
UNIVERSITY OF BREMEN

MASTER’S THESIS

Design and implementation of
advanced features for

bounded model checking on
UML/OCL models

Author:
Jan Prien

Supervisor:
Prof. Dr. Martin Gogolla

Examiner:
Dr. Sabine Kuske

A thesis submitted in fulfilment of the requirements
for the degree of Informatics Master of Science (M.Sc.)

March 18, 2020

iii

Declaration of Authorship

Prien Jan 4136231
_______________ _______________ _______________

Nachname Vorname Matrikelnr.

Urheberrechtliche Erklärung
Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.
Alle Stellen, die ich wörtlich oder sinngemäß aus anderen Werken entnommen habe,
habe ich unter Angabe der Quellen als solche kenntlich gemacht.

_______________ _______________
Datum Unterschrift

Erklärung zur Veröffentlichung von Abschlussarbeiten
Die Abschlussarbeit wird zwei Jahre nach Studienabschluss dem Archiv der Univer-
sität Bremen zur dauerhaften Archivierung angeboten. Archiviert werden:

1. Masterarbeiten mit lokalem oder regionalem Bezug sowie pro Studienfach und
Studienjahr 10 % aller Abschlussarbeiten

2. Bachelorarbeiten des jeweils der ersten und letzten Bachelorabschlusses pro
Studienfach und Jahr.

�7 Ich bin damit einverstanden, dass meine Abschlussarbeit im Universitätsarchiv
für wissenschaftliche Zwecke von Dritten eingesehen werden darf.

� Ich bin damit einverstanden, dass meine Abschlussarbeit nach frühestens 30
Jahren (gem. §7 Abs. 2 BremArchivG) im Universitätsarchiv für wissenschaftliche
Zwecke von Dritten eingesehen werden darf.

� Ich bin nicht damit einverstanden, dass meine Abschlussarbeit im Universität-
sarchiv für wissenschaftliche Zwecke von Dritten eingesehen werden darf.

_______________ _______________
Datum Unterschrift

v

UNIVERSITY OF BREMEN

Abstract
Informatics Master of Science (M.Sc.)

Design and implementation of
advanced features for

bounded model checking on
UML/OCL models

by Jan Prien

The latest version of the tool UML-based Specification Environment (USE) supports
functionality for model validation and verification (V&V). A plugin provides find-
ing Unified Modeling Language (UML) object diagrams for Unified Modeling Lan-
guage (UML) class diagrams. The class diagrams can be optionally enriched by in-
variants. They can be formulated as Object Constraint Language (OCL) constraints.
In this paradigm the class diagrams are models. The object diagrams are model in-
stances. A general model validation and verification (V&V) task is to verify that
selected properties are fulfilled by the model. Such properties can be added to the
model as constraints. While it may be infeasible to validate a constraint for all pos-
sible instances of a model (general model checking), there is the alternative to vali-
date the constraint on a selected finite set of instances of the model (bounded model
checking). Bounded model checking is applicable in several verification tasks, e.g.
validation of model consistency or property satisfiability. Bounds regarding the di-
mensions of the model come into focus, e.g. minimum and maximum number of
objects for a specific class. In USE such bounds are utilised as an input for the in-
stance finder and determine its output, e.g. a set of model instances. In this work,
the relevance of additional functionality for working with model bounds for the in-
stance finder is discussed and delivered as prototypes. A concept for comparison
of bounds specifications and a bounds tightening mechanism is implemented. With
this, a clever bounds specification generation mechanism with various possibilities
to define initial bounds is also implemented. The definition of initial bounds is very
flexible. Such definitions can be simple or even very complex. For validation of mo-
del specifications certain validity rules are defined. A mechanism for validation and
computation of applicable proposed bound adjustments is provided. Inappropriate
bounds specifications may cause long V&V computation times for instance finding.
This stands in the way of an efficient application of the model checking based veri-
fication. It is presented here, to what extent the prototypical mechanisms solve this
problem.

vii

Contents

Declaration of Authorship iii

Abstract v

List of Figures ix

List of Tables x

List of Abbreviations xi

List of Listings xii

1 Introduction and motivation 1

2 Scientific context and related work 3
2.1 Models . 3

2.1.1 Unified Modeling Language class diagrams 4
2.1.2 Object Constraint Language invariants 6
2.1.3 Unified Modeling Language object diagrams 6

2.2 Model-driven software engineering . 7
2.3 Model validation and verification . 9
2.4 Bounded model checking . 10
2.5 USE Tool . 10

2.5.1 Model instance finding with bounded model checking 12
2.5.2 Instance finder configurations . 14

2.6 Constraint satisfaction problems . 17

3 Extension of USE 21
3.1 Configuration comparison . 21

3.1.1 Stage wise comparison . 22
3.1.2 Classification for partial comparison results 24
3.1.3 Configuration attribute specific comparisons 26
3.1.4 Relationship analysis . 31
3.1.5 Command-line interface integration 31
3.1.6 Graphical user interface integration 33

3.2 Constraint satisfaction problems applied for generation of configura-
tions . 38
3.2.1 Bounds tightening for configurations with derived model spe-

cific attributes . 39
3.2.2 Command-line interface integration 43
3.2.3 Graphical user interface integration 44

3.3 Validation of configurations . 46
3.3.1 Constraint satisfaction problems applied for validation of in-

stance finder configurations . 46

viii

3.3.2 Validity rules . 47
3.3.3 Proposed applicable fixes . 53
3.3.4 Command-line interface integration 59
3.3.5 Graphical user interface integration 64

4 Evaluation 67

5 Conclusion and outlook 77

Bibliography 79

A Example output for comparing configurations 81

B Formal proof: Arbitrary operands order for comparison results merging 101

ix

List of Figures

2.1 Unified Modeling Language classes example modeled with UML-based
Specification Environment . 5

2.2 Unified Modeling Language objects diagram example modeled with
UML-based Specification Environment 7

2.3 Model-driven architecture basic principle and example 9

3.1 UML-based Specification Environment initial comparison overview
for comparing configurations from listing 3.1 35

3.2 UML-based Specification Environment comparison overview selec-
tion options for example shown in fig. 3.1 36

3.3 UML-based Specification Environment initial comparison overview
for comparing configurations from listing 3.1 36

3.4 UML-based Specification Environment comparison overview for com-
paring selected configurations from listing 3.1 37

3.5 UML-based Specification Environment clever generation view for mo-
del from fig. 2.1 . 45

3.6 Inconsistency dependency structure for validity rules 52
3.7 UML-based Specification Environment validation overview for vali-

dation of configuration from listing 3.7 65

x

List of Tables

3.1 Partial comparison result types . 24
3.2 Partial comparison result types for merged partial comparison results 26
3.3 Possible partial comparison result types of levels that are not respected

with the implemented configuration comparison procedure 27
3.4 Possible partial comparison result types of levels that are respected

with the implemented configuration comparison procedure 27
3.5 Validity rules overview . 48
3.6 Validity rules (Part 1) . 49
3.7 Validity rules (Part 2) . 50
3.8 Validity rules (Part 3) . 51
3.9 Proposed applicable fixes for validity rules (Part 1) 53
3.10 Proposed applicable fixes for validity rules (Part 2) 54
3.11 Proposed applicable fixes for validity rules (Part 3) 55
3.12 Proposed applicable fixes for validity rules (Part 4) 56
3.13 Proposed applicable fixes for validity rules (Part 5) 57
3.14 Proposed applicable fixes for validity rules (Part 6) 58

4.1 Applied parameter values for generation of sets of random models . . 68
4.2 Applied parameter values for evaluation 69
4.3 Meanings of headers in tables presenting evaluation data 70
4.4 Evaluation data for generally instantiable models (Part 1) 71
4.5 Evaluation data for generally instantiable models (Part 2) 72
4.6 Numbers of models that are ignored in table 4.4 and table 4.5 73
4.7 Evaluation data for uninstantiable models (Part 1) 74
4.8 Evaluation data for uninstantiable models (Part 2) 75

xi

List of Abbreviations

CIM Computation Independent Model 8, 9

CLI command-line interface xii, 10, 31, 43, 44, 59, 60, 63, 100

CSP constraint satisfaction problem xii, 2, 3, 17–19, 39–44, 47, 78

DSL domain-specific language 8

GUI graphical user interface 10, 17, 33, 44, 64

ISO International Organization for Standardization 8

MDA model-driven architecture ix, 4, 8, 9

MDD model-driven software development 7–9

MDSE model-driven software engineering 1, 3, 4, 7–10, 12

MOF Meta-Object Facility 4

OCL Object Constraint Language v, 1, 3, 4, 6, 10–14, 21, 31, 33, 40, 43, 44, 59, 64, 78

OMG Object Management Group 4, 6, 8

PIM Platform Independent Model 8, 9

PSM Platform Specific Model 8, 9

SAT satisfiability 10

UI user interface 22, 31, 39, 46, 59

UML Unified Modeling Language v, ix, xi, xii, 1–8, 10–14, 16, 21, 31, 33, 35–37, 42–
45, 59–61, 63–65, 67, 77, 78, 100

USE UML-based Specification Environment v, ix, xii, 1–3, 5, 7, 10–13, 15, 16, 21, 31,
33, 35–38, 42–46, 59–61, 63–65, 67, 70, 77, 78, 100

V&V validation and verification v, 1–3, 10, 12, 21, 77

xii

List of Listings

2.1 UML-based Specification Environment specification for Unified Mod-
eling Language classes example from fig. 2.1 11

2.2 UML-based Specification Environment commands for Unified Mod-
eling Language objects diagram example from fig. 2.2 12

2.3 UML-based Specification Environment textual instance finder config-
urations example for model from fig. 2.1 15

2.4 Constraint satisfaction problem (CSP) example in textual form 17
2.5 Example for textual representation for domains as ranges for the con-

straint satisfaction problem (CSP) from listing 2.4 19
2.6 Optimised ranges for the constraint satisfaction problem (CSP) from

listing 2.5 . 19
3.1 UML-based Specification Environment textual instance finder config-

urations for model from fig. 2.1 used for comparison 32
3.2 Constraint satisfaction problem for model from fig. 2.1 with general

one to 100 domains . 40
3.3 Optimised domains of constraint satisfaction problem for model from

fig. 2.1 with general one to 100 domains 41
3.4 Optimised UML-based Specification Environment instance finder con-

figuration for model from fig. 2.1 with general one to 100 domains . . . 41
3.5 UML-based Specification Environment instance finder configuration

for model from fig. 2.1 . 59
3.6 UML-based Specification Environment command-line interface out-

put for validation of configuration from listing 3.5 60
3.7 UML-based Specification Environment textual instance finder config-

urations for model from fig. 2.1 used for fixing of invalidities 61
3.8 UML-based Specification Environment command-line interface out-

put for fixing of invalidities of configuration from listing 3.7 61
3.9 UML-based Specification Environment textual instance finder config-

urations for model from fig. 2.1 resulting with fixing of invalidities
(listing 3.8) . 63

A.1 UML-based Specification Environment command-line interface out-
put for comparing configurations from listing 3.1 81

1

Chapter 1

Introduction and motivation

Model-driven software engineering (MDSE) is state of the art methodology as an
approach to create domain models regarding specific problems. Models in form of
Unified Modeling Language (UML) class diagrams are widely in use for this pur-
pose. Unsuitabilities regarding the intended use of models can be unwanted aspects
of the design. The inclusion of invariants on the UML class diagrams expands the
problem of obviation of unsuitabilities. The Object Constraint Language (OCL) is
aligned with the latest version of UML. Invariants on UML class diagrams can be
formulated with OCL constraints. Additional properties of UML class diagrams can
also be formulated as OCL expressions. While it is often almost impossible to de-
termine by simple observation whether a model meets selected requirements, it may
even be necessary to formally prove this. The underlying problem can be formulated
in such a way that the model must fulfil selected properties. Considering potential
model validation and verification (V&V) objectives, there must be a process for prov-
ing that selected properties are fulfilled for a model. It should be repeatable while
effort and costs remain acceptable.

