

4

4

2

2

4

4

2

4

4

2

4

4

Figure 3.1: A sorting network that is not stable. In a stable sorting network the order of equal
values is retained, i.e. if 4 comes before 4 in the input sequence, then 4 comes before
4 in the output sequence too.
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Figure 3.2: A network representing the odd-even transposition sort for n = 6 with depth 6 and
size

(
n
2

)
= 15.

3.2 Size and Depth in Construction Schemes

The odd-even transposition network (Figure 3.2) is another primitive sorting network
with size

(
n
2

)
like the bubblesort network (Figure 1.2) but with fewer layers. Actually(

n
2

)
is the minimum number of comparators necessary in a primitive sorting network [1,

p. 240, 669].

It is well known that any correct comparison sort performs at least Ω(n · log n) compar-
isons [1, p. 182]. This gives an asymptotic lower bound for the minimum size of sorting
networks.

In fact Ajtai, Komlós and Szemerédi (AKS) gave a construction scheme for sorting
networks with size O(n · log n) [32] such that the minimum size is asymptotically equal
to n · log n up to a constant factor. However AKS networks remain theoretical, due to
the large constants hidden in the big O bound.

There are sorting algorithms with a lower time complexity such as radix sort, but they
work under different assumptions.

A layer comprises at most bn2 c comparisons. The minimum number of comparisons in
a sorting network is Ω(n · log n). Hence the minimum depth is Ω(log n). Similar to the
size the AKS construction scheme gives a corresponding network with depth O(log n),
but the construction remains impractical [32].

Instead construction schemes like Batcher’s bitonic or odd-even mergesort [33] or the
pairwise sorting network [34] have proven to be practical. They are designed for cases
where n is a power of 2. They are only depth optimal up to n = 23 = 8 and the latter
two schemes are only size optimal up to n = 23 = 8. The size of the bitonic mergesort
scales worse with n than the latter two schemes. For details see Table 3.1.
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Sorting network Size Depth
Bubblesort

(
n
2

)
2n− 3

Odd-even transposition sort
(
n
2

)
n

Bitonic mergesort 1
2n
(
log(n)+1

2

) (
log(n)+1

2

)
Pairwise sorting network 1

2n
(
logn
2

)
+ n− 1

(
log(n)+1

2

)
Odd-even mergesort 1

2n
(
logn
2

)
+ n− 1

(
log(n)+1

2

)
AKS sorting network O(n log n) O(log n)

Table 3.1: Various construction schemes of sorting networks. For the bitonic and odd-even merge-
sort as well as the pairwise sorting network we assume that n is a power of 2. The
AKS network is asymptotically optimal.
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4 Optimality Proofs for Small Networks

In this section we perform a simple analysis of the complexity of sorting network opti-
mization. We trace previous results for small n and observe the success of SAT solver
assisted proofs. In particular we take a closer look at the most successful approach for
optimal depth.

4.1 Complexity of Sorting Network Optimization

We introduced the size and depth optimization problems in Section 1.3 as Problem 1
and Problem 2 respectively. The related decision problems further fix the size s or depth
d respectively.

3. Is there a sorting network with n channels and size s? Or equivalently can s
data-oblivious comparisons sort n elements?

4. Is there a sorting network with n channels and depth d? Or equivalently can d
parallelized steps sort n elements where each step is made up of any number of
independent data-oblivious comparisons?

Note that increasing n never decreases the minimal size or depth respectively. Because
given a sorting network for n + 1 channels we can remove the last channel to obtain
a comparator network with n channels and the same size and depth. To see that this
comparator network sorts, we observe that any run with n inputs corresponds to a run
of the original sorting networks where the same first n inputs are the same and the last
input is the maximum of the first n.

Hence we can reduce the optimization problem to the related decision problem in poly-
nomial time using binary search, i.e. we reduce Problem 1 to Problem 3 and Problem 2
to Problem 4. However this is negligible as we can solve Problem 3 only for n ≤ 10 and
Problem 4 only for n ≤ 17 (see Table 1.1 in Section 1.3).

A standard argument to classify a problem’s complexity utilizes nondeterminism. I.e. if
there is a network for n channels with depth d, we choose it nondeterministically and
then verify that it sorts. One might think that this puts the decision Problem 4 (or
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Problem 3 respectively) into NP. However this requires verification in polynomial time.
This is refuted by a result from Parberry in 1991. It states that verification of a sorting
network is coNP-complete [35]. Hence we have to amend the prediction e.g. by granting
access to a coNP oracle. This puts the two decision variants of the problems 3 and 4
into the second level of the polynomial hierarchy Σp2 [36, p. 91-100].

Problems in the second level of the polynomial hierarchy alternate the quantifiers ∃
and ∀. We ask whether there is a comparator network with fixed dimensions such that
all network runs sort. The complements of Σp2 are in the class Πp2 and alternate the
quantifiers in the reverse order. We ask whether for each comparator network with
fixed dimensions there is a network run that does not sort. A positive answer proves
nonexistence of a sorting network with fixed dimensions.

As we can reduce the optimization Problems 1 and 2 to their decision variant Problem
3 or Problem 4 in polynomial time, they are in Σp2 too.

4.2 Previous Optimality Proofs

In this section we trace the results in Table 1.1 and related work.

Knuth collected a list of small networks [1, p. 227, 229] by various authors up to n ≤ 16.
Their optimality was settled for n ≤ 8 [37].

There are construction schemes to extend a sorting network to a sorting network that
takes one more input. One such scheme that adds only very few comparators gives the
inequality sn+1 ≥ sn + dlog ne where sn denotes the minimum size of a sorting network
with n inputs [38]. This inequality derives the optimal size lower bounds for n > 10 in
Table 1.1.

Besides that inequality the methods to bound the optimal size or depth of a sorting net-
work are computer assisted. Evolutionary algorithms have been utilized to find sorting
networks [13, 39, 40]. Finding a sorting network gives an upper bound on the optimal
size and depth. However evolutionary algorithms are incapable of finding new lower
bounds as this requires an exhaustive search.

In 1989 an exhaustive search was performed on a supercomputer to show the networks
presented by Knuth are depth optimal for 9 ≤ n ≤ 10 [10]. Decades later in 2013 the
depth optimality of the remaining networks was settled for n ≤ 16 by Bundala and
Závodný (BZ) [11]. Improving that work the size optimality for 9 ≤ n ≤ 10 was settled
in 2014 [41] and in 2015 a depth lower bound for 17 and new depth upper bounds for
17, 19 and 20 were found [42]. The current upper bound for n = 18 was found in 2009
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[43]. In 2016 another upper bound was found for n = 23 such that the upper bound for
21 ≤ n ≤ 24 is 12 [44].

4.3 SAT Solver Assisted Optimality Proofs

Aside from Parberry’s algorithm to prove depth optimality for n ≤ 10 all new proofs of
lower bounds for larger n utilized Boolean SAT-solvers. Whereas BZ reduced Problem
4 to Boolean SAT in 2013 to prove lower bounds for n ≤ 16 with a SAT-solver, Gregg
and Marinov proved lower bounds without using a SAT-solver in 2014 [45]. They state
that their algorithm and related techniques were developed independent from BZ [46].
However they only proved depth optimality for n ≤ 12.

I do not dare to argue whether e.g. SAT-solving might be superior to other exhaustive
search techniques. There are several caveats to any such comparison attempts. Different
authors used vastly different hardware. This includes clusters of 144 cores [47] or even
supercomputers [10], i.e. expensive inaccessible hardware. The publications occured over
the span of decades and a lack of interest may be as good of an explanation for the gap
between 1989 and 2013 as a lack in technique. Some authors ran computations for more
than a month [12], while others did not. Further progress in computing power or in the
domain of SAT-solvers occured and continues to occur non-linearly. Additionally the
search space scales exponentially with n but was pruned differently in each approach.
This makes it difficult to compare results for different n because for upper bounds the
time variance depends on the size of the pruned search space. Even lower bounds are
affected similarly by the inherent randomness in SAT solving. Hence rather than arguing
whether SAT-solving may be superior to other techniques, I want to point out that my
first exposure to optimality proofs of sorting networks introduced me to the SAT-solving
approach due to its success in the current decade.

In this section we describe BZ’s Boolean SAT encoding. It reduces Problem 4 to Boolean
SAT. The use of Boolean SAT Solvers is facilitated by the zero-one principle. It states
that it suffices to consider sorting Boolean values.

Theorem 6 (Zero-One Principle)
A generalized comparator network is a generalized sorting network iff it sorts all vectors
in Bn, that is all vectors of zeros and ones.

Proof.

=⇒ If a generalized network sorts all vectors in Nn, then it sorts all vectors in Bn,
because Bn is a subset of Nn.
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⇐= We prove by contradiction that a generalized network is a sorting network if it
sorts all vectors of zeros and ones. Assume that there is a generalized network N
that sorts all vectors of zeros and ones, but not some vector x in Nn. Then the
output is not sorted at some position p, i.e. yp > yp+1 where y = N(x). We define
the function f : N → N as

f(v) =

{
0, v < yp

1, v ≥ yp.

Note that f(y) is not sorted at position p, since f(yp) = 1 > 0 = f(yp+1)

We show that N(f(x)) = f(y), which contradicts the assumption that the vector
f(x) of zeros and ones is sorted by N . Specifically we show that generalized
networks commute with f under application to vectors, i.e. N(f(x)) = f(N(x)).

It suffices to show that each comparator c = (i, j) in N commutes with f under
application, that is c(f(x)) = f(c(x)). In particular we show that f commutes
with computing the minimum output of c under application to any vector z, i.e.
f(min(zi, zj)) = min(f(zi), f(zj)). The case for the maximum output is analogous.

We assume without loss of generality that zi ≤ zj such that min(zi, zj) = zi.
Note that f is monotone such that f(zi) ≤ f(zj) iff zi ≤ zj . Thus we have
min(f(zi), f(zj)) = f(zi).

f(min(zi, zj) =f(zi) = min(f(zi), f(zj))

4.3.1 Prerequisite Constraints

First I introduce some prerequisite constraints that I later use to describe the reduction
of the decision problems to Boolean SAT in the state of the art approach.

atLeastOne(S) =
∨
l∈S

l

atMostOne(S) =
∧

l1,l2∈S
l1 ̸=l2

¬l1 ∨ ¬l2

exactlyOne(S) = atLeastOne(S) ∧ atMostOne(S)

To ensure that in a satisfying asssignment the value of literal lmin is the minimum of the

32



values of all the literals l0, l1 up to lk we define a min and analogously a max constraint.

min(lmin, {l0, l1, . . . , lk}) = (lmin ∨ ¬l0 ∨ l1 ∨ · · · ∨ ¬lk)
∧ (¬lmin ∨ l0)
∧ (¬lmin ∨ l1)
. . .

∧ (¬lmin ∨ lk)
max(lmax, {l0, l1, . . . , lk}) = (¬lmax ∨ l0 ∨ l1 ∨ · · · ∨ lk)

∧ (lmax ∨ ¬l0)
∧ (lmax ∨ ¬l1)
. . .

∧ (lmax ∨ ¬lk)

4.3.2 Encoding

The network is encoded as a sequence of unordered layers. The variable gki,j indicates
that there is a comparator gate between channels i and j in layer k. Notably the encoding
only considers standard comparator networks such that i < j. The variable uki indicates
that there is no comparator using channel i in layer k.

To ensure that every channel is used by at most one comparator in a layer and if necessary
is marked as unused, we add the valid constraint.

standGateki,j =

{
gki,j , if i < j

gkj,i, if i > j

valid =
∧
i∈[n]

∧
k∈[d]

exactlyOne
(
{uki , standGateki,j | j ∈ [n], j 6= i}

)

Further to ensure that any input vector x is sorted, we introduce a variable xvki for the
value on channel i before layer k. Since layers are enumerated from zero, the network
output value on channel i is modeled by xvdi .

We add constraints such that the input values match x, are updated correctly by the
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comparators and are sorted when exiting the network.

xupdate =
∧

i,j∈[n]
i<j

∧
k∈[d]

gki,j →
(
min(xvk+1

i , {xvki , xvkj }) ∧max(xvk+1
j , {xvki , xvkj })

)

∧
∧
i∈[n]

∧
k∈[d]

uki →
(
xvk+1
i ↔ xvki

)
xvaluesky =

∧
i∈[n]

{
¬ xvki , if yi = 0
xvki , if yi = 1

xsorts = xvalues0x ∧ xupdate ∧ xvaluesdsort(x)

A sorting network with n channels and depth d exists iff the following formula is satis-
fiable:

valid∧
∧
x∈Bn

xsorts

This naive SAT-encoding is impractical insofar as there are exponentially many, that is
2n, input vectors in Bn. Nonetheless experience has shown that a subset of inputs from
Bn suffices to either prove unsatisfiability or come up with a sorting network for small
n (≤ 17) [11, 48].

4.3.3 Counterexample Guided Inductive Synthesis

The encoding from the previous section can be reduced to a still exponential but more
feasible size by considering a subset of the inputs. The encoding scheme was originally
used to combine the encodings of several subnetworks. In that case we only consider
inputs of the form 0az1b where z is an input to a subnetwork. This subnetwork opti-
mization was used to prove nonexistence of a sorting network for given n and d [11]. We
skip a closer study of this technique and instead consider an alternative approach that
also reduces the number of encoded inputs and can even prove existence of a sorting
network.

Assume that a SAT-Solver finds a satisfying assignment, that is a network, for the
encoding with sort constraints for only a subset of the inputs. The found network may
not sort some inputs from the complementary subset. To sidestep this problem, we look
for such a counterexample input x. If there is no counterexample the network is a sorting
network. Otherwise we add the constraint xsort to the encoding. Any network satisfying
the amended encoding sorts x. This approach of iteratively synthesizing networks and
finding counterexamples in alternation is known as Counterexample Guided Inductive
Synthesis [49].
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Finding a counterexample input is in NP [35] and hence can be reduced to SAT. We
employ a second solver to find counterexamples. The encoding comprises a specialisation
of the update constraint and an additional constraint to ensure the output it not sorted.
We disallow each sorted vector 0n−b1b with b in [n] by adding its pointwise negation
1n−b0b as the clause valuesd1n−b0b . As the encoding does not scale to an exponential size,
the time spent by the counterexample solver is neglectable with respect to that spent
by the network solver. Incremental SAT solving allows us to keep learned clauses from
previous iterations [50].

Minimal Counterexample Inputs

We observe that leading zeros in an input to a standard network are never swapped by
a comparator. The same applies for trailing ones. Thus we do not encode them, e.g.
the number of value variables xvki for an input x with a leading zeros and b trailing ones
decreases from n · (d+ 1) to (n− a− b) · (n+ 1). Specifically if x = 0az1b, we call z the
window of x and we call |z| the window size.