The tool UML-based Specification Environment (USE) supports modeling func-
tionality. A model consists of an UML class diagram and OCL constraints. UML
object diagrams are instances of class diagrams. USE already provides an instance
finder. This forms the potential advanced basis for model V&V. A general model
V&V task is to verify that selected properties are fulfilled by the model. Such prop-
erties can be added to the model as constraints. The instance finder provides com-
putation of finite set of instances for a given model. While it may be incomputable
to validate a constraint for all possible instances of a model (model checking), there
is the alternative to validate the constraint on a selected finite set of instances of the
model (bounded model checking). Bounded model checking is applicable in sev-
eral verification tasks, e.g. validation of model consistency or property satisfiability.
Bounds regarding the dimensions of the model come into focus, e.g. minimum and
maximum number of objects for a specific class. USE also supports the model spe-
cific specification of these bounds as input for the instance finder. The output of the
instance finder is a consequence of the specified bounds. It is a finite set of model
instances. Since these bounds specifications may also be unsuitable regarding the
intended use, they should be also validated for certain requirements.

Inappropriate bounds specifications often result in long computation times of in-
stance finding. For example, this occurs when there can not exist an instance for a
model with a given bounds specification. Computation times are long, especially
when the bounds specification represents a huge search space in terms of model
checking. Long computation times hold up the modellers and may lead to the appli-
cation of the verification mechanism being abandoned. In addition, inappropriate
bounds specifications can prevent findings of model instances. Trivial inappropri-
ate aspects that hinder findings of instances can currently be specified. The latter

2 Chapter 1. Introduction and motivation

problem often occurs with the current functionality, that creates a new bounds spe-
cification for a given model. In addition, it can be a time consuming task to find
out the (relevant) differences between two bounds specifications. Also, when hav-
ing a bounds specification with the lastly described problem and one without any
problems.

The relevance of certain (software) features for working with bounds specifica-
tions for the instance finder should be pointed out in this thesis. Prototypes of these
features should be delivered. The work is based on the research question

“Is there a communicable way of ensuring validity and suitability of bounds
specifications for the USE instance finder of UML class diagrams?”

with the intend to show the validity of the hypothesis

“There is a communicable way of ensuring validity and suitability of bounds
specifications for the USE instance finder of UML class diagrams”

The focus is on the meaning of validity of bounds specifications. This should be de-
fined in this work. The meaning of the term “communicable” is negligible, because
generally USE users are experts with similar comprehension of technical details as
the developer her-/himself. Implementing a concept for visualising this complex
information is already a challenge.

This work complements the working environment used by Gogolla, Hilken, and
Doan (2018). It enriches USE with functionality regarding tasks performed there.
They presented V&V use cases, applicating the USE instance finder. Similar tasks
were performed by Clarisó, González, and Cabot (2019), with a presentation of time
expenditures of selected V&V use cases. A concept of improvement is presented,
which should reduce the time expenditures of the instance finding process. An
adaption of USE suggests itself. Their crucial part is to map instance solver con-
figurations to constraint satisfaction problems (CSPs). The CSPs are enriched with
constraints that are derived from the models. Mechanisms for bounds tightening are
then applied on the CSPs. This concept should be adapted.

The scientific and conceptual context is presented in chapter 2. Related work
is also presented there. In chapter 3 three problems with the latest version of the
USE instance finder plugin are presented. The prototypical implementations to solve
these problems are also presented in that chapter. In chapter 4 it is evaluated whether
one of the implementations brings benefits in terms of the research question. Lastly
the results of the work are summarised in chapter 5. In addition, ideas for further
work are outlined there.

3

Chapter 2

Scientific context and related work

Several existing concepts and tools are included in this work. The following sections
present the concept of models and selected paradigms they are applicated in. First
of all, the general concept of models in the field of software engineering is presented
in section 2.1. Then formalisations of models in form of UML class diagrams, OCL
and UML object diagrams are outlined. The widely in use paradigm in software
engineering called MDSE is then explained in section 2.2. The paradigm underlines
the relevance of models in software engineering. The general concept of model V&V
is presented afterwards in section 2.3. It complements the MDSE paradigm. The
concept of model checking is then presented in section 2.4 as basis for further work.
Section 2.5 presents the tool USE. In addition, the role of model checking is outlined.
Finally, the concept of CSPs is explained in section 2.6.

2.1 Models

In the following, an overview to the characteristics and meaning of models in the
context of this work is given. For other fields than software engineering there may
be other interpretations of the term model. There exists a wide range of model defini-
tions, even in this field. (Muller et al., 2012). Models are part of everyone’s everyday
life. Again and again we abstract and blur out individual features of an This is, e.g.,
done to describe it by a term. This ability is given to us by nature. However, the
choice of unsuitable models is not excluded. (Ludewig and Lichter, 2013, p. 3-5)

Models are descriptive or prescriptive. A descriptive model is, e.g., a blueprint
or a specification of software. A prescriptive model is, e.g., a physical model or a
documentation of software. The latter can also be used as a descriptive model. This
is the case, for example, if the documentation of a software is used, to rebuild it. The
classifications descriptive and prescriptive are not mutually exclusive. (Ludewig
and Lichter, 2013, p. 5)

Models must have certain characteristics. An existing, planned, or fictitious orig-
inal must exist (mapping characteristic). A mapping of attributes of the original to
attributes of the model also exists. Models do not contain all attributes of the origi-
nal, but only a subset (shortening characteristic). Attributes that are not mapped are
referred to as excluded attributes. Attributes of the model that were not contained
in the original are called abundant attributes. The last of the three mandatory char-
acteristics is the pragmatic characteristic. Models must be applicable to replace the
original under certain conditions and with regard to certain questions. (Ludewig
and Lichter, 2013, p. 5-6)

Various goals drive the usage of models. Models are often used in education,
advertising, games, etc., where the originals are not available for ethical or practical
reasons. Such models are descriptive. Formal models are also descriptive. They en-
able to build formal representations of situations or processes to verify hypothesis

4 Chapter 2. Scientific context and related work

on a past, future or conceivable reality. Models are also used for documentation. As
representations for situations, persons, processes or objects, they enable the memory
of them and the communication about them. Another goal is pursued with explo-
rative models. They are used to assess the consequences of a proposed change in
reality that has not yet been decided. (Ludewig and Lichter, 2013, p. 6-9)

Graphs from graph theory are a common way of representing models in software
engineering. These are structures consisting of (optionally) annotated nodes and
edges. Nodes and edges can be classified by different representation (e.g. by colour,
form or annotation). Edges can also be directed.

Models can be expressed not only by graphs and graphics, but also by special
languages. It is often possible to map a graphical representation of a model to a
corresponding textual representation. While graphical representations are often eas-
ier to understand, textual representations also offer certain significant advantages.
These types of formalisations are also often used in combination.

Meta models describe the structure of models as models for models. This ab-
straction is also a formalisation of models. Processing of models can be designed
regarding the attributes described by the meta model. The process definition then
can be applied on all model instances of the meta model. In special contexts, the
terms model and instance can be used instead of meta model and model. Multi level
abstraction is also possible. There can be meta models for meta models and so on.

Models are the main artefacts on information system development processes (Gi-
raldo et al., 2018, p. 686) (Florez and Leon, 2018, p. 354). The Object Management
Group (OMG) is an organisation that provides meta models for modeling with struc-
ture definitions of various model types. With the model-driven architecture (MDA)
they also provide a definition of basic principles for working and managing models.
As a framework for modeling in object orientated paradigms UML class diagrams in
combination with OCL constraints are commonly used. Generally the OMG Meta-
Object Facility (MOF) is one of the main frameworks of MDSE (Jácome, Ferreira, and
Corral-Diaz, 2017). The MOF includes the UML. These UML class diagrams, OCL
constraints and UML object diagrams are presented in the next three sections.

2.1.1 Unified Modeling Language class diagrams

UML is a standard proposed by OMG (Unified Modeling Language (UML), Version
2.5.1 2017). The latest version is 2.5.1. A class diagram is a structural UML diagram
that models the structure of a system with the elements class, attribute, operation
and relationship. These types of elements underlie rules concerning the visual pre-
sentation. Several aspects of UML class diagrams are outlined in the following.

2.1. Models 5

Class diagram

Pet

nickName : String

Person

fName : String

lName : String

yearB : Integer

nicknames : Set(String)

favoriteNumber : Real

Individual

id : String

child*

Parenthood

parent

0..2

pe t

2..4,6..*

PetSitting
sitter

1

FIGURE 2.1: Unified Modeling Language classes example modeled
with UML-based Specification Environment

Figure 2.1 shows the classes with the names Individual, Person and Pet. Classes
model the characteristics of objects. Objects are instances of classes. Each class has a
name. Here, each rectangle with non-white background represents a class. Those
squares are divided in three parts. The top part contains the class name. Class
names are unique in the context of a class diagram. Classes can be derived from one
class each, so that there exists an inheritance hierarchy. With abstract classes another
structuring possibility is provided. Here, abstract classes will be visualised with
italic names. The figure shows the abstract class Individual. There can not exist
objects which have an abstract class as most precise type. Regarding inheritance,
classes and abstract classes are treated equally. Classes and abstract classes can be
related to abstract classes as implementation of the abstract class. This is a special
form of inheritance. The figure shows two implementations as Person and Pet both
implement Individual.