Hence when solving for counterexamples, we prefer minimal counterexamples, e.g. coun-
terexample inputs with minimal window size.

4.3.4 Two-Layer Prefix

BZ indicate that pruning the search space by symmetries is essential in Parberry’s proof
for n = 9 and proceed similarly in their own work. However BZ only utilize symmetry
based pruning wrt the first two layers of the network. As a side note while BZ used SAT-
solver, any other exhaustive search technique should similarly handle these symmetries
efficiently.

A symmetry induces an equivalence relation between standard comparator networks
where either all members or none of each equivalence class are sorting. It suffices to con-
sider representative networks of each equivalence class when proving (non-)existence of a
sorting network for a given input size n and depth bound d. Previous approaches utilize
this insight to split all two layer prefixes into equivalence classes and prove (non-)exis-
tence for a representative prefix of each class [11, 12].

We recall from Section 2.1 that we can untangle any generalized π-sorting network to
a standard sorting network. Furthermore by permuting the channels of any standard
sorting network with some permutation π we can obtain up to n! different generalized
π-sorting networks. There is a standard sorting network symmetry that permutes the
channels and then untangles the resulting generalized network to a standard network.
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We give a formal definition of this symmetry in Section 5.1, as this thesis is concerned
with breaking it in all layers.

To reduce the number of prefix representatives BZ consider the set of possible output
vectors outputs(N) of a network N . In the words of Codish et al. two-layer prefix
networks may subsume each other [12]. A network N subsumes a (prefix) network N ′

if outputs(N) ⊆ outputs(N ′). This implies that if N ′ can be extended to a sorting
network, then so can N . Thus it suffices to consider only whether N can be extended
to a sorting network with d layers. Actually the notion of subsumption is defined more
generally as π(outputs(N)) ⊆ outputs(N ′) for some channel number permutation π such
that N subsumes N ′ if it can be permuted and untangled into a network N ′′ for that
outputs(N ′′) ⊆ outputs(N ′). Subsumption yields a partial order where N ≤ N ′ if N
subsumes N ′. To reduce the number of two-layer prefixes only minimal representatives
are considered. Unfortunately the problem of deciding whether a network subsumes
another network is GI-complete [51].

BZ showed that we can require the first layer to be maximal, i.e. there must be the
maximal number of comparators bn2 c in the first layer [11]. BZ further reduces the
number of representatives by banning saturated extensions to two layers that. While BZ’s
notion of saturation is syntactic, Codish et al. adopted this term and gave it the semantic
meaning whereby a saturated second layer either contains redundant comparators or
where non-redundant comparators can be added [52]. Codish et al. conjecture that for
saturated two-layer prefixes N and N ′ it holds that outputs(N) 6⊂ outputs(N ′).

Lastly BZ consider another form of sorting network symmetry called reflection. The
idea is that we map every comparator in a standard sorting network by (i, j) 7→ (n− i−
1,n − j − 1). This reflects every comparator across the center channel for uneven n or
an imagined center channel for even n (see Figure 4.1). Since this is the same network
but reflected, it sorts in the reverse order, i.e. it is a generalized reverse-sorting network
where reverse =

(
0 1 ... n−2 n−1

n−1 n−2 ... 1 0

)
. That is because every input vector x is sorted like

the input reverse(x) in the reflected network. Specifically the vector y at any stage in
the network is equal to reverse(y) in the same stage in the reflected network.

Typically we are restricted to standard networks. Thus we observe that mapping every
comparator in a standard network to a max-min comparator by (i, j) 7→ (j, i) yields a
generalized reverse-sorting network too. That is because every input vector x is sorted
like the input negate(x) in the network with max-min comparators. Specifically the
vector y at any stage in the network is equal to negate(y) in the same stage in the
network with max-min comparators. In this case negate is the pointwise negation, e.g.
negate(011011101) = 100100010.

We can compose these mappings to obtain the reflection (i, j) 7→ (n − j − 1,n − i − 1)
that maps standard networks to standard networks. Figure 4.1 shows an example.
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(i , j) 7→
(n-i-1, n-j-1)

(i , j) 7→
(n-i-1, n-j-1)

(i , j) 7→ (j, i) (i , j) 7→ (j, i)
(i , j) 7→(n-j-1, n-i-1)

Figure 4.1: A reflection symmetry.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

|Gn| 100 100 101 101 101 102 102 103 103 104 105 105 106 107 107 108 108 109 1010

|Rn| 1 1 2 4 5 8 12 22 21 48 50 117 94 262 211 609 411 1367 894

Table 4.1: Gn is the set of all possible two-layer prefixes. Rn is the set of two-layer prefixes that
remain after symmetry based pruning [12]. For |Gn| the order of magnitude is listed
instead.

Reflection is a symmetry in the state of the art encoding where we permute the literals
by σ such that

σ(gki,j) = gkn−j−1,n−i−1

σ(uki ) = ukn−i−1

σ(xvkj ) = ¬ reverse(x)vkj

and Boolean consistency is preserved. Reflection is a syntactic symmetry if for every
encoded input x the reversed and negated input negate(reverse(x)) = reverse(negate(x))
is encoded too.

Table 4.1 demonstrates the effectiveness of symmetry based pruning. It shows concrete
numbers of prefixes that remain after pruning by all symmetries, that is permuting and
untangling, saturation and reflection.

It was suggested to extend the fixation to the first three layers [53]. But while the
computation of remaining two-layer prefixes was made performant in [52], the same
approach is not applicable for three-layer prefixes. On the other hand upper bounds do
not require exhaustive consideration of all two-layer prefixes. In this case typically a
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single prefix is handcrafted for up to 5 layers [42, 44].

In the case of size optimality there are no layers. Instead the first k comparators are
fixed [41]. While Frăsinaru and Răschip improved the computation of the remaining
k-comparator prefixes in 2017 [47], it still took them more than five days for n = 9 to
compute the remaining 14-comparator prefixes. According to them moving to n = 10
seems not feasible.

We can reduce the size of the encoding by picking the representative prefixes in a way
that minimizes the total window size over all vectors in Bn after application of the prefix
[12].

4.3.5 Miscellaneous Improvements

There are a number of additional improvements. This includes additional redundant
clauses and variables to facilitate propagation [12]. There is also empirical evidence
that in the case of proving nonexistence, it is beneficial to add enough inputs initially
such that there is only one synthesis iteration [42]. In this case prefix representatives
are picked in a way that minimizes the total window size over all initial input vectors
instead of all vectors in Bn.

Actually symmetry breaking constraints have been added to the state of the art encod-
ing before. Codish et al. analyzed the last layers wrt necessary conditions in a sorting
network. They added symmetry breaking constraints for the last two layers of the net-
work, i.e. they considered two-layer suffix representatives. In particular they introduced
a last layer normal form [12, 54]. In my bachelor’s project we applied symmetry break-
ing constraints too [55]. Our symmetry constraints attempted to disallow redundant
comparators by tracking with auxiliary variables whether for the values on channels i or
j in layer k or l respectively it holds that vki ≤ vlj for all inputs to the network. If this
is the case for some layer k = l, then the comparator between i and j in that layer is
redundant, hence disallowed. Our method did not completely disallow redundant com-
parators, but we conjecture it completely disallows redundant comparators in the first
two layers.
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5 Networks Symmetries

In this section we formalize various symmetries between generalized comparator net-
works. Section 4.3.4 already introduced the reflection symmetry. We consider another
symmetry mentioned in Section 4.3.4 that permutes and untangles the channels. For
that we formalize permutations of channels and twists of comparators in Section 5.1.
Specifically we analyze how a novel twisting symmetry relates to permuting and un-
tangling the channels in Section 5.2. Finally we consider yet another symmetry that
permutes parallel comparators in Section 5.3.

5.1 Permuting and Untangling Channels

We can permute the channels of any standard sorting network to obtain a generalized
π-sorting network, which we can untangle to another standard sorting network. In this
section we formalize the permutation of channels as well as the the standardization
transformation called untangling.

Note that any standard π-sorting network is necessarily a standard sorting network.
Previous work utilized this to prove untangling correct [6]. We call a transformation
of standard comparator networks a correct standard sorting network symmetry if it
preserves the property of being a sorting network.

However we cannot decompose the standard network symmetry that permutes and un-
tangles into two correct network symmetries where one permutes and the other untan-
gles. That is because the intermediate network is a generalized network, i.e. it is possibly
nonstandard. Additionally we consider a SAT encoding of a generalized comparator net-
work in Section 6.4. That is why we do not define P ; O on standard networks but on
generalized networks.

So far we have only defined correctness of symmetries on standard networks. As we
extend this notion of correctness from standard to generalized networks, we discover
different definitions for a generalized sorting network in previous work. One definition
considers any generalized π-sorting network a generalized sorting network [11], another
restricts the definition to actual generalized sorting networks, that is the case π = id
[12], while yet another definition may explicitly distinguish between the two definitions
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by drawing on the auxiliary definition of a π-sorting network [6].

Thus we distinguish between two notions of correctness. We call a generalized network
symmetry correct under permuted outputs if the following holds: A network is π-sorting
for some π iff the related network is π′-sorting for some π′. That is in contrast to strong
correctness that additionally requires π = π′.

We also define a dual tangling transformation. In Section 5.2 we relate it to permut-
ing and untangling. In particular we show that it relates the same standard networks
as permuting and untangling. Moreover we see that it, in contrast to permuting and
untangling, is strongly correct on generalized networks.

5.1.1 Permuting Channels

First we formalize the operation to permute the channels of a network. In particular we
permute the channel numbers that are components of each comparator in the network.
Recall that the n channels in a network are numbered from 0 to n− 1.

A permutation of channel numbers π from Sym([n]) acts on a comparator c = (i, j) with
the action • : Sym([n])× [n]2 → [n]2, that is

π • c = (π(i),π(j)).

Utilizing this action the same permutation π may act on a network N = c0, c1, . . . , cs−1

with the action � : Sym([n])×N s
n → N s

n, that is

π �N = π • c0,π • c1, . . . ,π • cs−1

The first transformation in Figure 5.2 shows an example application of � to permute the
channels of a network.

Note that this definition faithfully represents Sym([n]) as a group of network transforma-
tions and vice versa represents that very group of network transformations that permute
channels as Sym([n]).

Further this induces an equivalence relation P ⊆ N s
n
2. The symmetry P relates any

network N with the network N ′ that is obtained from N by permuting its channels.
The network π � N is a (π ◦ σ)-sorting network if N is a σ-sorting network. Thus a
permutation of the channel number π acting via � is correct under permuted outputs.
It is not strongly connect because it may be that π 6= π ◦ σ.
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Figure 5.1: The top-left picture shows a min-max comparator. The bottom-left picture shows
a tangling of the channels before that comparator. The top-right picture shows an
untangling by swapping the inputs. The bottom-right corner shows an untangling by
swapping the outputs.

5.1.2 Twists

Next we turn to the untangling operation that transforms any generalized network into
a standard network. It iterates through the comparators of the network one by one
in ascending order and untangles each max-min comparator to a min-max comparator
such that finally there is no max-min comparator left, i.e. the network is standard.
The comparators are untangled in order and untangling never affects the prefix network
preceding the comparator.

The intuition behind the tangling is that we can swap the inputs of a comparator by
reconnecting the input wires (see Figure 5.1) while preserving the output of the com-
parator. This works because the comparator does not discriminate between the inputs.
However doing so entangles the channels. Such entanglements are not captured by our
formal model of a comparator network. We resolve this by untangling the channels. This
is possible by either swapping the channel segments before the tangling or by swapping
the channel segments after the tangling. The latter variant turns a comparator from
max-min to min-max or vice versa from min-max to max-min.

We refer to the procedure that transforms a single comparator from max-min to min-max
(or vice versa) as an output twist or a twist of the output channels of some comparator.
We call the other transformation an input twist or a twist of the input channels. This
one cannot standardize comparators but is a useful dual operation nonetheless as we
later see in Section 5.2.

A permutation of the channels of the kth comparator may act on a network N =
c0, c1, . . . , cs−1 such that it permutes the channels of ck in either the prefix network up
to ck−1 or the suffix network starting with ck.

More precisely τ from Sym([2]) is faithfully represented as a network transformation by
the action k : Sym([2])×N s

n → N s
n where k is from [s]. I.e. the action k is parameterized

by k such that it actually gives s different actions. Let ck = (k0, k1) and let πk : [n] → [n]

41



π(1) = 0
π(3) = 1
π(2) = 2
π(0) = 3

0

1

2 3

4

5

0
1
2
3

0

1

2

3

4

5

0
1
2
3

0

1

2

3

4

5

0
1
2
3

0

1 2 3

4

5

0
1
2
3

0

1 2 3

4

5

0
1
2
3

0

1 2 3

4

5

0
1
2
3

0

1 2 3

4

5

0
1
2
3

0

1 2 3

4

5

0
1
2
3

0

1 2 3

4

5

0
1
2
3

0

1 2 3

4

5

( 1 3 2 0
0 1 2 3 ) ⋄ (. . . )

t 1(. . . )

t 2(. . . )

t 4(. . . )

t 5(. . . )

Figure 5.2: A standard network whose channels are permuted and untangled to another standard
network.
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be defined such that it permutes the channels of ck, that is

πk(i) =


kτ(0), i = k0

kτ(1), i = k1

i, otherwise.

Then we define k such that it permutes the output channels of ck in the suffix network
starting with ck.

τ k N = c0, c1, . . . , ck−1 ; πk � (ck, ck+1, . . . , cs−1)

Note that any τ : {0, 1} → {0, 1} from Sym([2]) is either id(x) = x or t(x) = 1 − x, as
those two are the only elements in Sym([2]). The former permutation id maps 0 to 0 and
1 to 1 while the latter permutation t swaps 0 with 1.

Figure 5.2 shows an example where the channels of a standard network are permuted
and then untangled to another standard network by a sequence of output twists.

Likewise we define k : Sym([2])×N s
n → N s

n with k from [s] such that τ from Sym([2])
permutes the input channels of ck in the suffix network ending with ck−1.

τ k N = πk � (c0, c1, . . . , ck−1) ; ck, ck+1, . . . , cs−1

This induces equivalence relations Ok ⊆ N s
n
2 and Ik ⊆ N s

n
2 corresponding to a twist

of the outputs or inputs respectively. The equivalence Ok relates any network N with
the network N ′ that is obtained from N by twisting the output channels of ck. The
equivalence Ik relates networks similarly but it twists the inputs instead of the outputs.