Attributes can be modeled on classes. They are contained in the middle part of
the class representations. Figure 2.1 shows, for example, for the class Individual
the attribute id. Derived classes implicitly contain all attributes of all classes that are
more general according to the inheritance hierarchy. Each attribute has a name. The
name is unique in context of the class. It is also unique when taking into account
all inherited attributes. The classes Person and Pet from the figure do not contain
explicitly the attribute id in their displayed attribute list. They implicitly also have
this attribute, because it is inherited from the corresponding class Individual. Each
attribute underlies a given type. The figure shows among others for the attribute id
the type String. The set of types depends on the concrete framework, implementa-
tion or tool.

Next to the inheritance there are other relationships that are modeled on classes.
Associations are the general form for special relationship types. Each association
has a name. The name is unique in the context of a class diagram. Figure 2.1 shows
the associations PetSitting and Parenthood. An association has at least two ends.
Each association end links a class while roles are assigned to objects in context of
the association. The figure shows the association PetSitting with one end for class

6 Chapter 2. Scientific context and related work

Person with the role sitter and one end for class Pet with the role pet. Multiple
ends of an association can be linked to the same class. The figure shows the associ-
ation Parenthood with two ends for class Person. Role names are unique in context
of an association. Instances of associations are called links. Associations are meant
for the classes level and the corresponding links are for the objects level. For each
association end a multiplicity is necessary.

Multiplicities are defined via positive integer ranges with the exception that the
upper limits can also be given as unlimited. This is expressed by *. A multiplicity is
at least one integer range but can also be a set of integer ranges. Figure 2.1 shows the
association PetSitting with the end sitter for class Person with the multiplicity 1.
This is just a simplified visualisation for the range 1..1. It means, that each object
of class Pet is linked with a link for that association to exactly one object of class
Person. The multiplicity on the other end means, that each object of class Person is
linked with that association to exactly two up to four or six or more than six objects
of class Pet. The figure shows also the multiplicity * for role child in association
Parenthood which is just the simplified visualisation for 0..*.

Not all features of UML class diagrams are mentioned here. All relevant aspects
regarding other parts of this work are outlined.

2.1.2 Object Constraint Language invariants

OCL is a standard proposed by OMG (Object Constraint Language 2.4 2014). The latest
version is 2.4. It is aligned with UML 2.5.1. A shallow explanation of OCL in context
of UML class diagrams is given in the following.

OCL allows to define constraints in UML class diagrams. Those definitions can
be formulated textually. OCL describes a concrete syntax for textual formulations.

Constraints can be on the one hand pre and post conditions for operations and
on the other hand invariants for classes. The former is not relevant regarding this
work. Both need to be defined in a specific context. For pre and post conditions this
would be a specific method of a specific class. For invariants it would be a specific
class. Each constraint needs to be specified in such a context. On model instances it
is possible to evaluate whether constraints hold or not.

An exemplary invariant for fig. 2.1 may be that for all instances of class Individual
the value of the attribute id must be unique. Another invariant may be that there
must exists at least one instance of class Person, that is linked, according to the asso-
ciation PetSitting, with at least ten instances of class Pet.

In OCL some constraints can be expressed in multiple forms. Not all features of
OCL are mentioned here. All relevant aspects regarding other parts of this work are
outlined.

2.1.3 Unified Modeling Language object diagrams

An object diagram is a structural UML diagram that models the state of a system
with the elements object and link. The systems are modeled with UML class dia-
grams. Class diagrams are meta models for object diagrams. The types of elements
of object diagrams underlie rules concerning the visual presentation. This is similar
to class diagrams.

2.2. Model-driven software engineering 7

Pet1:Pet

id=Undefined
nickName=Undefined

Pet4:Pet

id=Undefined
nickName=Undefined

Pet2:Pet

id=Undefined
nickName=Undefined

Person1:Person

id=Undefined
fName='aFName'
lName=Undefined
yearB=2020
nicknames=Undefined
favoriteNumber=Undefined

Person2:Person

id=Undefined
fName=Undefined
lName=Undefined
yearB=Undefined
nicknames=Undefined
favoriteNumber=Undefined

Pet3:Pet

id=Undefined
nickName=Undefined

child

parent

pe t

sit ter

pe t sit ter

pe t

sit ter

pe t sit ter

FIGURE 2.2: Unified Modeling Language objects diagram example
modeled with UML-based Specification Environment

Figure 2.2 shows an object diagram for the class diagram from fig. 2.1. It contains
two objects for class Person and four objects for class Pet. Each object is represented
by a rectangle with non-white background. The squares are divided into two parts.
The first part shows the identifier and the class of an object. An object identifier is
unique in the context of each object diagram. One link for association Parenthood
and four links for association PetSitting are contained.

2.2 Model-driven software engineering

MDSE is widespread in use (Whittle, Hutchinson, and Rouncefield, 2014). As a
paradigm of software engineering, it is “Any activity related to the production or
modification of software pursuing some goal(s) beyond the software itself” (Ludewig,
2000). As optimal software engineering is “(1) The application of a systematic, dis-
ciplined, quantifiable approach to the development, operation, and maintenance of
software; that is, the application of engineering to software. (2) The study of ap-
proaches as in (1)” (“IEEE Standard Glossary of Software Engineering Terminology”
1990, p. 67).

Models are the crucial part of MDSE. The form of models varies widely. In
the field of software engineering there are two types of models. On the one hand
there are software models. The set of possible forms of software models includes,
for example, models formulated in natural language, entity-relationship models or
use case diagrams. On the other hand there are models for procedures and pro-
cesses. This includes for example the waterfall model and the V-model. (Ludewig
and Lichter, 2013, p. 11)

Model-driven software development (MDD) is the automatic generation of exe-
cutable software from formal models. This is related to MDSE. Activities regarding
transformation of models to executable software are a subset of activities of MDSE.

8 Chapter 2. Scientific context and related work

This is not necessarily an automated process. Transformations like this can also be
done by hand. There must be benefits unrelated to MDD that drive MDSE, as Whit-
tle, Hutchinson, and Rouncefield (2014) worked out. It is commonly in use also
without the usage of MDD. Selic (2006, p. 609) states that it is driven especially by
the potential of the combination of abstraction and automation.

Domain-specific languages (DSLs) are an alternative for common modeling lan-
guages. It is not uncommon to develop small DSLs. Even generators for DSLs are
developed sometimes. A challenge with this is to integrate multiple DSLs. (Whittle,
Hutchinson, and Rouncefield, 2014)

The UML is widely in use. It provides multiple types of models. In 2005 UML
was also published as an approved International Organization for Standardization
(ISO) standard (ISO/IEC 19501:2005 2005).

One of the main modeling tasks is to define models as abstractions of systems.
UML class diagrams are commonly used for this. They are used for prescriptive
and also descriptive purposes in this context. There are already several tools and
automations that support working with such models. Functionalities for code gen-
eration from UML class diagrams or deriving UML class diagrams from existing
code are used by many people involved in software engineering processes.

The OMG, creator and maintainer of UML, also describes a specific form of
MDSE with the MDA. The MDA describes the link between model, platform and
code-transformation. It is a reference conceptual framework adopted in many or-
ganisations. For automated transformations, the model needs to be specified in a
formal language. This is often done using UML. In additional, the transformation
steps needs to be specified in a formal language. A meta model for the target model
must exist. The target model can be the generated code. This can also be considered
as a model. Therefor, this procedure differentiates between source and target mo-
del. Generated code mostly can be manually modified in a prescribed manner. This
depends on the concrete framework. MDA describes four types of models:

• A Computation Independent Model (CIM) describes software at the business
level. It must be formulated in a language that the user understands. The CIM
thus determines what the software should achieve.

• A Platform Independent Model (PIM) represents the business functionality of
a program or component independently of the details of a particular techni-
cal platform, i.e. it abstracts from it. It is written in a formal modeling lan-
guage that has precise semantics and allows the business functionality to be
adequately expressed.

• A Platform Specific Model (PSM) is created by transforming a PIM. It imple-
ments the PIM using the specific properties of the specific platform.

• A platform model describes a platform. Platform models are to specify trans-
formations.

The first three types are levels of abstraction of the source model. Platforms can be
organised hierarchical. The terms platform independent and platform specific are
relative and can be interpreted here as roles for models. Models can have both roles
at the same time.

2.3. Model validation and verification 9

CIM

Model 1

Transformation 1

Model 2

Transformation 2

Model 3

Transformation
3 up to n-1

Model n
(code)

Business
specification

PIM
PSM

PIM
PSM

PIM
PSM

Technical description
of the software

CIM

Model of
functionality PIM

Transformation

COBRA-
model

J2EE-
model

.NET-
model

PSM

Transformation

C++-
Code

Java-
code

C#-
code

Code (PSM)

FIGURE 2.3: Model-driven architecture basic principle and example
(Adopted from Ludewig and Lichter, 2013, p. 342)

Figure 2.3 shows the basic principle of MDA on the left and an example on the right.
Code for three different platforms is generated from one model in two transforma-
tion steps. Exemplarily, the J2EE-model is platform independent from the view-
point of the corresponding PSM and platform specific from the viewpoint of the
corresponding PIM. (Ludewig and Lichter, 2013, p. 341-342) (Brambilla, Cabot, and
Wimmer, 2012, p. 39-41)

2.3 Model validation and verification

When working on products on an abstract level it may be necessary to verify whether
the product satisfies specified requirements or to validate whether the product is ap-
plicable for specified use cases under specific circumstances. Identifying unwanted
or unsuitable properties early on an abstract product eventually prevents more costly
measures later on. Especially in a paradigm like MDSE, in which often abstract
models are iteratively conretised, such checks are of great importance. Developing,
implementing and applying methodology, frameworks, processes, mechanisms and
tools for validation and verification can be very costly. From another viewpoint,
such effort can have also a very high value. For example when it is accomplished for
a formal modeling framework that is widely is use.

In verification of models there are general difficulties. When verifying whether
a model is good, complete or consistent, it is always questioned whether enough
properties are specified to check that. There can also be different causes of a model
failing to satisfy a property. The model or the properties may be wrong. One may
be challenged with determining such causes. (Seshia, Sharygina, and Tripakis, 2018,
p. 85)

Cabot, Clarisó, and Riera (2014) state two main problems with inconsistent mod-
els in MDD. Both are related to development costs and software quality. Firstly, er-
rors may be detected earlier in the development process. Fixing the errors, detected
earlier, oftenly is less costly than on a later stage. Secondly, inconsistencies may di-
rectly propagate in implementation errors. Referring to the first problem, solely the

10 Chapter 2. Scientific context and related work

detection at the implementation level may be more expensive than on the design
level.