5.1.3 Conception of Sorting Networks and the Novelty of Input Twists

Although input twists cannot standardize comparators, they have actually been defined
previously with the aim to standardize the network [12]. However the previous definition
of the dual standardization transformation was not correct under permuted outputs as
intended.

It was claimed that there is a dual standardization procedure that iterates through the
comparators of the network in the reverse order, i.e. from the last comparator to the first.
For every max-min comparator (i, j) the procedure swaps the channels i and j in the
prefix network ending with that comparator (i, j). Note that in contrast our definition
of input twists swaps i and j in the prefix network ending before that comparator (i, j).
Only with the former definition that comparator (i, j) becomes min-max.

43



0 1 2
0

1

0

1

0
0

1

0

1

1
0

1

0

1

2
0

1

0

1

Figure 5.3: Counterexample to the claim that input twists standardize comparators.

Figure 5.3 shows a counterexample that disproves the correctness of this dual standard-
ization procedure. The left network shows a generalized id-sorting network. Applying
the dual standardization procedure swaps the only max-min comparator in the first
layer. However the standardized network (shown on the right) is not a sorting network
because the input vector 0101 is not sorted.

Aside from that I am not aware of any previous study of input twists. Then again work
before the turn of the millennium sometimes contains networks with unresolved tanglings
[1, 3, 38]. To put this proclaimed novelty of input twists into perspective, we trace how
the conception of the term sorting network changed over the previous 60 years.

Initial work on sorting networks in 1962 was conceived as work about (data-oblivious)
in-place comparison sorts [56]. The concept of a network was missing. It was introduced
later. Batcher used the term sorting network to refer to an electronic circuit with
comparator gates in 1968 [3]. He drew comparator networks as graphs where curved
edges connect comparator gates. Although his pictures suggest there are separate paths
through the network, i.e. channels, these channels are not simply twisted before or
after some comparator but rather they may connect comparators arbitrarily within the
network.

However later diagrams as they appear in Donald Knuth’s compilation on sorting net-
works [1, p. 221] became the standard way to depict comparator networks. In Knuth’s
diagrams the channels are straight parallel lines, unlike previous depictions of compara-
tor networks that sometimes contain bends or kinks of the channels, which may tangle
them. Knuth diagrams ensure that we may use the channel numbers from the diagram in
the formalization, as they reliably match the compared positions in the oblivious sorting
algorithm. For example Billardi distinguishes between the graph topology of a sorting
network and its line representation in the context of merging networks [57].

I believe the term untangling was first introduced in the current decade in 2014 by
Bundala and Závodný in reference to the standardization tranformation detailed by
Parberry in 1987 [6, p. 6-8] or Knuth in 1998 [1, p. 238, 667-668]. Neither of them
gave any intuition for the untangling transformation. But in 2002 Choi and Moon
formally defined a graph representation of a sorting network [13, 58] and claimed that the
symmetry that permutes and untangles standard networks is enabled by an isomorphism
between graph representations [13]. We address this in Section 7.
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5.1.4 Composition of Channel Permutations with Twists

Lemma 7
Twists commute with channel permutations under composition. In detail any permu-
tation π from Sym([n]) acting on a network N in N s

n commutes with any twist τ from
Sym([2]) at the kth comparator ck in N , i.e. for any k from [s] we have that

τ k (π �N) = π � (τ k N)

τ k (π �N) = π � (τ k N) .

Proof. We consider a proof for output twists only as the proof for input twists is anal-
ogous. We show that any permutation of channels π commutes with any twist τ at the
kth comparator under composition when applied to any network N . We consider the
case that τ is the swap t because otherwise if τ is id we know that id commutes with any
transformation. Let ck = (i, j) be the kth comparator in N . Then t twists the channels
i and j if t acts before π or otherwise t twists the channels π(i) and π(j) if it acts after
π. Note that any channel other than i and j in N or π(i) and π(j) in π �N respectively
is not affected by the action of t.

Thus we only check for commutativity with respect to the channels i and j and observe
that in both cases channel i is mapped to π(j) and channel j is mapped to π(i). I.e. let
p : {i, j} → {π(i),π(j)} map i and j like π and let t : {i, j} → {i, j} map them like k

applied before � and let t′ : {π(i),π(j)} → {π(i),π(j)} map them like k applied after �
then

p ◦ t =

({
i 7→ π(i)

j 7→ π(j)

)
◦

({
i 7→ j

j 7→ i

)

=

({
i 7→ π(j)

j 7→ π(i)

)

=

({
π(i) 7→ π(j)

π(j) 7→ π(i)

)
◦

({
i 7→ π(i)

j 7→ π(j)

)
= t′ ◦ p

Definition 8
We define the relations O ⊆ N s

n
2 and I ⊆ N s

n
2. They relate any networks that are

obtained from each other by only twisting inputs or outputs respectively.

O = O0 ;O1 ; · · · ;Os
I = I0 ; I1 ; · · · ; Is
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Proposition 9
The relations O and I are equivalence relations.

Proof. We prove the property only for T since the proof for I works similarly.

We prove that O is an equivalence relation by induction on the size of the network. In
particular we show that O0,...,k := O0 ;O1 ; · · · ;Ok is an equivalence relation for every k
from [s]. In the base case we already know that O0 is an equivalence relation. For the
induction step we prove that the composition of two equivalence relations O0,...,k−1 and
Ok yields an equivalence relation O0,...,k. By Proposition 5 this is the case if and only if
O0,...,k−1 ;Ok = Ok ;O0,...,k−1.

As every Ok is induced by Sym([2]) acting on networks as output twists, it suffices to
show that output twists commute with each other under composition, i.e. for all τ in
Sym([2]) acting on any N in N s

n it holds that τ k (τ l N) = τ l (τ k N). Without loss
of generality we assume that 0 ≤ l ≤ k. Specifically τ acts as a network transformation
that is either the identity or an output channel twist that swaps channels in a suffix
network. As the identity commutes with every transformation, we assume that τ is the
swap t instead. Further we assume that l < k because otherwise if l = k the swaps
would cancel each other such that the twists commute.

Let N = c0, c1, . . . , cs−1. The comparators c0, . . . , cl−1 are modified by neither l nor k.
So let us consider the suffix network starting at cl. The comparator cl is not modified
by k such that l invariably applies the same permutation to the channels in the suffix
network starting with cl. Thus the swap t represented by k as a twist at ck commutes
with its representation by l as a permutation on that suffix network by Lemma 7.

Now we can compose P and O to the relation P ; O. This relates all networks, in
particular all standard networks, that are related by permuting and untangling. Note
that untangling is a sequence of output twists of each comparator c such that c becomes
a min-max comparator.

Proposition 10
The relation P ;O is an equivalence relation.

Proof. By Proposition 5 the composition P ; O is an equivalence relation if and only if
it commutes, i.e. P ;O = O ;P . This follows immediately from Lemma 7 and Definition
8.
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5.2 Input Twists

In this section we consider input twists and contrast them with P ; O. Actually I and
O are exchangable with respect to P ;O.

Proposition 11
Any transformation that is a permutation followed by a sequence of output twists can
alternatively be achieved by some (other) permutation followed by a sequence of input
twists. And vice versa any permutation followed by inputs twists can be realized by
some permutation followed by output twists.

P ;O = P ; I

To prove this we first prove the following lemma.

Lemma 12
Any output twists can be alternatively achieved with only input twists and channel
permutations. Likewise any input twists can be alternatively achieved with only output
twists and channel permutations.

I ⊆ P ;O

O ⊆ P ; I

Proof. We only show that I ⊆ P ; O. The proof for O ⊆ P ; I is analogous. It suffices
to show that Ik ⊆ P ; Ok for all k, because by Lemma 7 the relation P commutes
with any Ok under composition. For any relation in Ik there is an underlying network
transformation that is either the identity or an input channel twist that swaps channels
in a prefix network. In the case of the identity we have Ik ⊆ P ;Ok due to reflexivity of
P ;Ok. In the other case the channels ik and jk of the kth comparator ck = (ik, jk) are
swapped in the prefix network before ck.

Recall that the input or output twists at ck apply the same permutation πik,jk of the
channels in the prefix network or in the suffix network respectively. Here πik,jk is the
permutation in Sym([n]) that swaps the channel numbers ik and jk. We show that
composing the input and output twists at ck yields that very permutation πik,jk acting
as a channel permutation on the whole network. That is for all N in N s

n where the kth
comparator works on the channels ik and jk it holds that

t k (t kN) = πik,jk �N
⇐⇒
t k(..)
t=t−1

t kN = t k (πik,jk �N)
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With the swap t acting via k as an output twist on both sides of the equation and
the fact that t (and its representation) is self inverse, we can rearrange this to prove
that Ik ⊆ P ; Ok. Note that composed equivalence relations apply their underlying
transformations in the order left to right, while composed left actions are applied in the
order right to left.

First we show that k and k commute under composition for the same k to clarify the
analogous proof for O ⊆ P ; I works, i.e.

t k (t kN) = t k (t kN) .

Note that the output twist action k transforms the suffix network starting with ck,
while the input twist action k transforms the complementary prefix network. The
transformation by k is independent of a potential preceding action of k, because k

does not modify ck. In contrast k modifies ck from (ik, jk) to (jk, ik), but this yields
the same transformation for k because twisting the segments of the channels ik and jk
is the same as twisting the segments of the channels jk and ik.

Specifically k applies the channel permutation πik,jk to the suffix network. Since k

invariably applies the same transformation πik,jk = πjk,ik to the complementary prefix
network, we have that t k (t kN) = πik,jk �N .

Now we can prove that P ;O = P ; I as stated by Proposition 11.

Proof. We show that P ; O ⊆ P ; I. The proof for the reverse inclusion is analogous.
By Lemma 12 we have that P ; O ⊆ P ; P ; I. By Proposition 4 composition of P is
idempotent.

Actually we can even replace P by I in P ; O. This is because by Lemma 12 we can
simulate permutations with input and output twists. However this is only possible if
comparators exist at the right places in the network. For example we cannot simulate
any channel permutation other than id with input and output twists if there are no
comparators. However the relations between sorting networks that we care about are
not lost.

Proposition 13
The equivalence relation (O ; I)∗ is finer than P ; O and is like P ; O correct under
permuted outputs. Further (O ; I)∗ is complete under permuted outputs relative to
P ; O. That is if a generalized π-sorting networks and a generalized π′-sorting network
are related by P ;O, then they are also related by (O ; I)∗.
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Proof. Let two networks N and N ′ be from N s
n. First we show that if they are related

by (O ; I)∗, then they are related by P ;O, i.e. that (O ; I)∗ is a finer equivalent relation
than P ;O. We utilize that I ⊆ P ;O from Lemma 12, that composition of P with O is
commutative and that composition of P or O respectively is idempotent.

(O ; I)∗ ⊆
12

(O ; P ;O)∗

=
5,10

P ∗ ;O∗

=
4,9
P ;O

Next we conclude that (O ; I)∗ is correct under permuted outputs because it is a subset
of P ;O, which is correct under permuted outputs.

For the completeness of (O ; I)∗ under permuted outputs relative to P ; O we show the
reverse direction, i.e. that a relation by P ; O implies a relation by (O ; I)∗, under the
premiss that each network has some respective π that makes it π-sorting. Clearly O is
a subset of (O ; I)∗. Thus it suffices to show that P ⊆ (O ; I)∗.

As shown in the proof for Lemma 12 we can replicate the action � of a channel permuta-
tion πik,jk that swaps the channels ik and jk of the kth comparator with the composition
of the twist actions k and k applied to swaps. Note that we cannot replicate the swap
of any two channels this way, only if they share a comparator. Further note that letting
some πi,j act as channel swap, changes which channels share a comparator.

However every channel is connected to any other channel via a sequence of comparators.
That is because N and N ′ are π-sorting, i.e. they are able to channel any input on some
channel to an output position on any channel according to their rank. Thus for any two
channels a and b there is a path through the network that connects the input on a to the
output on b and the comparators on that path connect a and b. The existence of this
connection is independent of swapping the channels of some comparator because O ; I is
correct under permuted outputs.

Even if two channels a and b do not share a comparator, they are at least connected
by a path with a comparator sequence cl, cm, . . . , co, cp such that we can replicate a
swap of a and b in a network N with πa,b �N = t l (t l . . . t p (t p . . . t l (t lN))). We
assume without loss of generality that for each channel d on the path there is exactly one
continuous segment where the path coincides with d. If there are two or more separate
segments where the path coincides with the channel, then we are able to shortcut via
the channel such that there is only one continuous segment.

We have shown in the proof for Lemma 12 that k and k commute under composition
for the same k. Let the action k : Sym([2])×N s

n → N s
n represent a permutation of the

two components of the kth comparator as a network transformation replicated by two
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commuting twists.
τ k N = τ k (τ k N) = τ k (τ k N)

Note that unlike � the action does not always swap the same channels as this depends
on the channels of the kth comparator.

Let the lth comparator work on channels a and w, the mth on channels w and x, the oth
on channels y and z and the pth on channels z and b. We assume that cl, cm, . . . , co, cp =
(a,w), (w,x), . . . , (y, z), (z, b) without loss of generality.

First l swaps the channels a and w. This yields a network where the mth comparator
still works on channel x, but compares it with channel a instead of w. Thus m swaps
the channels a and x. This pattern of repeatedly swapping a continues until we swap
the channels of the pth comparator a and b. Then we swap the channels of the oth
comparator a second time. The first time it is (a, z) and we swap a and z and afterwards
we swap a with b. Hence the oth comparator becomes (z, b) and we swap b and z the
second time. Note that this changes the pth comparator from (b, a) to (z, a). Now we
repeat the pattern of swapping b (instead of a) in the reverse direction such that we swap
b and y next. This changes the oth comparator from (b, z) to (y, z). For any comparator
with a channel number i initially in the uth component it holds that it reappears in the
uth component after applying all twists like we have already seen for i = z in the case of
the oth comparator. Notable exceptions are the channels a and b, which are effectively
swapped.

Recall that left actions are right associative:

t l t l t m t m . . . t o t o t p t p t o t o . . . t m t m t l t l N

= t l t m . . . t o t p t o . . . t m t l N

= t l t m . . . t o πa,b � πa,z � . . . πa,x � πa,w �N
= πb,w � πb,x � . . . πb,z � πa,b � πa,z � . . . πa,x � πa,w �N
= πa,b �N

As it is possible to replicate arbitrary swaps of channel numbers, we can compose them
to replicate any permutation of channel numbers. We conclude that P ⊆ (O ; I)∗.

In fact we can completely replace P ;O with I to obtain a more precise variant of P ;O
that discriminates between π-sorting networks and π′-sorting networks if π 6= π′.

Proposition 14
The equivalence relation I is finer than (O ; I)∗ and strongly correct. Further (O ; I)∗ is
strongly complete relative to (O ; I)∗ (and thus to P ; O by Proposition 13). That is if
any two generalized π-sorting networks are related by (O ; I)∗ (or P ;O), then they are
also related by I.
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Proof. Let two networks N and N ′ be from N s
n. Clearly if they are related by I, then

they are related by (O ; I)∗, i.e. I is a finer equivalent relation than (O ; I)∗.

Since I ⊆ (O ; I)∗ and (O ; I)∗ is correct under permuted outputs, I is too. We show
that I is even strongly correct. Specifically we show that a π-sorting network and a
π′-sorting network with π 6= π′ are never related by I. It suffices to show for all k that
Ik never relates such networks. The identity cannot transform a π-sorting network to a
π′-sorting network with π 6= π′. Note that the input twist action k underlying Ik makes
the channel permutation πik,jl act on the prefix network ending immediately before the
kth comparator ck = (ik, jk) where πik,jl swaps the channels ik and jk.

Consider that we channel an input vector x through the aforementioned prefix network
Pk yielding the output Pk(x). For any such vector x we can obtain the same output if
we apply the permutation πik,jk to both the input and the prefix network and finally to
the output to undo the swap.

Pk(x) = (πik,jk ◦ (πik,jk � Pk) ◦ πik,jk) (x)

Extending this by ck to the network Pk ; ck we can exploit that the input order to ck
does not matter. We can omit the final permutation to undo the swap, i.e. for every
input vector x we have that

Pk ; ck(x) = ((πik,jk � Pk ; ck) ◦ πik,jk) (x).

Assume that extending Pk ;ck with a complementary suffix Sk yields a π-sorting network
Pk ; ck ; Sk, which gives the same output for all permutations of some input x. Then
complementing (πik,jk � Pk) ; ck with the same suffix similarly yields a π-sorting network
(πik,jk � Pk) ; ck ; Sk. In particular it will never yield a π′-sorting network with π 6= π′.

For the strong completeness relative to (O ; I)∗ we show that a relation by (O ; I)∗ implies
a relation by I, under the premiss that both N and N ′ are π-sorting for the same π.

By Proposition 13 a relation by (O ; I)∗ implies a relation by P ; O, because (O ; I)∗

refines P ; O. By Proposition 11 the relation P ; O is equivalent to P ; I. Note that
I is strongly correctand N and N ′ are related by P ; I. Then the underlying channel
permutation must be the identity. Otherwise N and N ′ would not be π-sorting for the
same π. As P represents the identity relation in this case, we can drop it. This proves
that N and N ′ are related by I.

In this section we have seen that I is a suitable replacement for P ; O. We utilize this
later in Section 6.3.1.
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5.3 Permuting Parallel Comparators

We consider the example network N = (0, 1), (2, 3), (0, 2), (1, 3), (0, 1), (2, 3). The first
two comparators (0, 1) and (2, 3) are independent as they work on different channels.
Therefore they can be applied in any order e.g. the networkN ′ = (2, 3), (0, 1), (0, 2), (1, 3), (0, 1), (2, 3)
works the same as N . Next we define how to apply a permutation on the comparator
indices to a network such that the permutation (1, 0, 2, 3, 4, 5) swaps the comparators c0
and c1 in N to obtain N ′.

A permutation of comparator numbers from Sym([s]) acts on a networkN = c0, c1, . . . , cs−1

with the action : Sym([s])×N s
n → N s

n, that is

ρ N = cρ(0), cρ(1), . . . , cρ(s−1).

Note that comparators are only permuted, but not deleted nor added nor made to work
on different channels nor changed from min-max to max-min or reverse. Thus the number
of min-max (or max-min respectively) comparators between two given channels remains
unchanged. Yet an arbitrary permutation of the comparators may yield a different
network as shown by ρba in Figure 5.4.

Now we restrict ρ to reorder parallel comparators only, i.e. ρ preserves the order of
sequential comparators. For that we first consider several partial orders on the com-
parators.

The set of shared channels of two comparators ck = (k0, k1) and cl = (l0, l1) in a network
N = c0, . . . , cs−1 is

ck u cl = {k0, k1} ∩ {l0, l1}.

Further we use <i or ≤i to denote that a comparator precedes another on channel i,
that is

ck <i cl ⇐⇒ i ∈ ck u cl and k < l

ck ≤i cl ⇐⇒ i ∈ ck u cl and k ≤ l.

We omit i to indicate that a comparator precedes another on some channel, that is

ck < cl ⇐⇒ ck u cl 6= ∅ and k < l

ck ≤ cl ⇐⇒ ck u cl 6= ∅ and k ≤ l.

Likewise we write ≺i to indicate that a comparator immediately precedes another on a
channel i, that is

ck ≺i cl ⇐⇒ ck <i cl and @m ∈ [s]. ck <i cm <i cl
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2 0 1
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Figure 5.4: Counterexample that the permutations underlying R are not closed under composition.

Finally ≺ denotes that a comparator immediately precedes another on some channel i.
This is even the case if the comparators share both channels and there is an intermediate
comparator between them on the other channel.

ck ≺ cl ⇐⇒ ∃ i ∈ [n]. ck ≺i cl.

Now we define a relation R ⊆ N s
n
2 between networks. Two networks N = c0, c1, . . . , cs−1

and N ′ = c′0, c
′
1, . . . , c

′
s−1 are related by R if and only if N ′ is obtained from N by

permuting its comparators by some permutation ρ from Sym([s]) where ρ satisfies the
following condition for all k and l in [s]: Comparator cρ(k) precedes cρ(l) in N if and
only if c′k precedes c′l in N ′. This ensures that ρ only changes the order of parallel
comparators.

N R N ′ ⇐⇒ ∃ ρ ∈ Sym([s]). N ′ = ρ N and
(
∀ k, l ∈ [s]. cρ(k) < cρ(l) ⇐⇒ c′k < c′l

)
Note that all the comparator permutations ρ underlying R do not form a group under
composition because they are not closed under composition. Figure 5.4 shows two per-
mutations of comparator numbers ρa and ρb that both reorder parallel comparators in
the left network to yield the middle networks. However the composition ρba = ρb ◦ ρa
reorders non-parallel comparators because in the left network N = c0, . . . , c2 the com-
parator c0 precedes c2 but in the right network Nρab = cρab0 , . . . , cρab2 the comparator
cρabρab(0)

= cρab2 succeeds cρabρab(2)
= cρab1 .

Nonetheless R is an equivalence relation.

Proposition 15
The relation R is an equivalence relation.

Proof. We show that R is reflexive, symmetric and transitive.
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We know that R is reflexive because id is in Sym([s]) and N = id N for all N in N s
n.

Clearly ≺a for all channels a is preserved.

We know that R is symmetric because for every relation (N ,N ′) of two networks in R
by some permutation ρ in Sym([s]) there is an inverse permutation ρ−1 in Sym([s]) and
≺a continues to be preserved for all channels a such that (N ′,N) is also in R.

We know that R is transitive because for any two relations (N ,N ′) and (N ,N ′′) in R
by two permutations ρ and ρ′ in Sym([s]) there is also a relation (N ,N ′′) in R given by
the composition of the permutations ρ′ ◦ ρ. Recall that Sym([s]) is a group and as such
it is closed under composition. Additionally composition of the permutations retains
preservation of ≺a for all channels a.

Note that R is transitive, even though the permutations ρ underlying R do not form a
group under composition. That is because in the former case a permutation of compara-
tors is considered wrt a single network (the one on the right next to R) respectively,
while for the latter case we consider not a single but all networks.

By Proposition 1.2 there is a group of network transformations. However there seems
to be no action that intuitively represents this group as a group of comparator number
permutations. In Section 7.1.2 we prove Lemma 27, which suggests that this group is
better understood as the automorphism group of the underlying graph of a network.

Actually we can exchange < in the definition of R with <i, ≺ or ≺i respectively.

Proposition 16
Let the permutation of comparators ρ from Sym([s]) on a network N = c0, c1, . . . , cs−1

in N s
n yield the network ρ N = cρ0, c

ρ
1, . . . , c

ρ
s−1. Then the following are equivalent

1. For all comparators numbers k and l in [s] the comparator cρ(k) precedes cρ(l) on
some channel iff cρk precedes cρl on some channel.

∀ k, l ∈ [s]. cρ(k) < cρ(l) ⇐⇒ cρk < cρl

2. For all comparators numbers k and l in [s] and all channel numbers i in [n] the
comparator cρ(k) precedes cρ(l) on channel number i iff cρk precedes cρl on the channel
with the same number i.

∀ k, l ∈ [s] i ∈ [n]. cρ(k) <i cρ(l) ⇐⇒ cρk <i c
ρ
l

3. For all comparators numbers k and l in [s] the comparator cρ(k) immediately pre-
cedes cρ(l) on some channel iff cρk immediately precedes cρl on some channel.

∀ k, l ∈ [s]. cρ(k) ≺ cρ(l) ⇐⇒ cρk ≺ cρl
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4. For all comparators numbers k and l in [s] and all channel numbers i in [n] the
comparator cρ(k) immediately precedes cρ(l) on channel number i iff cρk immediately
precedes cρl on the channel with the same number i.

∀ k, l ∈ [s] i ∈ [n]. cρ(k) ≺i cρ(l) ⇐⇒ cρk ≺i c
ρ
l

Proof. We have that 2 =⇒ 1 and 4 =⇒ 3 because if there is precedence on some
channel, let it be channel number i, then by the premiss 2 or 4 respectively there is
precedence between the corresponding comparators on the same channel i in the other
network, i.e. there is precedence between the corresponding comparators on some channel
in the other network.

Now we show the reverse direction that 1 =⇒ 2 or 3 =⇒ 4. If there is precedence
on channel i we know by the premiss 1 or 3 respectively that there is precedence on
some channel between the corresponding comparators in the other network. To show
that 2 or 4 respectively is implied, we have to show that the precedence in the other
network also occurs on channel number i (according to the premiss it may occur on some
other channel instead). This is the case because ρ retains the channels of corresponding
comparators, i.e. cρ(m) = cρm for all m in [s]. Hence it holds that cρ(k) u cρ(l) = cρk u c

ρ
l

and thus i ∈ cρ(k) u cρ(l) iff i ∈ cρk u c
ρ
l . This shows that 2 ⇐⇒ 1 and 4 ⇐⇒ 3.

Finally we show that 2 ⇐⇒ 4. For 2 =⇒ 4 if there is immediate precedence on channel
i in one network, w.l.o.g. we assume that network is N , that is cρ(k) ≺i cρ(l), then we
show the corresponding immediate precedence on channel i in the other network, that
is cρk ≺i c

ρ
l . By the premiss 2 we only know that cρk <i c

ρ
l . However this precedence

is actually immediate because otherwise there is a channel number m in [s] such that
cρk <i c

ρ
m <i c

ρ
l . But by the premiss 2 this would yield cρ(k) <i cρ(m) <i cρ(l), which

contradicts cρ(k) ≺i cρ(l).

For 4 ⇐= 2 if there is a precedence on channel i in one network, w.l.o.g. we assume
that network is N , that is cρ(k) <i cρ(l), then we show the corresponding precedence on
channel i in the other network, that is cρk <i c

ρ
l . Note that there is a chain of immediate

predecessors cρ(k) ≺i cρ(m) ≺i . . . ≺i cρ(l) in N . By the premiss 4 there a chain of
immediate predecessors in the other network, i.e. cρ(k) ≺i cρ(m) ≺i . . . ≺i cρ(l) and thus
we have cρ(k) <i cρ(l).

Lemma 17
Permuting the channels in a network commutes with permuting the comparators.

∀N ∈ N s
n π ∈ Sym([n]) ρ ∈ Sym([s]) : π � ρ N = ρ π �N

Proof. Recall that a permutation π of the channel numbers π acts on comparators with
the action •.
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We consider any network N = c0, c1, . . . , cs−1 from N s
n. A channel permutation π from

Sym([s]) acting on a network N yields the network π � N = cπ0 , . . . , c
π
s−1 such that

cπk = π • (ck) for any k in [s]. Likewise a comparator permutation ρ from Sym([s]) yields
the networks ρ N = cρ0, . . . , c

ρ
s−1 and ρ (π �N) = cπρ0 , . . . , cπρs−1 respectively such that

cρk = cρ(k) and cπρk = cπρ(k) for any k in [s].

The comparator at position ρ(k) in π �N is equal to the kth comparator in π � (ρ N)
and ρ (π �N) respectively because cρk = cρ(k) and π • (ck) = cπk and cπρ(k) = cπρk for any
k in [s] respectively. In particular ρ maps any k in [s] such that ρ(k) is in [s]. Thus we
have that π • (cρ(k)) = cπρ(k).

π • (cρk) = π • (cρ(k)) = cπρ(k) = cπρk

The commutativity of the actions � and under composition follows.

π � (ρ N) = π � (cρ0, c
ρ
1, . . . , c

ρ
s−1)

= π • (cρ0),π • (cρ1), . . . ,π • (cρs−1)

= π • (cρ(0)),π • (cρ(1)), . . . ,π • (cρ(s−1))

= cπρ(0), c
π
ρ(1), . . . , c

π
ρ(s−1)

= ρ (cπ0 , c
π
1 , . . . , c

π
s−1)

= ρ (π �N)

Composing R with P ; O or (O ; I)∗ or P or O or I respectively yields an equivalence
relation. This is captured by the following Proposition.

Proposition 18
The composition of R with any equivalence relation T ⊆ P ; O yields an equivalence
relation R ; T .

Proof. This follows from Lemma 17 and Proposition 5.
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6 Breaking Symmetries

In this section we consider attempts to break the symmetry R ; P ; O in the state of
the art encoding. First we consider how to break any symmetry by decomposition in
Section 6.1. Then we break the permutation of parallel comparators R in Section 6.2. In
particular we distinguish between different representations of comparator networks that
may or may not model the order within layers or layers at all. Thereafter in Section 6.3
we turn to the other component P ;O, that is permuting channels and twisting outputs.
Specicifically we first identify the problem of breaking P ;O by decomposition. In Section
6.3.1 we apply our insights on input twists from Section 5.2 to resolve the problem for
certain cases. In particular we show how to break P ;O in such cases. We show that this
is compatible with the encoded model of comparator networks in Section 6.3.2. Finally
we give an alternative encoding of comparator networks that resolves the problem for
all cases and discuss its practicality in Section 6.4.

6.1 Breaking Symmetries by Decomposition

A way to break the composition of two equivalence relations T ; U ⊆ S2 is to break its
decomposition T and U in a compatible way.