2.4 Bounded model checking

Model checking is a computer-assisted method for the analysis of dynamical sys-
tems that can be modeled by state-transition systems (Clarke, Henzinger, and Veith,
2018). The term refers primarily to systems in the form of code. The ideas of model
checking and bounded model checking are presented in the following.

Conventionally model checking means to transform the system under investiga-
tion into a state transition graph (a.k.a Kripke Structure). The properties to check
are formulated in temporal logic. The system fulfils a property if it is valid in all
states on all paths, i.e. sequences of states that are reached via state transitions and
start with one of the start states of the system. A system does not fulfil a property
if the property is not valid in at least one state on one such path. Because of the
possibility to specify systems that express infinite paths this decision is potentially
incomputable. This is a relevant problem, despite of existing special designs, which
cannot prevent the problem. For a terminating decision procedure not all paths of
the system can be taken into account. Bounded model checking means using specific
bounds that limit the paths to be considered to a finite amount, while the paths are
also finite. The result of bounded model checking is not directly equate to the result
of general model checking. It can have an equate value if an additional logical justi-
fication is given, stating that all the ignored paths are irrelevant for the verification
of the specific properties. (Clarke, Henzinger, and Veith, 2018) (Biere and Kröning,
2018)

Abstracting from the concept behind the common interpretation of the term mo-
del checking, it can be interpreted as taking a formal model and a set of properties
and compute which instances of the model satisfy and not satisfy which properties.
Since there can be models with infinite numbers of instances this is also potentially
incomputable. So bounded model checking can be interpreted as using a finite set of
model instances for the decision. This represents a terminating and therefor appli-
cable verification method, whose results may already satisfy the needs of the user.

The underlying technology for the decision process is undetermined. Modern
satisfiability (SAT) solvers have become the core technology of many model checkers
(Biere and Kröning, 2018).

2.5 USE Tool

USE is a system for the specification and validation of information systems based on
a subset of the UML and the OCL (USE: UML-based Specification Environment 2020).
The latest version is 5.1.0. An overview to selected characteristics of USE and its role
in MDSE and model V&V is given in the following.

USE provides functionality for the design of UML/OCL models. UML/OCL
models can be stored and read from files in form of textual specifications. For load-
ing and working on UML/OCL models there are multiple user interfaces, a graphi-
cal user interface (GUI) and a command-line interface (CLI). Both provide the func-
tionality that is outlined in the following. The CLI is also integrated in the GUI. Only
the GUI enables visualisation of UML class and object diagrams.

An UML object diagram can be edited with textual commands on the CLI. A
system must be loaded for this. A system is an UML class diagram that can be

2.5. USE Tool 11

enriched with OCL constraints as invariants. Invariants have an unique name in
context of an UML class diagram. A special syntax is provided for textual commands
in the so called USE Shell. The concrete syntax is not relevant in this work, but
the general functionalities will be outlined. Objects for classes can be created and
destroyed. The unique names of objects are used as textual references for them. The
values for attributes can be set and also overwritten for specific objects. Links for
associations can be inserted for existing objects. Existing links can get deleted. OCL
expressions can be evaluated. This can be done by using all or specific invariants
or by directly entering OCL expressions. There are also more USE Shell commands
provided (USE documentation 2007) but all the actions that are relevant for this work
are already outlined.

Supported UML class diagram attribute types are individual for tools, frame-
works and so on. USE supports various types. It is differed between simple types
and collection types. Simple types are Integer, Real, Boolean, String or classes. Col-
lection types are Set, Sequence, Bag or enumerations. A Set is an unordered collec-
tion of items, which do not contain duplicates. A Sequence is an ordered collection
of items, that may contain duplicates. A Bag is an unordered collection of items, that
may contain duplicates. There is no direct way to restrict types in collections. Items
in collections can have each of the presented types.

Generally USE supports not all UML and OCL features. As Gogolla, Hilken, and
Doan (2018) summarised, certain features regarding operations are not supported.
For OCL, the only fully supported collection type is Set and the fully supported sim-
ple types are Integer, Boolean and classes. Certain OCL operations, like “substring”
and “concat”, are also not supported. The powerful operation “iterate” is also not
supported. (Gogolla, Hilken, and Doan, 2018, p. 26)

1 model ClassDiagramExample
2
3 a b s t r a c t c l a s s Indiv idual
4 a t t r i b u t e s
5 id : S t r i n g
6 end
7
8 c l a s s Person < Indiv idual
9 a t t r i b u t e s

10 fName : S t r i n g
11 lName : S t r i n g
12 yearB : I n t e g e r
13 nicknames : Set (S t r i n g)
14 favoriteNumber : Real
15 end
16
17 c l a s s Pet < Indiv idual
18 a t t r i b u t e s
19 nickName : S t r i n g
20 end
21
22 enum AnimalType { FarmAnimal , DomesticAnimal , OtherAnimal }
23
24 a s s o c i a t i o n Parenthood between
25 Person [0 . . 2] r o l e parent
26 Person [0 . . ∗] r o l e c h i l d
27 end
28
29 a s s o c i a t i o n P e t S i t t i n g between
30 Person [1] r o l e s i t t e r
31 Pet [2 . . 4 , 6 . . ∗] r o l e pet

12 Chapter 2. Scientific context and related work

32 end

LISTING 2.1:
UML-based Specification Environment specification for Unified

Modeling Language classes example from fig. 2.1

Listing 2.1 shows the USE specification for the UML class diagram in fig. 2.1.
The specification is bound to a concrete syntax for USE model specifications. UML
class diagram and OCL invariants can be specified textually that way. In addition
to the interpretation from section 2.1.1, firstly a specification defines the name of the
model with the keyword model. The first line contains the keyword following the
name. The name is ClassDiagramExample here.

1 ! c r e a t e Person1 , Person2 : Person
2 ! c r e a t e Pet1 , Pet2 , Pet3 , Pet4 : Pet
3 ! s e t Person1 . fName := ’aFName’
4 ! s e t Person1 . yearB := 2020
5 ! i n s e r t (Person2 , Person1) i n t o Parenthood
6 ! i n s e r t (Person1 , Pet1) i n t o P e t S i t t i n g
7 ! i n s e r t (Person1 , Pet2) i n t o P e t S i t t i n g
8 ! i n s e r t (Person2 , Pet3) i n t o P e t S i t t i n g
9 ! i n s e r t (Person2 , Pet4) i n t o P e t S i t t i n g

LISTING 2.2: UML-based Specification Environment commands
for Unified Modeling Language objects diagram example from

fig. 2.2

As fig. 2.2 shows an object diagram for fig. 2.1/listing 2.1, listing 2.2 shows the
USE Shell commands that constructs the object diagram, when interpreted top down
line wise.

USE already provides several functionality for model V&V with the outlined
characteristics. A framework for manual inspection is given with the manipulation
of UML object diagrams and the evaluation of OCL expressions in those models.
Test cases implicitly can be specified formally, since those models can be saved in
recoverable form.

Beside the V&V advantages, USE generally enhances MDSE. The textual specifi-
cation is optimal for collaborated work using common version control systems. The
corresponding syntaxes are a formalisation that also supports custom processing.

For V&V USE also provides extended functionality. Properties of UML class
diagrams can be evaluated with bounded model checking.

2.5.1 Model instance finding with bounded model checking

A plugin for USE is given with the USE Model Validator. It supports finding UML
object diagrams for UML class diagrams, respecting OCL invariants and OCL con-
straints. The process for finding of UML object diagrams is explained in the follow-
ing and is linked with the concept of bounded model checking. Several use cases
and possibilities to utilise the bounded model checking concept are presented.

First of all, the concept of bounded model checking includes the bounds regard-
ing the dimensions of the model. Bounds regarding the model elements class and
association and domains for types of attributes are crucial for UML class diagrams.
Understanding the specification of bounds as a bounds model, also a meta model
for this must exist as formalised basis for automised/formalised processing. While
a bounds meta model can be very complex and such bounds specifications must sat-
isfy selected requirements, not the most precise bounds meta model may be the best.
For example, complexity and understandability may need to be combined. There are

2.5. USE Tool 13

atomary dimensions, e.g. class specific minimum number of objects or attribute for
class specific type domain bounds. Dimensions can also be be combined, e.g. gen-
eral type specific domain bounds that are applied for all attributes with the type. The
concrete UML class diagram bounds meta model supported by USE is presented in
the next section.

With a set of object diagrams, that is implicitly defined by a class diagram bounds
model, bounded model checking can be performed. In terms of bounded model
checking the set of object diagrams represents the set of model instances. The prop-
erties they must satisfy are additional OCL constraints. Therefor, bounded model
checking can also be applied as evaluating whether, in abstract, all model instances
satisfy all properties or, in precise, all object diagrams satisfy all OCL constraints. A
property is not fulfilled in terms of bounded model checking if there exists at least
one object diagram that does not satisfy at least one constraint. A property is fulfilled
if all object diagrams satisfy all constraints. Adding additional meta level, this can
be utilised in certain use cases. On the below level, USE supports the instance finder,
which takes an UML class diagram, OCL invariants and a bounds specification and
computes a finite set of UML object diagrams, where each object diagram satisfies
all invariants. On the meta level the set of UML object diagrams can be interpreted
or applied in the use cases presented in the following.

Gogolla, Hilken, and Doan (2018) presented eight use cases for utilising the in-
stance finder with its results. The interpretations of no found instances in the fol-
lowing are not generally valid. The derived statements are always weakened by the
fact that also the inappropriate search space could have been caused the result.

1. Consistency of a model can be verified by finding instances with the instance
finder. A UML class diagram, OCL invariants and a bounds specification are
used as input. If at least one instance can be found, “the class model includ-
ing the model-inherent multiplicity and whole-part constraints and the explicit
OCL invariants are not contradictory” (Gogolla, Hilken, and Doan, 2018). No
found models can be interpreted as the opposite. Przigoda, Wille, and Drech-
sler (2018, p. 84) differentiate between weak and strong consistent models. A
model is weak consistent if there exists an instance at least for every class. A
model is strong consistent if there exists an instance at least for every nonab-
stract class. UML implicitly supports checking of both types. But no explicit
differentiation is implemented.