Let [x]T be the equivalence class that contains all complete assignments y that are T -
symmetric to the complete assignment x in S, that is x T y. Let φ be a complete and
consistent symmetry breaking constraint for T such that exactly one representative in
each equivalence class satisfies φ. Then reprTφ(x) denotes that representative assignment
in [x]T .

Let φ be a complete symmetry breaking constraint for T as mentioned and let ψ be a
complete symmetry breaking constraint for S. Further let S/(T ; U) be the set of all
equivalence classes on S under the equivalence T ; U . Then φ and ψ are compatible if
there is exactly one x in each equivalence class C from S/(T ; U) that is the representative
in both its equivalence class [x]T and [x]U respectively, that is

∀C ∈ S/(T ; U) ∃!x ∈ C. x = reprTφ(x) = reprUψ (x).

Note that any complete assignment y satisfies φ iff y = reprTφ(y). And y satisfies ψ iff
y = reprUψ (y). Hence y satisfies φ ∧ ψ iff y = reprTφ(y) and y = reprUψ (y). Thus this
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compatibility condition corresponds to φ∧ψ being a consistent and complete symmetry
breaking constraint for T ; U where that one assignment x is reprT ;Uφ∧ψ(x) of each equiv-
alence class C under T ; U respectively. If there is no such assignment x, then φ ∧ ψ is
an inconsistent symmetry breaking constraint for T ; U . If there are more than one of
such assignments, then it is a consistent but incomplete symmetry breaking constraint
for T ; U .

In the rest of this thesis whenever we break a composition T ;U by breaking its decompo-
sition with φ and ψ we enforce the following condition that is sufficient for compatibility:

Proposition 19
The symmetry breaking constraints φ and ψ are compatible if the mappings to the
representative under the respective constraint commute under composition, i.e.

reprTφ ◦ reprUψ = reprUψ ◦ reprTφ .

Proof. Let the mappings commute under composition. We show that then φ and ψ
are compatible. First we show there is at least one assignment in each equivalence class
C under T ; U that satisfies φ ∧ ψ. In a second step we show that there is at most one
such assignment in each class C.

Mapping every assignment in C by reprTφ ◦ reprUψ gives us some assignment x respectively.
By definition x is the one representative of its equivalence under T that satisfies φ.
Mapping every assignment by reprUψ ◦ reprTφ instead gives us the same assignment x
respectively because reprTφ and reprUψ commute under composition. Thus x likewise
satisfies ψ. Note that the mappings preserve the equivalence class of the assignment.
Since each equivalence class C contains at least one element, mapping every element in
C yields at least one such assignment x that satisfies φ ∧ ψ.

For the sake of contradiction we assume there are two different assignments x and y in the
same equivalence class under (T ; U) with x = reprTφ(x) = reprUψ (x) and y = reprTφ(y) = reprUψ (y)
such that φ and ψ are incompatible. By definition of T ; U there is a z such that x T z
and z U y. We have reprTφ(z) = x because x T z and x = reprTφ(x). Analogously we
have reprUψ (z) = y. Utilizing that reprTφ and reprUψ commute under composition and
both map x to x and y to y we arrive at the contradiction

x = reprTφ(z)

= reprUψ (repr
T
φ(z))

= reprTφ(repr
U
ψ (z))

= reprUψ (z)

= y.
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There is another condition that is sufficient for compatibility: Breaking the symmetry
T with φ preserves the symmetry component U .

∀x, y ∈ S. x (T ; U) y =⇒ reprTφ(x) U reprTφ(y)

Note that x (T ; U) y does not imply x U y. Instead it means that U is a component of
the relation. This component is preserved.

Consider any equivalence class C from S/(T ; U). We assume that there are two different
complete assignments x and y in C that satisfy φ. We have x (T ; U) y since x and y
are both in C. If breaking T with φ preserves U , then x U y because x and y being
satisfiable corresponds to them being the representative of their equivalence class. In
particular all assignments in C are in the same equivalence class C ′ under U . Further
note that C ′ is a subset of C. For that we recall that U is finer than T ;U and thus every
equivalence class under U is fully contained in one class in T ;U , which in this case is C.
Hence all assignments in C satisfying φ make up the equivalence class C ′. We observe
that adding ψ to the constraints breaks C ′ in a way that is compatible with φ.

Likewise we can alternative ensure that breaking U with ψ preserves the symmetry
component T , i.e.

∀x, y ∈ S. x (T ; U) y =⇒ reprUψ (x) T reprUψ (y).

Note that both breaking T preserving U and breaking U preserving T are sufficient
conditions for compatibility respectively but we have shown neither to be a necessary
condition.

Further note that if φ and/or ψ are partial symmetry breaking constraints for T and/or
U respectively, then the sufficient conditions for compatibility at least ensure consistency.

6.2 Breaking the Permutation of Parallel Comparators

In this section we tackle breaking the composition R ;P ;O by breaking R in a way that
is compatible with the attempt to break P ;O in the next section.

First we observe that the state of the art encoding differs from the model of sorting
networks used in the definition of R ; P ;O insofar as it encodes sequences of unordered
layers instead of sequences of comparators. Recall that a sequence of ordered layers cor-
responds to exactly one sequence of comparators and exactly one sequence of unordered
layers. However there may be different partitions of the same comparator sequence into
layers.

Instead of the set of comparator gate sequences gN s
n with n channels, size s we now

consider a different set of networks, that is olN s
n the set of sequences of ordered layers
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with the same dimensions n and s. There is a symmetry K ⊂ olN s
n
2 by that two

sequences of ordered layers are symmetric if they correspond to the same sequence of
ordered comparator gates in gN s

n.

Similarly we can consider the set of sequences of unordered layers ulN s
n. Then there is

a symmetry L ⊂ olN s
n
2 by that two sequences of ordered layers are symmetric if they

correspond to the same sequence of unordered layers in ulN s
n.

Let g : olN s
n → gN s

n and ul : olN s
n → ulN s

n give that one corresponding sequence in gN s
n

or ulN s
n respectively, then we have defined that

N K N ′ ⇐⇒ g(N) = g(N ′)

N L N ′ ⇐⇒ ul(N) = ul(N ′).

We can represent R (or P , O and I respectively) as a relation R′ on olN s
n the same way,

i.e.

N R′ N ′ ⇐⇒ g(N) R g(N ′)

N P ′ N ′ ⇐⇒ g(N) P g(N ′)

N O′ N ′ ⇐⇒ g(N) O g(N ′)

N I ′ N ′ ⇐⇒ g(N) I g(N ′)

N O′
k N

′ ⇐⇒ g(N) Ok g(N
′)

N I ′k N
′ ⇐⇒ g(N) Ik g(N

′).

Note that K, L and R′ are closely related. The symmetry K relates different partitions
of the same comparator sequence into layers, i.e. K relates networks where the same
comparator c may be put into either one or the other layer because all comparators in
both candidate layers are independent/parallel to c. Section 2.1 gives an example of
this case in Figure 2.1. The symmetry L relates networks where the comparators are
reordered within each layer. Obviously comparators within the same layer are parallel.
So while K relates different partitions into layers and L admits permutations within
parallel subsequences, the symmetry R′ relates different partitions of two sequences
where the sequences are equivalent modulo permutations of parallel comparators. Thus
we have that R′ = K ; L∗. We only need to break K because by our choice to encode
networks as sequences of unordered layers we break L with repr = ul.

We show below that the mapping to the our chosen representative of K commutes with
L to prove that our break of K is compatible with this symmetry break by remodeling
of L. Though this commutativity is actually a pseudo-commutativity because there are
two variants of the mapping to the representative of the equivalence class under K, i.e.
one variant on olN s

n and one variant on ulN s
n.

More precisely we break the symmetry K ′ on ulN s
n. Let the fiber of a network N from

ulN s
n under ul be the set of all networks M in olN s

n for that N = ul(M). We denote that
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fiber by ul−1(N). The symmetry K relates different partitions of the same comparator
sequence into layers. Let K relate the networks N and N ′. Mapping such networks by
ul forgets the order within the layers but retains the partition into layers such that the
following two definitions of K ′ are equivalent:

N K ′ N ′ ⇐⇒ ∃M ∈ ul−1(N) M ′ ∈ ul−1(N ′) : M K M ′

⇐⇒ ∀M ∈ ul−1(N) M ′ ∈ ul−1(N ′) : M (K ; L)M ′.

The second definition shows that breaking L by remodeling preserves the component K
in the composition K ; L as K ′.

We can extend this by P ′ ;O′ such that any symmetry break (that includes remodeling
via ul) of L ; P ′ ;O′ preserves the component K in the composition K ;L ; P ′ ;O′ as K ′.
To make this explicit let repr : olN s

n → ulN s
n give us the representative network of each

equivalence class under L ; P ′ ; O′. I.e. for this extension ul is generalized to repr. As
both P ′ and O′ retain the partition into layers like ul does, breaking them preserves the
component K:

N K ′ N ′ ⇐⇒ ∀M ∈ repr−1(N) M ′ ∈ repr−1(N ′) : M (K ; L ; P ′ ;O′)M ′.

Because K ′ like K is a symmetry between different partitions of the same comparator
sequence into layers, we can break K ′ by considering only one representative partition.
For that we add the following symmetry breaking constraint∧

k∈[d−1]

∧
i,j∈[n]
i<j

uki ∨ ukj ∨ ¬ck+1
i,j .

Say we consider setting ck+1
i,j to true. Then at least one of the channels i and j in the

previous layer k has to be used by a comparator too. Otherwise we violate the constraint.
If neither i or j is used in layer k we have to assign false to ck+1

i,j , but then we assign
cki,j to true instead. Thus the constraint moves every comparator to the earliest layer
possible.

There is a similar constraint that moves every comparator to the latest layer possible.∧
k∈[d−1]

∧
i,j∈[n]
i<j

uk+1
i ∨ uk+1

j ∨ ¬cki,j .

But its interaction with constraints that we add in the next section is more complicated.
Thus we decide on moving every comparator to the earliest layer possible.

Finally we observe that moving every comparator to the earliest or latest layer repectively
commutes with losing the order within each layer. This is the pseudo-commutitativity
of the mapping to the representative of the equivalence class under K with ul.

In the next section we attempt to break P ′ ;O′ in a way that is compatible with ul.
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6.3 Breaking the Permutation and Untangling of Channels

In this section we attempt to break P ; O. First we show two similar statements for
networks that are a sequence of comparators.

1. Ok never relates two standard sorting networks

2. P never relates two standard sorting networks

Let N = c0, . . . , cs−1 be a standard network. For Statement 1 twisting the outputs of any
comparator ck in N yields the network t kN . We observe that t kN is nonstandard,
because the output twist action k changes the min-max comparator ck to a max-min
comparator.

Additionally for Statement 2 let N be sorting. In a standard sorting network there is
at least one comparator (i, i + 1) in the network for every i in [n − 1], otherwise the
input 0i101n−i−2 is not sorted. Permuting the channels of N by any permutation π in
Sym([n]) yields a network π �N . We observe that unless π is the identity, the network
π �N is nonstandard, because there is at least one pair of adjacent channels i and i+ 1
with π(i) > π(i+1) such that the min-max comparator (i, i+1) changes to the max-min
comparator (π(i),π(i+ 1)).

We conclude that the restriction to standard networks completely breaks P and O re-
spectively. This is because each of the components P , O0, O1, . . . relates every standard
network to an irrepresentable nonstandard network. However since there are many stan-
dard networks related by P ; O, restricting the models to standard networks breaks P
and O in an incompatible way. We know that the restriction is a consistent symmetry
break because every generalized π-sorting network can be untangled to a standard sort-
ing network. The problem is that the restriction to standard sorting networks does not
completely break the symmetry P ;O.

This result equally holds for networks as sequences of comparators, ordered layers or
unordered layers. In the previous section we have accounted for the difference between
sequences of comparator and sequences of ordered layers by breaking K and showing
that it preserves P ′ ;O′. For the following attempt at breaking the variant of P ′ ;O′ on
ulN s

n we pay attention to compatibility with ul in Section 6.3.2.

6.3.1 Breaking Input Twists

We turn to I. Recall the Propositions 13 and 14 state that I is finer than P ;O and while
both are correct under permuted outputs only I is also strongly correct. In particular
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they state that I is strongly complete relative to P ; O. That is if any two generalized
π-sorting networks are related by P ; O, then they are also related by I. Unlike I the
symmetry P ; O relates π- and π′-sorting networks where π 6= π′. While I is finer, it is
a suitable stand-in for P ; O on the domain restricted to standard networks where any
generalized sorting network is necessarily an id-sorting network.

Can we hope to break I by breaking each Ik for all k in a standard network encoding?
We want to add a symmetry breaking constraint that is only satisfied by exactly one
of the (up to) two assignments that model the symmetric networks where the input
channels of the kth comparator are twisted. The idea is that we only add the symmetry
breaking constraint if Ik relates two standard networks.

Proposition 20
Twisting the inputs of the kth comparator ck = (i, j) in a standard network N yields the
generalized network t kN . The network t kN is nonstandard iff there is a comparator
cl in N with l < k that compares either i or j with some channel h where i ≤ h ≤ j.

Proof. We show that if there is no such comparator cl, then t kN is standard. And we
show that if there is such a comparator cl, then t kN is nonstandard.

It suffices to consider every comparator c in N , determine whether it qualifies as cl and
show that ζk changes it to a max-min comparator or that it remains min-max accordingly.

If c does not precede ck,
then c does not qualify as cl. It is also not in the prefix network modified by the
action k and remains min-max.

If otherwise c precedes, but does not share a channel with ck,
then c does not qualify as cl. It is unaffected by the action k and remains min-max.

If otherwise c precedes and shares exactly one channel with ck,
then we assume that channel is i without loss of generality. It qualifies as cl and is
either of the form (h, i) with h < i or (i,h) with i < h. Without loss of generality
we assume the former. The twist action k changes c to the max-min comparator
(i,h).

If otherwise c precedes and shares both channels with ck, that is c = (i, j),
then c qualifies as cl and the action k changes it to the max-min comparator (j, i).

This proposition applies for the variant of P ; O on ulN s
n if we take k and l to denote
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the layer number instead of the comparator number, i.e. k and l denote a position in the
sequence of unordered layers instead of a position in the sequence of comparators.

In general we do not statically know for each comparator in any layer k whether there
is a comparator in layer l with l < k that compares either i or j with some channel h
where i ≤ h ≤ j. We do know statically that this is not the case if layer k is the first
layer, but input twists of comparators in the first layer yield the same network. Thus
we add symmetry breaking constraint clauses for every comparator in every layer k with
an additional premiss part. The premiss part ensures the symmetry breaking constraint
applies only under the premiss of nonexistence of such a comparator in layer l. The
premiss part of the clause is satisfied if the twist yields a nonstandard network. Then
the symmetry breaking constraint part of the clause does not apply because the clause
is already satisfied by a literal in the premiss part. This way we can dynamically break
the symmetry depending on comparator placements in each layer l before layer k.