2. Property satisfiability can also be verified by finding instances with the in-
stance finder. This is already included in the first use case. Additional input
is the property in form of an OCL constraint. Here, also the opposite can be
shown with no found instances.

3. Implication of additional constraints can be verified by adding the negated
OCL constraint to the model. If the instance finder finds at least one instance,
the (unnegated) constraint is not implied by the original model. No found
instances means that the constraint is implied.

4. Constraint independence can be verified by removing the constraint from the
model and applying the constraint implication concept from the third use case
for the removed constraint. This means removing the OCL constraint and
adding its negation. If the constraint is implied by the model without the con-
straint itself, it is not independent. When the constraint is not implied, it is not
independent.

14 Chapter 2. Scientific context and related work

5. Although manual inspection was presented as conditionally insufficient, it
sometimes best serves the intended purpose. As solution interval exploration,
the advanced utilisation of the set of found model instances is meant. Impor-
tant observations can be made on this basis, for example.

6. Assuming a partial described model instance that might not already satisfy
model inherent or explicit constraints, finding a possible completion or all
possible completions can be the desired purpose. The result, a set of model
instances, can be used again as basis for further processing.

7. For verification of constraint equivalence implication, assuming two constraints
C1 and C2, the logically negated invariant (C1 implies C2) and (C2 implies
C1) can be used as additional input beside the UML class diagram, OCL in-
variants and a bounds specification. If the instance finder finds at least one
instance with this input, the constraints are not equivalent in context of the
given model. No found instances means that the constraints are equivalent.

8. Another use case arises with utilising the set of found model instances, found
with an UML class diagram, OCL invariants and a bounds specification as
input, and assuming classifying terms in form of OCL constraints. These in-
puts can be used to inspect one or all model instances that belong to a selected
group of the groups implied by the given classifying terms. Interpreting the
finite number of groups as equivalence classes, a concrete use case may be to
manually inspect representatives for all equivalence classes.

2.5.2 Instance finder configurations

Instance finder configurations represent bounds for bounded model checking. They
can be saved in recoverable form. The details of instance finder configurations are
outlined in the following.

There is an implicit model of instance finder configurations. Each configuration
has a name. For all classes, the minimum and maximum number of objects must be
defined. A set of preferred instance names can also be specified. For each attribute
of each class, the minimum and maximum number of defined attributes on objects
must be specified. This can also be specified as obligatory. Then for each object of the
class the attribute must be defined. It can also be specified as that the maximum is
unlimited. For attributes with collection type, the minimum and maximum number
of items must be specified. The maximum can be set as unlimited. A set of preferred
values can be specified for each attribute. It is not supported to specify bounds of in-
herited attributes. Attribute bounds can only be specified on the most general class
having the attribute. For each association, the minimum and maximum number of
links must be defined. The maximum can be set unlimited. A set of required values
can also be specified by using tuples of object names. For the simple types Integer,
String and Real also bounds are necessary. For the type Integer, the minimum and
maximum value must be specified. A set of required values can also be specified.
For the type String, the minimum and maximum number of different values must
be specified. A set of preferred values can also be specified. For the type Real, the
minimum and maximum value and the step width must be specified. The specifi-
cation of the step width makes the set of Real values finite. A set of required values
can also be specified. For each invariant, it must be specified, whether the invariant
is active and whether it is negated. Additionally some options can be set. It can
be set, whether no cycles are allowed inside of aggregations and compositions. It

2.5. USE Tool 15

can also be set, whether no objects participating in a composition can be member of
more than one composition.

There is no complete specification of valid domains and it is possible to specify
illogical bounds. For this reason, no concrete domains are presented here. Relevant
bounds domains are of two types. Real number domains (for Real type settings)
and integer domains (for all other bounds) are included. There are also derived
bounds domains. For example, the instance names used in the specification of re-
quired links can also be interpreted as required instance names, which are bound
to the maximum number of instances of the corresponding class. Those required
instance names effect the usage of specified preferred instance names. They may
become obsolete because of the implicit specified required instance names.

Not all aspects of the configuration must be explicitly defined, when loading
an instance finder configuration from a file. A default value will be used instead.
There exists no complete specification of default behaviour for not explicitly speci-
fied bounds.

Configurations can be expressed in Java Properties format. This is a list of key
value pairs. The keys depend on the model elements names for classes, attributes,
associations and invariants. In Java Properties files a line contains either nothing, a
comment or a key value pair optionally followed by a comment. USE only supports
extended Java Properties, which additionally contain sections. The key value pairs
are not interpreted as one set of key value pairs, but as one or more sets of key value
pairs. The Java Properties file therefor contains section names that identify the sets
of sets.

1 [conf ig1]
2
3 Integer_min = −10
4 Integer_max = 10
5
6
7 # −−−

Indiv idual
8
9 Individual_id_min = −1

10 Individual_id_max = −1
11
12 #

−−−
Person

13 Person_min = 1
14 Person_max = 1
15
16 Person_fName_min = −1
17 Person_fName_max = −1
18 Person_favoriteNumber_min = −1
19 Person_favoriteNumber_max = −1
20 Person_lName_min = −1
21 Person_lName_max = −1
22 Person_nicknames_min = −1
23 Person_nicknames_max = −1
24 Person_nicknames_minSize = 0
25 Person_nicknames_maxSize = −1
26 Person_yearB_min = −1
27 Person_yearB_max = −1
28
29 # Parenthood (parent : Person , c h i l d : Person) − − − − − − − − − − − − − −

− − − − −
30 Parenthood_min = 1

16 Chapter 2. Scientific context and related work

31 Parenthood_max = 1
32
33 # P e t S i t t i n g (s i t t e r : Person , pet : Pet) − − − − − − − − − − − − − − − −

− − − − −
34 PetS i t t ing_min = 1
35 PetSi t t ing_max = 1
36
37 #

−−
Pet

38 Pet_min = 1
39 Pet_max = 1
40
41 Pet_nickName_min = −1
42 Pet_nickName_max = −1
43 #

−−

44 a g g r e g a t i o n c y c l e f r e e n e s s = on
45 forbiddensharing = on
46
47 [conf ig2]
48
49 Pet_max = 10
50 Person_max = 10
51 PetSi t t ing_max = −1

LISTING 2.3: UML-based Specification Environment textual
instance finder configurations example for model from fig. 2.1

Listing 2.3 shows the content of an instance finder configuration file. It contains
the two configurations config1 and config2. Each starts from the line containing
the name in rectangle brackets and ends with the start of a new section or the end of
the file.

config1 from listing 2.3 contains keys of a default configuration. Each model
elements name can be found here, e.g. names of classes, attributes (specific for class)
and associations. For invariants the names would be used as partial keys. In the
following <name> is a placeholder for the elements name. For invariants the key
<name>_negate and <name>_active can be used. For the types Real, Integer and
String the keys <name>_min and <name>_max specify the lower and upper bounds.
<name> specifies the preferred values for Real and Integer and the obligatory values
for String. For type Real, <name>_step specifies the step width. The settings for the
type are interpreted as disabled if no key is given for a whole type. For classes, but
not for enumerations, the keys <name>_min and <name>_max specify the minimum
and maximum number of objects. <name> specifies the preferred names for objects.
In the following <cName> is a placeholder for the name of the class, which owns
an attribute. <aName> is a placeholder for the name of the attribute. The minimum
and maximum number of defined attributes is specified by <cName>_<aName>_min
and <cName>_<aName>_max. -1 for <cName>_<aName>_min specifies obligatory
definition of the attribute for all objects of the class. In this case <cName>_<aName>-
max becomes irrelevant. -1 for <cName><aName>_max specifies upwardly unlim-
ited defined attributes. <cName>_<aName> specifies the preferred values for at-
tributes. For collection type attributes the keys <cName>_<aName>_minSize and
<cName>_<aName>_maxSize specify the minimum and maximum number of con-
tained items. -1 for <cName>_<aName>_maxSize specifies upwardly unlimited
numbers of items. The minimum and maximum number of links for associations is
specified by <name>_min and <name>_max. -1 for <name>_max specifies upwardly

2.6. Constraint satisfaction problems 17

unlimited links. <name> specifies the obligatory links. aggregationcyclefreeness
specifies whether no cycles are allowed inside of aggregations and compositions.
forbiddensharing specifies whether no objects participating in a composition can
be member of more than one composition. Values for both can be either on or off.
config2 from listing 2.3 contains only selected keys with exemplary values. The or-
der of the keys is irrelevant. The value of the latter occurrence will be read, when
one key is used more than once in a configuration section.

The minimum and maximum number of objects for abstract classes can be spec-
ified in the file. In the GUI they are not displayed but correctly loaded. Both some-
times are somehow set to 1 when other modifications on the configuration are pro-
cessed. This is also not visible for the user. Some other properties values may not
be valid and are replaced by default or derived values when loaded. This is ignored
here, because there is no complete specification of this behaviour.

2.6 Constraint satisfaction problems

CSPs mostly can be used instead of the original formal representation applicated in
model checking. Several concrete solving methods are already defined and imple-
mented for CSPs. In the following, the definitions of CSPs are given.

For CSPs, the concepts of variables, values for variables, domains for variables
and constraints are crucial. A value is something that can be assigned to a vari-
able. Values and variables are of a specific type. For example, there are numeric
variables. Also, sub types of such types exists. For example, integer or real number
variables are both numeric. Whether a value can be assigned to a variable depends
on the value. It must have a type that is the same or a sub type from the type of
the variable. A domain of a variable is the set of values that the variable can take.
Constraints are defined on a non empty set of variables. They represent a restriction
on the set of values that these variables can take simultaneously. A simultaneously
assignment of values to a set of variables is an instantiation. An instantiation is total
if it respects all variables of the problem. Otherwise, it is a partial instantiation. Total
or partial instantiations can be consistent or inconsistent. A consistent instantiation
must satisfy all constraints. When not all constraints are satisfied, the instantiation
is inconsistent. A partial instantiation that can not be extended to a total consistent
instantiation is called a Nogood. (Ghedira, 2013, p.1-5)

A CSP is a triple (V, D, C) with V = {v0, . . . , vn} as a finite set of n variables,
D = {d0, . . . , dn} as a finite set of n finite and discreet domains and C as a finite
set of m constraints. Each constraint involves a subset of k variables from V such as
k ≥ 1. Each variable vi ∈ V has a domain di ∈ D.