To encode the premiss part we introduce another type of variable toBetweenBeforeki,j
that indicates that at least one of the following two conditions is satisfied: Either there
is a comparator glh,j for some channel h with i ≤ h < j in some layer l with l < k. Or
analogously there is a comparator gli,h for some channel h with i < h ≤ j in some layer
l with l < k.

The naming of the variable draws on variable names from Ehlers and Müller [42, 12]. As
mentioned in Section 4.3.5 the state of the art approach introduces additional redundant
clauses and variables to facilitate propagation. In particular Ehlers and Müller introduce
the variables oneDownki,j and oneUpki,j that indicate that there is a comparator gkh,j for
some i ≤ h < j or gki,h for some i < h ≤ j respectively.

We ensure that toBetweenBeforeki,j is set appropriately by induction on the layer. For the
induction basis, i.e. k = 0, we already observed that there is no comparator gate before
layer k because k is the first layer. For the induction step we consider toBetweenBeforek+1

i,j .
There is a gate before layer k + 1 comparing the value of either channel i or j to the
value on channel h with i ≤ h ≤ j if there is such a comparator either before layer k
or in layer k. The former case is indicated by toBetweenBeforeki,j . The latter case is
indicated by oneDownki,j for a comparator on j and likewise it is indicated by oneUpki,j
for a comparator on i. If a comparator compares i with j both oneDownki,j and oneUpki,j
are set. Thus it suffices to ensure that toBetweenBeforek+1

i,j is assigned the maximum of
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toBetweenBeforeki,j , oneUpki,j and oneDownki,j .∧
i,j∈[n]
i<j

¬ toBetweenBefore0i,j

∧
k∈[d−1]

∧
i,j∈[n]
i<j

max(toBetweenBeforek+1
i,j , {toBetweenBeforeki,j , oneDownki,j , oneUp

k
i,j})

Now the premiss part added to a clause that breaks an input twist of a standard com-
parator between the channels i and j in layer k is ¬gki,j ∨ toBetweenBeforeki,j . Note that
the clause is satisfied by the premiss part if there is no such comparator gki,j or if the
input twist of gki,j yields a nonstandard network. In both cases the symmetry breaking
constraint that makes up the rest of the clause does not affect the set of solutions.

Now we derive symmetry breaking constraints for the variant of I ′ on ulN s
n by considering

I ′. Say we break I ′x, that is a twist of the comparator (i, j) in layer k where that
comparator is the xth comparator in the network. We break the symmetry I ′x by adding
a constraint that is satisfied by exactly one of the symmetric networks. In search for
such a constraint we recognize that at least one of the channels i and j is used in the
previous layer k − 1 because every comparator is moved to the earliest layer possible in
Section 6.2. If either channel j or channel i is not used in layer k − 1 we can twist the
input channels such that the other channel is not used. Thus we add a constraint such
that the unused channel is always channel j.∧

k∈[d]

∧
i,j∈[n]
i<j

¬gki,j ∨ toBetweenBeforeki,j ∨uj

It remains to break the case where i and j are both used in layer k−1. First we consider a
naive and ultimately inconsistent symmetry breaking constraint to highlight a difficulty.
The twist of (i, j) in layer k yields a nonstandard network if i is compared with j in the
layer k − 1. As this case is irrelevant, we assume that two different comparators use i
and j in layer k− 1. Let i be compared with o in layer k− 1 and let j be compared with
p in layer k − 1. We observe that o 6= p because all comparisons in the same layer are
independent. Now the idea is to twist the input channels i and j such that o < p.

For an example we consider the four symmetric networks in Figure 6.1. Specifically the
networks are either symmetric by twisting the inputs of comparator x or y. Related
networks are connected by an arrow labeled with the symmetry, i.e. I ′x or I ′y such that
the arrow points to the representative network that satisfies o < p. The Table 6.1 shows
the concrete values for i, j, o and p that determine the representative of each equivalence
class. There are four equivalence classes that contain the two top, right, bottom and left
networks respectively.
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In fact Figure 6.1 shows a counterexample. We see that breaking I ′x does not preserve the
component I ′y in the composition I ′x ;I ′y and vice versa. Not only do we fail to satisfy the
sufficient conditions for a consistent and complete symmetry break, Figure 6.1 actually
shows that this approach is inconsistent. This is because no network in the depicted
equivalence class under I ′x ; I ′y is the representative in both its equivalence classes under
I ′x and I ′y respectively.

We fix this by enforcing at least one of the conditions that are sufficient for compatibility.
For example to give an intuition we may try to make the symmetry breaks (the arrows
in Figure 6.1) commute. For that we have to come up with a different constraint such
that for all x and y in [s] we have

reprI
′
x ◦ reprI′y = reprI

′
x ◦ reprI′y .

Considering our example I ′x is broken for each equivalence class under I ′x. However
breaking I ′x does not preserve I ′y, i.e. the representatives of each equivalence class under
I ′x are in different equivalence classes under I ′y that is being broken. The problem is
that the criteria for breaking the symmetry I ′x, e.g. o and p may vary depending on
the equivalence class under I ′x. The networks in different equivalence classes under I ′x
differ in the way the channels of comparator y are used in the layer below, that is layer
k − 1. In our example one of those channels is connected to either i or j such that it is
considered for the symmetry break of I ′x as either o or p. Concretely for the top networks
in the same equivalence class under I ′x the variables o and p have the values 3 and 4,
whereas for the bottom networks in the complementary equivalence class the value 3 is
replaced by 5 due to the input twist of comparator y. In the first case 4 is the greater
value but in the second case 4 is the smaller value such that the representative of the
top networks connects 4 to the first component of x, i.e. channel 2, in layer k−1 and the
representative of the bottom networks connects 4 to the second component of x, that
is channel 0. Since networks in different equivalence classes under I ′y differ in how the
channels of comparator x are connected, the representatives of the equivalence classes
under I ′x are in different equivalence classes under I ′y.

We fix this by choosing different symmetry breaking criteria that are independent from
other twists in the same layer k. First we realize that if o and p are both not used in
k, then they are independent from other twists in k. Otherwise o may be compared
with some channel q in layer k and p may be compared with some channel r in layer
k respectively. Instead of twisting such that o < p we may then substitute min(q, o)
for o and/or min(p, r) for p. For example if both i and j are used, we twist such that
min(o, q) < min(p, r). Thus our symmetry breaking criteria depend on the comparators
in layer k but not on the comparator placements in layer k−1 that are affected by input
twists of comparators in k. Figure 6.2 and Table 6.2 show the fixed example.

Note that if y is in an earlier layer than x, then the representatives of the equivalence
classes under I ′x are always in the same equivalence class under I ′y. That is because
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Figure 6.1: Four networks symmetric under I ′x ; I ′y .

i j o p repr

top left 0 2 3 4 X
top right 0 2 4 3

bottom left 0 2 5 4
bottom right 0 2 4 5 X

top left 3 5 0 1 X
bottom left 3 5 1 0

top right 3 5 2 1
bottom right 3 5 1 2 X

Table 6.1: The representatives of
each equivalence class
from Figure 6.1.

breaking symmetric twists of x does not depend on how y is broken.

To come up with a terse encoding we consider the positions at channel o and p in layer k
respectively. In particular we consider the cases where o > p. We introduce yet another
auxiliary variable viaWrongTwistkp,o that is guaranteed to be set whenever there are
some channels i and j different from o and r with i < j such that i and j are compared
in layer k and there are two gates in layer k − 1 that compare i with o and j with p
respectively. The variable name hints at the fact that the positions o and p in layer k
are connected via the three comparator gates in the layers k and k − 1. In particular
the connection between o and p via gki,j is wrong in the sense that it broken by our naive
symmetry breaking constraint because o > p. In contrast there is a right twist with
o and p swapped and the inputs of gki,j twisted such that the gates in layer k − 1 still
compare i with o and j with p.

The following constraint ensures that viaWrongTwistkp,o is set if o and p are connected
via some gki,j with its inputs twisted in the wrong way.∧

k∈[d]
k>0

∧
o,p∈[n]
o ̸=p

∧
i,j∈[n]\{o,p}

i<j

¬gki,j ∨ ¬ standGatek−1
i,o ∨¬ standGatek−1

j,p

∨ toBetweenBeforeki,j ∨ viaWrongTwistkp,o

Note that this constraint does not imply the reverse, i.e. that viaWrongTwistkp,o is set
only if p and o are connected via some gki,j with its inputs twisted in the wrong way.
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Further note that we require o 6= p instead of o > p such that for every viaWrongTwistkp,o
that is disallowed in the naive encoding, there is viaWrongTwistko,p, which is symmetric
under I ′. Thus we can selectively break one or the other case.

Now we again consider that o and p are not used in k. We disallow wrong twists by
adding a symmetry constraint that is not satisfied in this case.∧

k∈[d]
k>0

∧
o,p∈[n]
o>p

¬ viaWrongTwistkp,o ∨uko ∨ ukp

Similarly we disallow wrong twists if only o is compared with q in layer k or only p is
compared with r in k respectively∧

k∈[d]
k>0

∧
o,p∈[n]
o ̸=p

∧
q∈[n]\{o,p}
min(q,o)>p

¬ viaWrongTwistkp,o ∨¬ standGateko,q ∨ukp

∧
k∈[d]
k>0

∧
o,p∈[n]
o ̸=p

∧
r∈[n]\{o,p}
o>min(r,p)

¬ viaWrongTwistkp,o ∨uko ∨ ¬ standGatekp,r

And finally we disallow wrong twists if both o and p are compared in k. For that we
observe that q = p implies r = o and vice versa r = o implies q = p in a valid network.
However in this case min(q, o) = min(r, p) such we do not break. Thus we omit these
cases.∧

k∈[d]
k>0

∧
o,p∈[n]
o ̸=p

∧
q,r∈[n]\{o,p}

min(q,o)>min(r,p)
q ̸=p
r ̸=o

¬ viaWrongTwistkp,o ∨¬ standGateko,q ∨¬ standGatekp,r

Note that introducing the auxiliary variable viaWrongTwist achieved a terser encoding
because otherwise we would not only quantify over k, o, p, q and r but also over i and
j. Keep in mind the size and number of clauses added to break I ′ scale polynomially
with n, while the size and number of clauses for the counterexamples scale exponentially.
Thus with growing n the share that the symmetry breaking constraint makes up of the
whole encoding decreases.

6.3.2 Breaking Input Twists in Unordered Layers

Finally we consider how the current encoding φ with the added symmetry breaking
constraint for the input twists interacts with ul.

As ul discards the order of comparators within each layer, it maps different networks
in olN s

n to the same network in ulN s
n. For φ to be consistent, we need to ensure that
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Figure 6.2: Four networks symmetric under I ′x ; I ′y .

i j o p q r repr

top left 0 2 3 4 5 X
top right 0 2 4 3 5

bottom left 0 2 5 4 3 X
bottom right 0 2 4 5 3

top left 3 5 0 1 2 X
bottom left 3 5 1 0 2

top right 3 5 2 1 0 X
bottom right 3 5 1 2 0

Table 6.2: The representatives of
each equivalence class
from Figure 6.1.

representatives in olN s
n are not mapped to the same network N in ulN s

n as networks in
olN s

n that are not representatives such that N would be disallowed by φ despite being a
representative. We can formulate this differently as a Proposition.

Proposition 21
For every two networks M and M ′ in olN s

n that are symmetric under L it holds that M
is a representative of its equivalence class under I ′ iff M ′ is.

Proof. For the sake of contradiction we assume there are two networks M and M ′ with
M L M ′ where M is a representative but M ′ is not. Since M ′ is not a representative
of its equivalence class under I ′ it is twisted the wrong way at at least one comparator.
Let S be the subset of the comparators (i, j) in M ′ for that φ is violated. We consider
the subset Sk of S that contains the comparators in layer k where k is the latest layer
containing comparators in S. We consider the input twist of some comparatator (i, j)
in Sk.

We know that for M every comparator is moved to the earliest layer possible such that
at least one of i or j is used in k − 1. Actually we know that i is used because M is
a the representative. Due to M L M ′ we know that i is used in M ′ too. Furthermore
we know that j is used in layer k − 1 in both networks too because otherwise the twist
yields a network where i is not used in k − 1. This shows the existence of o and p.

Consider that o = j and p = i. This is not possible because this twists the comparator
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in k−1 from min-max to max-min or vice versa, which contradicts M L M ′. We observe
that twisting swaps o and p such that we contradict M L M ′. However this can be fixed
by twisting other gates that compare o and p in layers after k−1. One obvious candidate
would be a gate comparing o and p in layer k. However this corresponds to the case that
the comparator that compares o with q is the very comparator that compares p with r,
which is not broken by φ. This contradicts the fact that the comparator (i, j) that we
consider does by definition violate φ.

If the gate comparing o and p was in a layer after k then k would not be the latest layer
containing input twists.

6.4 Encoding of a Generalized Network

Note that we can relax the restriction that i < j for variables gki,j to i 6= j such that we
can model generalized comparators and thus generalized comparator networks.

The generalization of the encoding is straightforward. We replace standGateki,j by gki,j
and relax the restriction that i < j to i 6= j when quantifying.

valid =
∧
i∈[n]

∧
k∈[d]

exactlyOne
(
{uki , gki,j | j ∈ [n], j 6= i}

)
xupdate =

∧
i,j∈[n]
i ̸=j

∧
k∈[d]

gki,j →
(
min(xvk+1

i , {xvki , xvkj }) ∧max(xvk+1
j , {xvki , xvkj })

)

∧
∧
i∈[n]

∧
k∈[d]

uki →
(
xvk+1
i ↔ xvki

)
xvaluesky =

∧
i∈[n]

{
¬ xvki , if yi = 0
xvki , if yi = 1

xsorts = xvalues0x ∧ xupdate ∧ xvaluesdsort(x)

Further we discard the toBetweenBefore variable because we can model nonstandard
networks in this encoding. This means more input twist symmetries are broken. Then
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the CNF formula is

valid

∧
∧
x∈Bn

xsorts

∧
∧

k∈[d−1]

∧
i,j∈[n]
i ̸=j

uk+1
i ∨ uk+1

j ∨ ¬cki,j

∧
∧
k∈[d]
k>0

∧
o,p∈[n]
o ̸=p

∧
i,j∈[n]\{o,p}

i ̸=j

¬gki,j ∨ ¬gk−1
i,o ∨ ¬gk−1

j,p ∨ viaWrongTwistkp,o

∧
∧
k∈[d]
k>0

∧
o,p∈[n]
o>p

¬ viaWrongTwistkp,o ∨uko ∨ ukp

∧
∧
k∈[d]
k>0

∧
o,p∈[n]
o ̸=p

∧
q∈[n]\{o,p}
min(q,o)>p

¬ viaWrongTwistkp,o ∨¬gko,q ∨ ukp

∧
∧
k∈[d]
k>0

∧
o,p∈[n]
o ̸=p

∧
r∈[n]\{o,p}
o>min(r,p)

¬ viaWrongTwistkp,o ∨uko ∨ ¬gkp,r

∧
∧
k∈[d]
k>0

∧
o,p∈[n]
o ̸=p

∧
q,r∈[n]\{o,p}

min(q,o)>min(r,p)
q ̸=p
r ̸=o

¬ viaWrongTwistkp,o ∨¬gko,q ∨ ¬gkp,r.

Unfortunately this encoding seems impractical. This is not because it doubles the gate
variables but because encoding counterexamples now requires significantly more clauses.
In particular the number of xupdate constraints is doubled for every counterexample
input x. Recall that while we encode only a subset of the input runs, the number of
encoded runs still scale exponentially with n.

Additionally for nonstandard networks we lose the ability to encode only the window
of a counterexample run as mentioned in Section 4.3.3. Encoding only the window,
i.e. discarding the leading zeros and trailing ones, reduces the number of variables and
clauses by an amount that scales exponentially with n. It does not seem worth to
add exponentially many clauses (and variables) for a more complete or even complete
symmetry break of the input twists.
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7 Sorting Network Graphs

This section is dedicated to the underlying graphs of sorting networks. In Section 5.1.3
we learned that one common depiction of sorting networks is a graph, hence the name
network. We contrasted this with the conception of sorting networks as a sequence of
position pairs that are compared and swapped by the sorting algorithm such that the
network can be depicted as a Knuth diagram.

Choi and Moon (CM) formalized how (standard) comparator networks are represented
as graphs in 2002 [58, 13]

Definition 22
The underlying graph of a generalized comparator network N = c0, c1, . . . , cs−1 in N s

n is
an acyclic directed graph that contains the comparators as vertices.

V = {c0, c1, . . . , cs−1}

If an output of a comparator ci is channeled into comparator cj , add a directed edge
from vertex ck to vertex cl with a label w ∈ {−, +} as a triple (ck,w, cl) to the set of
edges E. The label w indicates whether edge e uses the minimum or maximum output
of ck. The underlying graph is then given as (V ,E).

CM further formalized an isomorphism between comparator network graphs [13].

Definition 23
We write G(N) ' G(N ′) to say comparator network graph G(N) is isomorphic to
comparator network graph G(N ′).

For two comparator network graphs G(N) = (V ,E) and G(N ′) = (V ′,E′) an iso-
morphism of two comparator network graphs is a bijection f : V → V ′ such that
(ci,w, cj) ∈ E if and only if (f(ci),w, f(cj)) ∈ E′.
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7.1 Graph Isomorphism as Network Transformations

Next we consider how CM related graph isomorphism to permuting and untangling.
For this we need further setup because CM establish the relation via an intermediate
isomorphy that considers formulas describing the inputs of comparators.

Let x0, . . . ,xn−1 be Boolean variables for the inputs to the network. We define the set of
input formulas inp(c) inductively. The formula xi is in inp(c) if c is the first comparator
that works on channel i. Furthermore

∨
φ∈inp(ck) φ is in inp(ck) if the max output of cl

is channeled into ck. The case for the min output is analogous with
∧

. Similarly we
define the output formulas as out(c) = {

∨
φ∈inp(c) φ,

∧
φ∈inp(c) φ}.

Any set inp(c) contains at most two formulas as every comparator works on two channels.
Any set out(c) contains at most two comparators by definition. In fact any set inp(c) or
any set out(c) contains exactly two formulas. For the sake of contradiction we assume
that there is a network that contains comparators whose set of input formulas contained
less than two formulas. Then we consider the first of those comparators. As two inputs
are channeled into every comparator, there is only one way to contain less than two
formulas. The formulas corresponding two the two inputs have to be equivalent such
that the input formula set of the comparator has that formula as its single element.
However this would violate the following lemma wrt the prefix network ending before
that comparator.

Lemma 24
Given a generalized comparator network N , let the Boolean formula φi describe the
output value of N on channel i with the network input variables x0, . . . ,xn−1.

∀i, j ∈ [s] : i 6= j → φi 6≡ φj

Proof by contradiction. First we prove the proposition for standard networks and later
we make an argument to extend the proposition to generalized networks.

Assume that i < j without loss of generality. We observe that an assignment of the
network input variables corresponds to a vector of Boolean values that is input to the
network. Consider the input assignment xa = false if a ≤ i and xa = true otherwise for
all 0 ≤ a < n. This input is already sorted. Since standard comparators only exchange
unsorted value pairs, the input is channeled through the network unchanged. This gives
us φi = false 6= true = φj . Because two equivalent formulas cannot evaluate to different
values for the same assignment, it follows φi 6≡ φj . This proves the proposition for
standard networks.

Now let N be a generalized comparator network. We know it can be untangled to a
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standard network N ′ where φ′
i describes the output value of N ′ on channel i and there

is a permutation π ∈ Sym([n]) such that φπ(o) ≡ φ′
o for all o in [n] [6].

i 6= j → φ′
i 6≡ φ′

j

⇐⇒
φπ(o)≡φ′

o

i 6= j → φπ(i) 6≡ φπ(j)

⇐⇒
π∈Sym([n])

i 6= j → φi 6≡ φj

In order to work with sets of two formulas we define equivalence of sets with two formulas
as

{φ0,φ1} ≡ {ψ0,ψ1} ⇐⇒ ∃π ∈ Sym([2]) ∀ i : φi ≡ ψπ(i).

Given some π from Sym([n]) we write π(S) to to apply it to every formula in S. Applying
π to a formula replaces every occurence of the variable xi with the variable xπ(i).

I should mention that Choi and Moon did not work with arbitrary input formulas but
rather they normalized their input formulas to a special kind of disjunctive normal form
[13][1, p. 239, 669].

7.1.1 Graph Isomorphism as Permutation and Untangling of Channels

With this setup we turn to CM’s intermediate isomorphy between generalized compara-
tor networks (CM intended them to be standard) that “are structured essentially in the
same way, and their input [channel numbers] may be different. In other words, a net-
work can be transformed into another isomorphic network by appropriate permutation
of the [channel numbers] and comparator [untangling].”

Definition 25 (Choi and Moon )
The isomorphism ' on N s

n between two generalized comparator networksN = c0, c1, . . . , cs−1

and N ′ = c′0, c
′
1, . . . , c

′
s−1 is defined as

N ' N ′ ⇐⇒ ∃π ∈ Sym([n]). ∀k ∈ [s]. π(inp(ck)) ≡ inp(c′k).

CM also claimed that N ' N ′ ⇐⇒ G(N) ' G(N ′) although they omitted the proof
due to limited space [13]. I attempted to reconstruct the proof but failed. The problem
is that a graph isomorphism can map the kth comparator in N to the lth comparator
in N ′, while the network isomorphism necessarily relates the kth comparator in N to
the kth comparator in N ′. Figure 7.1 shows a counterexample where the graphs are
isomorphic but there is no π for a network isomorphism such that e.g. the inputs of the
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third comparator in both networks are equivalent. That is because the inputs of the
third comparator in the top network are described by a disjunction respectively, while
the inputs of the third comparator in the bottom network are described by network
input variables. Notably the networks in Figure 7.1 both sort.

With the motivation to understand how CM relate permuting and untangling with their
graph isomorphy we wonder whether at least N (P ;O) N ′ ⇐= G(N) ' G(N ′) or even
N (P ;O) N ′ ⇐⇒ G(N) ' G(N ′). We observe that permuting and untangling fails in
the same way that CM’s intermediate network isomorphy about input formulas did. For
the sake of contradiction we assume that there is a permutation π and output twists for
the counterexample in Figure 7.1 such that N (P ;O) N ′ where N is the top network.
Then π maps the channels 1 and 2 of the second comparator in the top network to the
channels 5 and 6 of the second comparator in the bottom network. But there is no way
to choose π or to twist the outputs of the first two comparators such that the third
comparator takes two network inputs. That is because any permutation or output twist
that makes the third comparator work on different channels (it has to work on channels
1 and 2) preserves the fact that the third comparator works on the outputs of two other
comparators, although after all transformations the third comparator must work on two
network inputs.

However we observe that the networks in Figure 7.1 are related by R, i.e. the net-
works are the same modulo a permutation of parrallel comparators. In particular
the top network is transformed to the bottom network by letting the permutation
ρ =

(
0 1 2 3 4 5 6 7 8 9 10 11 12
0 5 1 2 6 3 8 9 4 11 12 7 10

)
act via on the top network. Let the top network be

c0, c1, . . . , c12 and the bottom network be ρ (c0, c1, . . . , c12) = c′0, c
′
1, . . . , c

′
13. For exam-

ple the comparator c′4 in the bottom network corresponds to comparator c6 in the top
network. That is because c6 = cρ(4) = c′4.

7.1.2 Graph Isomorphism as Permutation of Parallel Comparators

It turns out that adding R to the composition P ; O admits a proof that a CM-graph-
isomorphism enables some composition of such transformations between the networks.

Proposition 26
For two generalized networks N and N ′ from N s

n we have that

N (R ; P ;O) N ′ ⇐⇒ G(N) ' G(N ′).

To prove this we first prove the following lemma.
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Figure 7.1: A counterexample for N ' N ′ ⇐⇒ G(N) ' G(N ′).
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Lemma 27
For any generalized network N = c0, c1, . . . , cs−1 in N s

n and any permutation of compara-
tors numbers ρ from Sym(s) yielding the network ρ N = cρ0, c

ρ
1, . . . , c

ρ
s−1 the following

holds. The permutation ρ only changes the order of parallel comparators iff it preserves
the structure of the underlying network graph.

N R (ρ N) ⇐⇒ cρ(k) 7→ cρk is a network graph isomorphism from G(N) to G(ρ(N))

Intuitively ρ preserves the order of comparators on any channel if and only if it preserves
the order of comparators on any path through the network graph.

Proof. Let G(N) = (V ,E) and G(ρ(N)) = (V ρ,Eρ). We prove both directions.

=⇒ We show that cρ(k) 7→ cρk is a bijection such that (cρ(k),w, cρ(l)) is an edge in E if
and only if (cρk,w, c

ρ
l ) is an edge in Eρ.

From the premiss we know that cρ(k) is immediately followed by cρ(l) on a channel
i in N iff cρk is immediately followed by cρl on channel i in ρ N . Without loss of
generality assume that cρ(k) outputs the smaller value to channel i. By definition of
ρ N we know that cρ(k) = cρk and thus cρk also outputs the smaller value to channel
i. By definition of edges in the network graph there is an edge (cρ(k),−, cρ(l)) in E
if and only if (cρk,−, cρl ) is an edge in Eρ.

⇐= We show that cρ(k) is immediately followed by cρ(l) on a channel in N iff cρk is
immediately followed by cρl on the same channel in ρ N .

From the premiss we know that cρ(k) 7→ cρk is a bijection such that (cρ(k),w, cρ(l))
is an edge in E if and only if (cρk,w, c

ρ
l ) is an edge in Eρ. By definition of ρ N we

know that cρ(k) = cρk = (i, j). Assume without loss of generality that i < j such
that both cρ(k) and cρk are min-max. Further assume without loss of generality
that w = −. By definition of edges in the network graph ck we know that cρ(k) is
immediately followed by cρ(l) on channel i in N iff cρk is immediately followed by
cρl on channel i in ρ N .

Utilizing Lemma 7.1.2 we prove that N (R ; P ;O) N ′ ⇐⇒ G(N) ' G(N ′) as stated
by Proposition 26.

Proof. Let N = c0, c1, . . . , cs−1 and N = c′0, c
′
1, . . . , c

′
s−1. Further let G(N) = (V ,E) and

G(N ′) = (V ′,E′).

=⇒ Let N and N ′ be related by R ; P ;O. We show that then there is a network graph
isomorphism from G(N) to G(N ′).
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We know that N can be transformed to N ′ by a sequence of transformations where
the first transformation is some comparator number permutation ρ from Sym([s])
acting via on N . By Lemma 7.1.2 we know that G(N) ' G( N) where ρ N is
related to N ′ by P ;O.

Hence it suffices to show that G(ρ N) ' G(N ′) Since ρ N is related to N ′ by
P ;O, there is a permutation of channel numbers π in Sym([n]) such that π�(ρ N)
is related to N ′ by R. We first show that G(ρ N) ' G(π � (ρ N)).

Let ρ N = cρ0, c
ρ
1, . . . , c

ρ
s−1 and let G(ρ N) = (V ρ,Eρ). Similarly let π � (ρ N) =

cρπ0 , cρπ1 , . . . , cρπs−1 and let G(π � (ρ N)) = (V ρπ,Eρπ).

We show that cρk 7→ cρπk is a bijection such that for all k and l in [n] the edge
(cρk,w, c

ρ
l ) is in Eρ iff the edge (cρπk , cρπl ) is in Eρπ. We only show that the former

edge implies the latter as the proof for the reverse direction is analogous. Without
loss of generality we assume that w = − if there is such an edge (cρk,w, c

ρ
l ) in Eρ.

Thus cρk = (i, j) immediately precedes cρl on channel i. Then (cρk, c
ρ
l ) is an edge in

Eρ iff (cρπk , cρπl ) in Eρπ, i.e.

(cρk, c
ρ
l ) ∈ Eρ ⇐⇒ cρk ≺i c

ρ
l

⇐⇒ (π • cρk) ≺π(i) (π • cρl )
⇐⇒ cρπk ≺π(i) c

ρπ
l

⇐⇒ (cρπk , cρπl ) ∈ Eρπ.

To see that cρπk really is an immediate predecessor of cρπl on channel π(i), we observe
that there cannot be another comparator cρπm with cρπk <π(i) c

ρπ
m <π(i) c

ρπ
l because

otherwise cρk <i c
ρ
m <i c

ρ
l , which contradicts cρk ≺i c

ρ
l .

Finally we show that G(π � (ρ N)) ' G(N ′) where we know that π � (ρ N) and
N ′ are related by O. Therefore π � (ρ N) can be transformed to N ′ by a sequence
of output twists.