The solution of a CSP is a consistent total instantiation. A CSP is consistent if it
has a least one solution. There are several possible representations for CSPs. Predi-
cates for the variables and optionally for domains are needed for textual representa-
tion. CSPs can be textually visualised with the mathematical definition from above
and with referencing variables in constraints by using their representations. Graphs
can be used as graphical representation. Nodes represent the variables and the edges
represent the constraints. The nodes contain nodes for each (relevant) value of their
domain. (Ghedira, 2013, p.4-5)

Further definitions of or on CSPs are not relevant here, but provide an extended
basis for solving methods.

1 V = {
2 Person ,

18 Chapter 2. Scientific context and related work

3 Pet ,
4 Individual
5 }
6
7 D = {
8 { 1 , 2 } ,
9 { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 } ,

10 { 1 , 2 , 3 , 4 }
11 }
12
13 C = {
14 "Individual= Person+ Pet " ,
15 "Pet≥ 2 ∗ Person"
16 }

LISTING 2.4: Constraint satisfaction problem (CSP) example in
textual form

Listing 2.4 shows an exemplary CSP in textual representation. The CSP has,
among other things, the variable Personwith an integer domain containing the num-
bers 1 and 2. Overall the CSP has three variables and two constraints. The first con-
straint Individual= Person+ Pet involves all variables and represents that Individual
must be equal to the sum of Person and Pet. This CSP has multiple solutions,
e.g. (Person→ 1, Pet→ 2, Individual→ 3). Both constraints are satisfied in
the solution. There is for example no solution consisting of the partial instantiation
(Individual→ 2). When Individual has the value 2, the first constraint implies
that Pet and Person must be 1, considering the domains of these variables. But the
second constraint can not be satisfied. This example contains several partial instan-
tiations that can not be part of any solution.

For solving CSPs efficiently, search space reducing comes in mind (Cooper, Jguirim,
and Cohen, 2018, p. 65). Reducing the search space means not to change the set of
possible solutions, but avoid exploring search space that can never be part of a solu-
tion. The search space is defined by the domains of the variables or, more precisely,
by the domains of variables that are part of at least one constraint. A minimal search
space can be achieved by eliminating all domain elements which can not be con-
tained in any solution. In other words, this means to remove all partial instantiations
which can not be part of any solution and that allocates one variable. But also par-
tial instantiations allocating more than one variable can be removed from the search
space. A partial instantiation that can not be part of any solution is called a Nogood.
If a Nogood allocates more than one variable, it is not implied that each partial in-
stantiation with a subset of these allocations can also not be part of any solution. No-
goods allocating more than one variable can not be removed from the search space
by removing values from the domains. For Nogoods allocating one variable, it is
possible to remove values from the domains and produce an optimised CSP. These
are called unary Nogoods further on. For Nogoods allocating more than one vari-
able, additional information storage is necessary to represent this information. Both
forms of Nogoods are utilised in solving methods (Ghedira, 2013, p.29). Domains
can be represented as sets of values but also as ranges of values or as sets of ranges
of values. They must be finite and must be of discreet mathematical types. The
representations with ranges provide a memory reduced representation of domains.
When domains are represented as sets of ranges also holes in simple ranges can be
represented. This is less memory reduced as with simple ranges representations.
For some applications, the simple range representations are already the most practi-
cal. Optimising the search space therefor means to tight those ranges. This means to
set the lower bound of each range to its lowest possible lower bound and to set the

2.6. Constraint satisfaction problems 19

upper bound of each range to its highest possible upper bound. The generally low-
est possible lower bound and the generally highest possible upper bound may be
different from those that are meant here. While the generally optimal bounds may
already be not contained in the domain to reduce, the optimal bounds in the already
limited domain must be determined.

1 D = {
2 [1 , 2] ,
3 [1 , 1 0] ,
4 [1 , 4]
5 }

LISTING 2.5: Example for textual representation for domains
as ranges for the constraint satisfaction problem (CSP) from

listing 2.4

1 D = {
2 [1 , 1] ,
3 [2 , 3] ,
4 [3 , 4]
5 }

LISTING 2.6: Optimised ranges for the constraint satisfaction
problem (CSP) from listing 2.5

Listing 2.5 shows the corresponding representation of domains as ranges for the
CSP from listing 2.4. The optimised ranges are shown in listing 2.6. The upper bound
of the second domain, for variable Pet, has changed from 10 to 3. Because the upper
bound for variable Individual is 4 and the lower bound for variable Person is 1, the
first constraint Individual= Person+ Pet limits the highest possible upper bound
of variable Pet to 3. The upper bound of the first domain, for variable Person, has
changed from 2 to 1. Because the highest possible upper bound for variable Pet is 3,
the second constraint Pet≥ 2 ∗ Person limits the highest possible upper bound of
variable Person to 1. The second constraint Pet≥ 2 ∗ Person also limits the lowest
possible lower bound of the second domain, for variable Pet, to 2, because the lower
bound of Person is 1. The lower bound of the third domain, for variable Individual,
has changed from 1 to 3. Because the lowest possible lower bounds for variables Pet
and Person are 1 and 2, the first constraint Individual= Person+ Pet limits the
lowest possible lower bound of variable Individual to 3.

More efficient algorithms for search space optimisation can be formulated by
using only simple ranges for domains instead of explicit sets. The bounds optimi-
sation can be done iteratively until a fix point is reached. This can also result in
discovering a contradiction, which means that the CSP does not have any solution.
A potential negative aspect is, that holes in the ranges can be not removed from the
search space.

21

Chapter 3

Extension of USE

The background for the productive part of this work was presented up to this point.
Some problems with the USE instance finder plugin are already outlined in sec-
tion 2.5.2. Regarding the potential for UML/OCL model V&V, presented in sec-
tion 2.5.1, it is obvious that the plugin can be significantly improved by certain exten-
sions. Implemented advanced features for the plugin are presented in the following.
The underlying problems and the benefits of the features are also outlined.

One may want to understand the differences or similarities of two or more con-
figurations, when working with multiple instance finder configurations. Currently,
this can only be done by manually comparing the configurations. Since the configu-
rations can be constantly changed in the workflow, this must be done repeatedly. But
it is not advisable to rely on certain configuration parts not having changed. Config-
urations should mostly be fully compared. Each individual operation, and therefor
the frequent execution of such operations, can be time consuming. For this reason
and because the results of manual procedures can be distorted by errors made by
the user, an automised solution could greatly increase the usability.

Initial configurations generated by USE contain fixed default values. In most
cases such a default configuration does not represent an appropriate search space in
terms of bounded model checking. On most of the models, no instances can be found
with those default configurations. Additionally the time needed for computing this
result is sometimes very short, but also often very long. For this reason, a feature for
flexible configuration generation would gain usability.

Configurations can specify inappropriate search spaces in terms of bounded mo-
del checking. Simple configuration details may cause the result of not finding any
instance. The absence of certain kinds of inconsistencies could be validated auto-
matically. Additionally USE currently allows to specify search space aspects that
are obviously contradictory. A feature providing information about the presence
of inconsistencies would gain usability. Furthermore, this may be enhanced with
providing modification suggestions.

Summarised, three features regarding configuration comparison, clever configu-
ration generation and also the validation of configurations will be presented in the
following. Some of the problems are solved using the same concepts. Each of the
three subsections deals with one of the features in detail.

3.1 Configuration comparison

Enhanced usability may be achieved with providing computed configuration com-
parison details. The underlying problem and the benefits of this feature are pre-
sented in the following. The following sections contain details and examples of the
implemented feature. Configuration comparison is a complex task. The effort de-
pends on the complexity of the model to which the configuration fits. Currently the

22 Chapter 3. Extension of USE

differences or similarities between two or more configurations must be worked out
manually. The results of this manual procedures can be distorted by errors made by
the user. The time needed for this procedure is bound to the number of model ele-
ments. The more model elements, the more configuration details exists. With more
configuration details, the time needed for this process increases.

After a manual comparison is done, one or more of the configurations may be
modified. The comparison may be processed again. The user may mistakenly as-
sume that selected parts of the configurations do not need to be compared again.
This may be driven by the need to reduce the amount of time required. Repeated
comparison processes factorise the time required, while already the time required
for one comparison process is inappropriate high.

The implemented feature provides the automised comparison of selected types
of configuration details. Conceptually, different classes of comparison results are de-
fined. Each complete comparison result and also each underlying comparison result
of configuration parts is typified. Information about each comparison of each con-
figuration detail is given, but also the classification in the impact on the comparison
of the overall configuration. Not all types of configuration details are respected in
the comparison. Some are ignored. This is contained in the information, given with
the result of a comparison.

The comparison of configurations with the help of the feature leads apparently
immediately to a result. A comparison regarding the time required is no longer
time-consuming. User errors during manual comparisons are no longer possible.

Additionally it is worth noting that with the information the feature gives, also
advanced comparison aspects become easily visible. It is possible to see whether
one configuration represents a search space that is a subset of the one represented
by another configuration. Overlappings of the search spaces are easy to identify.

The implemented feature is presented in detail in the following subsections. A
presentation of the overall concept of the comparison procedure is contained in the
first section. The second section presents the partial comparison result types and
their merging aspects. Details about how certain configuration parts are compared
are contained in section three. The fourth section outlines the additional provided
information about the relations of search spaces and the last two sections present the
integrations in the user interfaces (UIs).

3.1.1 Stage wise comparison

A special concept is developed for comparing configurations. Always two configu-
rations are compared. Since a configuration has atomary configuration aspects, e.g.
the minimum real value, which can also be interpreted combined, e.g. the minimum
and maximum real value and its step range, a definition of comparison levels comes
in mind. Only on such levels a statement about the comparison can be made. A level
summarises the comparison of a set of other levels or atomary configuration aspects.
On each level a partial comparison result for the merged partial comparison results
of the underlying levels or the results of the comparison of atomary configuration
aspects can be evaluated. The top level describes the comparison of all configuration
aspects.