We show that cρπk 7→ c′k is a bijection such that for all k and l in [n] the edge
(cρπk , cρπl ) is in Eρπ iff the edge (c′k,w, c

′
l) is in E′.

We consider any transformation M ′ = τ k M in the sequence of output twists
where the intermediate network M is transformed to the (intermediate) network
M ′. For τ = id we have G(M) ' G(M ′), henceforth we assume that τ = t.

Any edge that does not correspond to an immediate comparator precedence on one
of the channels of the kth comparator (i, j) is preserved because other channels
are not modified by the action k. Edges within the prefix network ending at the
k − 1th comparator are preserved because any permutation acting via � preserves
the edges for this bijection as we have shown above. The same applies for the suffix

78



network starting at the kth comparator.

Finally we consider edges from the suffix to the prefix network corresponding to an
immediate comparator precedence on channel i or j. If such an edge exists it goes to
the k comparator, which is the first comparator of the suffix network. We observe
that such edges are preserved because the prefix network remains unchanged and
the comparator continues to work on the channels i and j after twisting.

⇐= Let there be a graph isomorphism f from G(N) to G(N ′). We show that then N
and N ′ are related by R ; P ;O.

First we define ρ to permute the comparators according to f :

k = ρ(l) ↔ f(ck) = c′l

Let ρ N = cρ0, c
ρ
1, . . . , c

ρ
s−1. For f we know (ck,w, cl) is an edge in G(N) iff

(f(ck),w, f(cl)) is an edge in G(N ′). By definition of ρ the comparator f(ck)
is the ρ−1(k)th comparator and likewise f(cl) is the ρ−1(l)th comparator in N ′.
Hence we substitute ρ for f such that (cρ(k),w, cρ(l)) is an edge in G(N) iff (c′k,w, c

′
l)

is an edge in G(N ′).

(ck,w, cl) ∈ E ↔ (f(ck),w, f(cl)) ∈ E′

⇐⇒ (ck,w, cl) ∈ E ↔ (c′ρ−1(k),w, c
′
ρ−1(l)) ∈ E′

⇐⇒ (cρ(k),w, cρ(l)) ∈ E ↔ (c′k,w, c
′
l) ∈ E′

=⇒ (cρ(k),w, cρ(l)) ∈ E → (ρ(k) < ρ(l) ↔ k < l)

=⇒ cρ(k) ≺ cρ(l) → (ρ(k) < ρ(l) ↔ k < l)

=⇒ cρ(k) < cρ(l) → (ρ(k) < ρ(l) ↔ k < l)

⇐⇒
∀m∈[s]. cρ(m)=c

ρ
m

cρ(k) < cρ(l) ↔ cρk < cρl

⇐⇒ N R (ρ N)

Next we define π to permute the network channels. Let ck be a comparator receiv-
ing a network input on some channel i. Then the comparator vertex lacks at least
one of up to two ingoing edges. In particular there is no edge (cl,w, ck) in G(N)
with cl working on channel i. Since edges are preserved by the graph isomorphism
f , the property to be a comparator on one or two network inputs respectively is
also preserved. Thus there is no edge (f(cl),w, f(ck)) in G(N ′) on some other
channel j. We define π such that π(i) = j. If both inputs of ck are inputs to the
network the choice of π is arbitrary.

Finally we twist the outputs of π � (ρ N) with a sequence of twists τ0, τ1, . . . , τs−1

such that the kth comparator in τs−1 s−1 . . . τ1 1 (τ0 0 (π � (ρ N))) is min-max
iff the kth comparator in N ′ is min-max.

79



Now we prove that N (R ; P ;O) N ′ by showing that

τs−1 s−1 . . . τ1 1 (τ0 0 (π � (ρ N))) = N ′.

Let τs−1 s−1 . . . τ1 1 (τ0 0 (π � (ρ N))) = Nρπτ cρπτ0 , cρπτ1 , . . . , cρπτs−1.

Note that by direction =⇒ of this proof for Proposition 26 and in particular
Lemma 7.1.2 the mapping cρ(k) 7→ cρπτk is a graph isomorphism from G(Nρπτ ) to
G(N). Note that the comparators position in the sequence is only changed by
Lemma 7.1.2. By definition of graph isomorphisms its inverse cρπτk 7→ cρ(k) is a
graph isomorphism mapping back from G(N) to G(Nρπτ ).

Additionally by the premiss we have that f is a graph isomorphism from G(N) to
G(N ′). By definition of ρ we have f(ck) = cρ−1(k). Composing these two graph
isomorphisms from G(Nρπτ ) to G(N) and from G(N) to G(N ′) yields the graph
isomorphism cρπτk 7→ c′k that preserves the position k in the comparator sequence.

G(τs−1 s−1 . . . τ1 1 (τ0 0 (π � (ρ N)))) ' G(N) ' G(N ′).

Therefore we can prove Nρπτ = N ′ by induction on the size of a prefix network. Let
Nρπτ
k and N ′

k denote the prefix network with the first k comparators respectively
such that Nρπτ

s = Nρπτ and N ′
s = N ′. The two prefix networks Nρπτ

0 and N ′
0

without comparators are equal. Assuming the induction hypothesis that Nρπτ
k =

N ′
k we show that Nρπτ

k+1 = N ′
k+1. Thus we extend the network with comparator

cρπτk that is mapped to c′k such that we have G(Nρπτ
k+1 ' G(N ′

k+1).

We show that cρπτk = c′k. It suffices to show that cρπτk and c′k work on the same
set of channels. Then τk twists them such that cρπτk is min-max iff c′k is min-max.
Hence we know that cρπτk = c′k.

For that we make a case distinction on the number of edges that are additionally
preserved when going from G(Nρπτ

k ) ' G(N ′
k) to G(Nρπτ

k+1) ' G(N ′
k+1)

If there are no edges additionally preserved then both cρk and c′k work on two
network inputs such that π arbitrarily maps the channels of cρk to the channels
of c′k. Thus π • cρk and c′k work on the same channels. We cannot twist any
preceding comparators on those channels as there are none. Hence cρπτk works
on those channels too.

If there is exactly one edge additionally preserved then both cρk and c′k work
on exactly one network input respectively. Let cρk receive the network input
on channel i then π maps i to the channel j on that c′k receives its network
input. Thus both π • cρk and c′k work on channel π(i) = j. We cannot twist
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any preceding comparator on i as there is none. Hence cρπτk works on channel
π(i) = j too. Let the other channel of cρπτk be channel o. We know that there
is some comparator cρπτl immediately preceding cρπτk on channel o because
there is an edge to cρπτk . This edge is preserved such that c′l precedes c′k. The
comparator c′k works on channel o too because by our induction hypothesis
cπρτl = c′l and the label w of the edge is preserved.

If there are two edges additionally preserved, then the set of channels for cρπτk

and c′k is shown to be the same analogously to the case that exactly one edge
is additionally preserved. In particular if two edges from the same comparator
are additionally preserved, then they have different labels + and − such that
each edge corresponds unambigously to one shared channel.

Choi and Moon pointed out that this particular instance of graph isomorphism is de-
cidable in polynomial time as the degree in graphs underlying a comparator network is
bounded by four.

7.2 Graph Isomorphism as Network Isomorphism

We turn to Definition 25 of the isomorphism between networks in contrast to the isomor-
phism between their underlying graphs. CM’s isomorphism relates networks with the
same set of input formulas at every comparator. While we have resolved how the graph
isomorphism corresponds to permuting and untangling, we have not yet proven CM’s
initial claim that N ' N ′ ⇐⇒ G(N) ' G(N ′). This seems desirable because CM’s net-
work isomorphism clearly defines whether two networks work in the same way. It seems
natural to amend the definition of the network isomorphism by adding a permutation
of comparator numbers ρ.

Definition 28 (Haslop)
The isomorphism ' on N s

n between two generalized comparator networksN = c0, c1, . . . , cs−1

and N ′ = c′0, c
′
1, . . . , c

′
s−1 is defined as

N ' N ′ ⇐⇒ ∃π ∈ Sym([n]). ∃ ρ ∈ Sym([s]). ∀k ∈ [s]. π(inp(ck)) ≡ inp(c′ρ(k)).

There still is a counterexample that utilizes redundant comparators to disprove N '
N ′ ⇐⇒ G(N) ' G(N ′). One such counterexample is shown in Figure 7.2 where both
networks are isomorphic to each other but their underlying graphs are not.

In both networks the first three comparators sort the input such that the last two
comparators have no effect. Hence the permutation of channel numbers π = id and the
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Figure 7.2: A counterexample for N ' N ′ ⇐⇒ G(N) ' G(N ′) where N ' N ′ uses the amended
Definition 28 instead of Definition 25 by Choi and Moon.

permutation of comparator numbers ρ = ( 0 1 2 3 4
0 1 2 4 3 ) satisfy the conditions of a network

isomorphism. We have to swap the last two comparators because the input set with
the formulas evaluating to the smallest and median value of the network input variables
respectively differs from the input set with the formulas that evaluate to the smallest
and the greatest value of network input variables respectively.

However the graphs of the networks are not isomorphic. For that we consider the two
ingoing edges of the single vertex without any outgoing edges. In the left graph both
ingoing edges are labeled with −, whereas the labels differ in the right graph. An
isomorphism would necessarily preserve not having any outgoing edge, but it would
necessarily preserve the labels of ingoing edges too. Thus an isomorphism between the
underlying graphs is impossible.

Note that such a counterexample may also appear as subnetworks of networks that sorts
more than three channels where the redundant comparators are not necessarily the last
comparators.

Although we encountered yet another counterexample, I conjecture that N ' N ′ ⇐⇒
G(N) ' G(N ′) holds if both N and N ′ contain no redundant comparators. To be specific
if N and N ′ are generalized networks, they must contain no comparator c that is trivial
in the sense that inp(c) ≡ out(c). This is not quite the same as a redundant comparator
as a trivial comparator may swap already sorted values. Though in a standard network,
every trivial comparator is redundant.
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8 Conclusion

We considered the optimization problems that ask for the minimum size or depth of
a sorting network. Specifically we considered their related decisions problems that for
small n. With respect to that this thesis provides three main results. We saw that
sorting networks are rich in symmetries. Breaking these symmetries is crucial to proving
upper bounds for the optimization problem as this requires an exhaustive search over
all networks.

First Result: Input Twists

Reflection as well as permuting and untangling of channels are well known symmetries on
standard networks. We defined symmetries on generalized instead of standard networks.
Specifically we defined the permutation of channels or parallel comparators as well as
the input or output twist of a comparator. In particular twisting the outputs of every
comparator covers untangling. Hence we composed permuting channels with twisting
outputs to obtain a variant of permuting and untangling on generalized networks. As
the first main result this work provides the, to my knowledge, first correct analysis of
input twists, which relates them to permuting and untangling.

While standard networks only admit sorting networks, generalized networks admit π-
sorting networks for different π. For the analysis of the symmetries we said that a
symmetry between two networks is correct under permuted outputs if it preserves to
be π-sorting for some π. In constrast a strongly correct symmetry preserves to be π-
sorting for the same π. Permuting and twisting outputs are both correct under permuted
outputs, while both twisting inputs and permuting parallel comparators are strongly
correct. The highlight of the analysis shows that twisting outputs is in fact complete
relative to permuting and untangling. Hence the symmetry by input twists is suited as
a more precise substitute for the symmetry by permuting and untangling.

Second Result: Symmetry Breaking Constraints

For the second result we considered the state of the art where the problem is reduced
to Boolean SAT. We observed that the restriction to standard networks breaks channel
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permutations or outputs twists respectively in a way such that their composition is not
completely broken. As the second main result this thesis provides additional symmetry
breaking constraints for the state of the art SAT encoding that further break the com-
posed symmetry of permuting channels and twisting outputs. Exploiting the first result
these symmetry constraints simply break input twists between standard networks.

We noted that a generalized encoding allows a more complete break of input twists. We
did not break the special case that two comparators in the same layer are connected by
two comparators in the immediately preceding layer. However I believe this is possible
with some tedious case analysis such that input twists are broken completely in the
generalized encoding. I did not run a SAT solver to solve the encodings that I propose
due to time constraints. I leave both the tedious case analysis as well as the evaluation
of the symmetry breaking constraints in each encoding for future work.

Further there is some leeway how to break input twists, i.e. what comparator configura-
tion we allow as the representative in the preceding layer. We saw that in the encoding
of a standard network we cannot break the input twists of a comparator on channels
i and j if there is a comparator from either i or j to a channel between i and j in an
earlier layer. To minimize the cases where this condition applies, it may prove useful to
develop heuristics for choosing representatives accordingly in future work.

Third Result: Sorting Network Graph Isomorphism

The third and final result states that the symmetry that permutes channels, twists out-
puts of comparators and permutes parallel comparators corresponds to an isomorphism
between the underlying graph as defined by Choi and Moon. Unlike claimed by Choi and
Moon the permutation of parallel comparators is another component of the isomorphism
between underlying graphs.

Additionally I suggested that considering the permutability of parallel comparators sim-
ilarly fixes CM’s proposition that an isomorphism between their graphs corresponds to
the networks working in the same way. Proving that this actually rectifies the proposi-
tion is yet another open task.

The permutation of parallel comparators seems rather obvious and is rarely explicitely
mentioned. E.g. the state of the art approach forces the first layer to be maximal such
that every comparator in the two-layer prefix is moved to the earliest layer possible. For
the second result we employed a generalization of this scheme to the whole network.
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A Case for Extensive Symmetry Breaking

While the impact of the proposed symmetry breaking constraints needs to be evaluated
first, this thesis was my attempt to argue for extensive symmetry breaking. With exten-
sive I refer to breaking by symmetries wrt all layers instead of only the first two or last
two layers. I agree that precomputing representatives and thus fixing variable assign-
ments is the optimal way to speed up SAT solving with symmetry knowledge. However
prior work indicates that the extent of such symmetry breaking is quickly limited by
the computational resources if the ambition is to break the considered symmetries com-
pletely.

This thesis as well as the work in our bachelor project suggest an extensive albeit in-
complete approach to breaking by symmetries. This proposed approach passes on the
optimal way of fixing prefixes and increases the size of the encoding for a potential sub-
optimal (due to its incompleteness) gain in efficiency. Nonetheless I speculate that we
do not lose the opportinity to optimally break symmetries by precomputing symmetries
outside the SAT encoding because we can alternative fix the suffix instead of the prefix.
This is because the suffix is unaffected by input twists and we can similarly move every
comparator to the latest layer possible.

There are way fewer representative suffixes than representative prefixes. Hence to achieve
the speedup from fixing the first two layers, fixing more than two layers at the end of
the network may be necessary. Yet again I leave such investigations for further work.
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