Level1 (whole configurations) consists of:

Level1.1 (class specific configurations) , which consists for each class of:
Level1.1.1 (preferred object names) , which compares the set of preferred

instance names and

3.1. Configuration comparison 23

Level 1.1.2 (number of objects for class) , which consists of the minimum
and maximum number of objects,

Level1.2 (attribute specific configurations) , which consists for each attribute
of:

Level1.2.1 (preferred attribute values) , which compares the set of pre-
ferred attribute values,

Level1.2.2 (amount of defined attributes) , which consists of the mini-
mum and maximum number of defined attributes and

Level1.2.3 (amount of collection items) (only for collection type attributes),
which consists of the minimum and maximum number of collection
items,

Level1.3 (association specific configurations) , which consists for each asso-
ciation of:

Level1.3.1 (required links) , which compares the set of required links
and

Level 1.3.2 (number of links) , which consists of the minimum and max-
imum number of links,

Level1.4 (type specific configurations) , which consists of:

Level1.4.1 (integer type configurations) , which consists of:
Level1.4.1.1 (preferred integer values) , which compares the set of

preferred integer values and
Level 1.4.1.2 (range of integer values) , which consists of the mini-

mum and maximum integer values,
Level1.4.2 (string type configurations) , which consists of:

Level1.4.2.1 (preferred string values) , which compares the set of pre-
ferred string values and

Level 1.4.2.2 (number of different string values) , which consists of
the minimum and maximum number of different string values,

Level1.4.3 (real type configurations) , which consists of:
Level1.4.3.1 (preferred real values) , which compares the set of pre-

ferred real values and
Level 1.4.3.2 (range of real values) , which consists of the minimum

and maximum real values and the step range,

Level1.5 (invariant specific configurations) , which compares the activation
or negation for each invariant and

Level1.6 (option configurations) , which consists of:

Level1.6.1 (aggregationcyclefreeness) , which compares the aggregation-
cyclefreeness option and

Level1.6.2 (forbiddensharing) , which compares the forbiddensharing
option.

On the handling of levels it is differentiated between levels without sub levels
and levels with sub levels. For levels with sub levels a general comparison result
merging procedure is implemented. This is presented in the next section. For lev-
els without sub levels a specific comparison result computation procedure is imple-
mented. This is also presented in the next but one section.

24 Chapter 3. Extension of USE

3.1.2 Classification for partial comparison results

Each of the comparison levels that can be evaluated gives a result on evaluation.
Those results are typified. The types represent what a partial comparison result
indicates for the comparison result of the parent level and thus for the result of the
whole configurations. Comparison is interpreted as an operator with two operands.
The ordering of the operands is crucial. Inverting the operands may result in an
other type. Each operand represents the configuration aspects of a specific level.

Symbol

Search
space

relation
indicating

!? no
!! no
.. no
!= no
== yes
>= yes
<= yes
lO no
rO no
lD no
rD no

TABLE 3.1: Partial comparison result types

Table 3.1 shows the eleven types of comparison results. Only three of the types
indicate a search space relation. Two configurations have the same search space if
their comparison result is of type ==. When the result is >=, the configuration aspects
used as first operand represents a search space that is a super set of the search space
represented by the configuration aspects used as second operand. With <= as result
type, the configuration aspects used as first operand represents a search space that is
a subset of the search space represented by the configuration aspects used as second
operand. The symbols must be interpreted as stated in the following:

!? declares that the configuration parts compared are not comparable. This can
be the case when one configuration contains configuration aspects for model
elements which are not contained in the other configuration.

!! declares that at least one of the configuration parts compared is not valid in terms
of comparison. This can be the case when some configuration aspects are il-
logical.

.. declares that the configuration parts are not respected for comparison. With the
current implementation, for example the preferred instance names are not re-
spected for comparison.

!= declares that the configuration parts compared represent an unequal search space
in terms of bounded model checking.

== declares that the configuration parts compared represent an equal search space
in terms of bounded model checking.

3.1. Configuration comparison 25

>= declares that the configuration parts compared of the first operand represent an
search space that is a super set of the search space represented by the configu-
ration parts of the other operand.

<= declares that the configuration parts compared of the second operand represent
an search space that is a super set of the search space represented by the con-
figuration parts of the other operand.

lO declares that the configuration parts compared represent search spaces whose
intersection is not empty but which are neither equal nor a subset or super set
of each other. This is only applicable for search space domains with elements
that are comparable and ordered. It declares that the configuration parts com-
pared of the first operand represent a search space that covers partially the
other search space but also preliminary domain elements of the search space
represented by the configuration parts of the other operand. This implies that
the search space represented by the second operand also contains succeeding
domain elements of the other operands search space.

rO declares that the configuration parts compared represent search spaces whose in-
tersection is not empty but which are neither equal nor a subset or super set of
each other. This is only applicable for search space domains with elements that
are comparable and ordered. It declares that the configuration parts compared
of the second operand represent a search space that covers partially the other
search space but also preliminary domain elements of the search space repre-
sented by the configuration parts of the other operand. This implies that the
search space represented by the first operand also contains succeeding domain
elements of the other operands search space.

lD declares that the configuration parts compared represent search spaces whose
intersection is empty. This is only applicable for search space domains with
elements that are comparable and ordered. It declares that the configuration
parts compared of the first operand represent a search space that covers only
preliminary domain elements of the search space represented by the configu-
ration parts of the other operand.

rD declares that the configuration parts compared represent search spaces whose
intersection is empty. This is only applicable for search space domains with
elements that are comparable and ordered. It declares that the configuration
parts compared of the first operand represent a search space that covers only
succeeding domain elements of the search space represented by the configura-
tion parts of the other operand.

26 Chapter 3. Extension of USE

!? !! .. != == >= <= lO rO lD rD

!? !? !? !? !? !? !? !? !? !? !? !?
!! s.i. !! !! !! !! !! !! !! !! !! !!
.. s.i. s.i. .. != == >= <= lO rO lD rD
!= s.i. s.i. s.i. != != != != != != != !=
== s.i. s.i. s.i. s.i. == >= <= != != != !=
>= s.i. s.i. s.i. s.i. s.i. >= != != != != !=
<= s.i. s.i. s.i. s.i. s.i. s.i. <= != != != !=
lO s.i. s.i. s.i. s.i. s.i. s.i. s.i. lO != != !=
rO s.i. s.i. s.i. s.i. s.i. s.i. s.i. s.i. rO != !=
lD s.i. s.i. s.i. s.i. s.i. s.i. s.i. s.i. s.i. lD !=
rD s.i. s.i. s.i. s.i. s.i. s.i. s.i. s.i. s.i. s.i. rD

“s.i.” as “see inverted” means to look up the specification with inverted roles.

TABLE 3.2: Partial comparison result types for merged partial com-
parison results

Table 3.2 shows the comparison result types resulting in merging two partial
results of specific comparison result types. There it is also interpreted as an operator
with two operands. Each operand is a comparison result type. The upper row and
the left column contain all result types each. The cells under the upper row and
right of the left row contain the comparison result type for merging the type used
as first operand, indicated by the cell in the left column and the same row, with the
type used as second operand, indicated by the cell in the upper row and the same
column. The matrix shown in table 3.2 is inverted. This means applying the merge
operator with inverted operands results in the same result type.

Only the merge results for merging two comparison result types are provided
with table 3.2. But there are levels that need to merge one or more than two result
types. So the general merge operator must have n operands with n ≥ 1. With
only one operand, its merge result type is the one given by the operand. For two
operands, the result type is specified in table 3.2. Merging more than two result
types can be done by merging two of the result types and then merge this result
again with another result type and so on. The order of selection of to be merged
result types is arbitrary.

Since it is not obvious that the order of selection of to be merge result types is
arbitrary, this must be proofed formally. This is done in appendix B.

3.1.3 Configuration attribute specific comparisons

Here, the stage wise comparison concept and the concept of classification for partial
comparison results is complemented by the level specific partial comparison proce-
dures. Those are presented in the following.

There are two types of levels. Firstly, there are levels that only have sub lev-
els. Secondly, there are levels for comparison of specific configurations parts. For
levels with sub levels, the procedure is already presented with the partial compar-
ison result merging. For the levels of the other type, there are specific comparison
processes. These are presented here.

3.1. Configuration comparison 27

Level

Possible
partial

comparison
result
types

Level 1.1.1 {..}
Level 1.2.1 {..}
Level 1.2.2 {..}
Level 1.2.3 {..}
Level 1.3.1 {..}
Level 1.4.1.1 {..}
Level 1.4.2.1 {..}
Level 1.4.3.1 {..}
Level 1.5 {..}
Level 1.6.1 {..}
Level 1.6.2 {..}

TABLE 3.3: Possible partial comparison result types of levels that are
not respected with the implemented configuration comparison pro-

cedure

Level

Possible
partial

comparison
result
types

Level 1.1.2 {!!, ==, >=, <=, lD, rD, lO, rO, !=}
Level 1.3.2 {!!, ==, >=, <=, lD, rD, lO, rO, !=}
Level 1.4.1.2 {!!, ==, >=, <=, lD, rD, lO, rO, !=}
Level 1.4.2.2 {!!, ==, >=, <=, lD, rD, lO, rO, !=}
Level 1.4.3.2 {!!, ==, >=, <=, lD, rD, lO, rO, !=}

TABLE 3.4: Possible partial comparison result types of levels that are
respected with the implemented configuration comparison procedure

Some levels are not respected for the implemented configuration comparison
procedure. They always have .. as partial comparison result. Table 3.3 shows
all such levels. For the other levels, shown in table 3.4, the specific comparison
processes are presented in the following:

Level 1.1.2 (number of objects for class) has result

!! when one of the minimum or maximum object numbers is less than 0 or
the minimum is greater than the maximum for a configuration.

== when not !! and both minimum and minimum as well as maximum and
maximum object numbers are equal.

>= when not !! and minimum object number of the first configuration is less
than minimum object number of the second configuration and maximum
object number of the first configuration is greater than maximum object
number of the second configuration.

28 Chapter 3. Extension of USE

<= when not !! and minimum object number of the first configuration is
greater than minimum object number of the second configuration and
maximum object number of the first configuration is less than maximum
object number of the second configuration.

lD when not !! and maximum object number of the first configuration is less
than minimum object number of the second configuration.

rD when not !! and maximum object number of the second configuration is
less than minimum object number of the first configuration.

lO when not !! and minimum object number of the first configuration is less
than minimum object number of the second configuration and maximum
object number of the first configuration is less than maximum object num-
ber of the second configuration and is also greater than or equal the min-
imum object number of the second configuration.

rO when not !! and minimum object number of the second configuration is
less than minimum object number of the first configuration and maxi-
mum object number of the second configuration is less than maximum
object number of the first configuration and is also greater than or equal
the minimum object number of the second configuration.

!= elsewise.

Level 1.3.2 (number of links) has result

!! when one of the minimum link numbers is less than 0 or one of maximum
links specifications is less than −1 or the minimum is greater than the
maximum for a configuration when maximum is not −1.

== when not !! and both minimum and minimum as well as maximum and
maximum link numbers are equal.

>= when not !! and minimum link number of the first configuration is less
than minimum link number of the second configuration and maximum
link number of the first configuration is −1 or greater than maximum
link number of the second configuration and maximum link number of
the second configuration is not −1.

<= when not !! and minimum link number of the second configuration is less
than minimum link number of the first configuration and maximum link
number of the second configuration is −1 or greater than maximum link
number of the first configuration and maximum link number of the first
configuration is not −1.

lD when not !! and maximum link number of the first configuration is not−1
and less than minimum link number of the second configuration.

rD when not !! and maximum link number of the second configuration is not
−1 and less than minimum link number of the first configuration.

lO when not !! and minimum link number of the first configuration is less
than minimum link number of the second configuration and maximum
link number of the first configuration is not −1 and less than maximum
link number of the second configuration if that is not −1 and is also
greater than or equal the minimum link number of the second configu-
ration.

3.1. Configuration comparison 29

rO when not !! and minimum link number of the second configuration is less
than minimum link number of the first configuration and maximum link
number of the second configuration is not −1 and less than maximum
link number of the first configuration if that is not −1 and is also greater
than or equal the minimum link number of the first configuration.

!= elsewise.

Level 1.4.1.2 (range of integer values) has result

!! when only one of the integer number configurations is enabled or the min-
imum integer number is greater than the maximum integer number for a
configuration.

== when not !! and both of the integer number configurations are enabled
and both minimum and minimum as well as maximum and maximum
integer numbers are equal.

>= when not !! and minimum integer number of the first configuration is
less than minimum integer number of the second configuration and max-
imum integer number of the first configuration is greater than maximum
integer number of the second configuration.

<= when not !! and minimum integer number of the first configuration is
greater than minimum integer number of the second configuration and
maximum integer number of the first configuration is less than maximum
integer number of the second configuration.

lD when not !! and maximum integer number of the first configuration is less
than minimum integer number of the second configuration.

rD when not !! and maximum integer number of the second configuration is
less than minimum integer number of the first configuration.

lO when not !! and minimum integer number of the first configuration is
less than minimum integer number of the second configuration and max-
imum integer number of the first configuration is less than maximum in-
teger number of the second configuration and is also greater than or equal
the minimum integer number of the second configuration.

rO when not !! and minimum integer number of the second configuration is
less than minimum integer number of the first configuration and maxi-
mum integer number of the second configuration is less than maximum
integer number of the first configuration and is also greater than or equal
the minimum integer number of the second configuration.

!= elsewise.

Level 1.4.2.2 (number of different string values) has result

!! when only one of the different string values configurations is enabled or
one of the minimum or maximum number of different string values is less
than 0 or the minimum is greater than the maximum for a configuration.

== when not !! and both of the different string values configurations are en-
abled and both minimum and minimum as well as maximum and maxi-
mum number of different string values are equal.

>= when not !! and minimum number of different string values of the first
configuration is less than minimum number of different string values of

30 Chapter 3. Extension of USE

the second configuration and maximum number of different string values
of the first configuration is greater than maximum number of different
string values of the second configuration.

<= when not !! and minimum number of different string values of the first
configuration is greater than minimum number of different string values
of the second configuration and maximum number of different string val-
ues of the first configuration is less than maximum number of different
string values of the second configuration.

lD when not !! and maximum number of different string values of the first
configuration is less than minimum number of different string values of
the second configuration.

rD when not !! and maximum number of different string values of the second
configuration is less than minimum number of different string values of
the first configuration.

lO when not !! and minimum number of different string values of the first
configuration is less than minimum number of different string values of
the second configuration and maximum number of different string values
of the first configuration is less than maximum number of different string
values of the second configuration and is also greater than or equal the
minimum number of different string values of the second configuration.

rO when not !! and minimum number of different string values of the second
configuration is less than minimum number of different string values of
the first configuration and maximum number of different string values
of the second configuration is less than maximum number of different
string values of the first configuration and is also greater than or equal the
minimum number of different string values of the second configuration.

!= elsewise.

Level 1.4.3.2 (range of real values) has result

!! when only one of the real number configurations is enabled or the mini-
mum real number is greater than the maximum real number for a config-
uration or the one of the step values is less than or equal 0.

!= when the step values are not equal or the comparison has no other result.

== when not !! and step values are equal and both of the real number config-
urations are enabled and both minimum and minimum as well as maxi-
mum and maximum number of real number.

>= when not !! and step values are equal and minimum real number of the
first configuration is less than minimum real number of the second con-
figuration and maximum real number of the first configuration is greater
than maximum real number of the second configuration.

<= when not !! and not step values are equal and minimum real number of
the first configuration is greater than minimum real number of the second
configuration and maximum real number of the first configuration is less
than maximum real number of the second configuration.

lD when not !! and not step values are equal and maximum real number of
the first configuration is less than minimum real number of the second
configuration.

3.1. Configuration comparison 31

rD when not !! and not step values are equal and maximum real number of
the second configuration is less than minimum real number of the first
configuration.

lO when not !! and not step values are equal and minimum real number
of the first configuration is less than minimum real number of the sec-
ond configuration and maximum real number of the first configuration is
less than maximum real number of the second configuration and is also
greater than or equal the minimum real number of the second configura-
tion.

rO when not !! and not step values are equal and minimum real number
of the first configuration is less than minimum real number of the sec-
ond configuration and maximum real number of the first configuration is
less than maximum real number of the second configuration and is also
greater than or equal the minimum real number of the second configura-
tion.

3.1.4 Relationship analysis

The search space represented by the USE instance finder configurations has a lot of
dimensions. Visualisation of all dimensions at once is very complex. There may also
be some possible inferred knowledge as object of interest. Special perspectives on
configurations may meet the requirements of the user. One of these perspectives
focuses on the relations between the search spaces represented by configurations.
In the common workflow with the USE instance finder, one may work for a model
with several configurations simultaneously. Not only the relationships between two
configurations but also between more than two configurations are object of interest.

It is already provided that the relationships regarding the search space are com-
puted based on the comparison result types. This allows to identify families of
search spaces represented by the configurations. Each two family members are ei-
ther equal (==) or one is the subset (<=) or super set (>=) of the other.

The implemented features provide a UI specific informative output, informing
about the computed families. This can be used to focus on the comparison details of
only family members in another comparison process. The displayed information is
then reduced and should make it easier to understand.

3.1.5 Command-line interface integration

The presented comparison concept and the procedure are implemented in USE. It
extends the functionality of the USE Shell, the CLI. This is explained in the following
and then complemented by an example.

Prerequisites for using the functionality are an UML/OCL model loaded in USE
and an existing model validator configuration file for the model. The comparison
command is available as modelvalidator -compareConfig and mv -cc. As manda-
tory argument the path to the configuration file must be specified. Optionally the
respected configurations from the file can be selected by specifying the names as ar-
guments. When no (valid) names are specified, all configurations from the file are
compared. Specified names are validated before comparison. When a name is speci-
fied twice, it will be only used once in the comparison process. If a name is specified
that is not contained in the file, it is ignored. In both cases an informative output
is given. When (valid) names are specified, only the corresponding configurations

32 Chapter 3. Extension of USE

from the file are compared. Of the set of to be compared configurations, each con-
figuration will be compared with each other configuration but not with itself. No
comparison is done with inverted operands.

The result of the comparison procedure of two configurations is expressed textu-
ally. The text contains a headline with the two configuration names and the symbol
for their comparison result. For each result type there is a section. It lists results of
levels of comparison comparing actual configuration aspects. Those levels are listed
in table 3.3 and table 3.4. Empty sections are not displayed. Displayed sections are
always ordered as in table 3.1. For each level specific partial comparison result, listed
under a section, additional information are given. The configuration attributes, to-
ken into account for partial comparison, are listed in a sentence that explains the par-
tial result. Additionally, the actual values of the configuration attributes are listed
pairwise for both configurations in brackets on the end of the sentence.

The result of the comparison procedure of multiple configurations pairwise is
also expressed textually. For each pair of configurations, the representation is as
explained before but numbered. Each headline has the number as prefix. Then a
table for an overview is given. The table contains the numbers of the comparisons,
the result symbol and the names of the two configurations compared. Because there
may be more text produced than it can be displayed on common screen sizes, this
is placed at the end of the output. This gives the most general information. After
that, the families are listed as lists of configuration names. Then the user can find
the parts of interest manually by scrolling through the details.

The textual representations of all possible values that can be displayed in the
textual comparison output do not need much space. For values of collection types,
which are only given for attribute that are not respected in the implementation, the
textual representation can become extremely large. This is the case, e.g., when listing
all elements of a collection. For this reason, the current concept of textual representa-
tion may not be an adaptable on implementing comparison procedures for collection
type configuration attributes.
1 [conf ig1]
2
3 Integer_min = −10
4 Integer_max = 10
5
6
7 [conf ig2]
8
9 Integer_min = −100

10 Integer_max = 100
11
12
13 [conf ig3]
14
15 Integer_min = 0
16 Integer_max = 10
17
18
19 [conf ig4]
20
21 Integer_min = 0
22 Integer_max = 100
23
24
25 [conf ig5]
26
27 Integer_min = 0

3.1. Configuration comparison 33

28 Integer_max = 1000
29
30
31 [conf ig6]
32
33 Integer_min = −10
34 Integer_max = 0
35
36
37 [conf ig7]
38
39 Integer_min = 100
40 Integer_max = 1000
41
42 [conf ig8]
43
44 Integer_min = −100000
45 Integer_max = −10000

LISTING 3.1: UML-based Specification Environment textual
instance finder configurations for model from fig. 2.1 used for

comparison

Listing 3.1 shows the content of a configuration file. The contained configura-
tions are used for configuration. Listing A.1 (s. appendix A) shows the results. The
configuration is reduced to representative aspects. Only the minimum and maxi-
mum integer value is specified in each configuration. In the following some note-
worthy comparison details are outlined.

config1 <= config2 because all other aspects are ignored or equal but the integer
configuration aspects indicate that config2 includes config1.

config2 != config5 because the integer configuration aspects comparison results in
lO but there are equal aspects.

config5 != config6 because the integer configuration aspects comparison results in
rO but there are equal aspects.

config6 != config7 because the integer configuration aspects comparison results in
lD but there are equal aspects.

One family, not containing config8, is found. Each of the configurations is related
to at least one of the other family members. config8 is != with all other con-
figurations.

3.1.6 Graphical user interface integration

The comparison functionality is also integrated in the GUI. This is explained in the
following and then complemented by adapting the example from the previous sec-
tion.

Prerequisites for using the functionality are an UML/OCL model loaded in USE
and an existing model validator configuration for the model loaded with the model
validator plugin. The comparison command is available as menu item Compare, in
menu Configuration, in the menu bar at the top of the model validator window. A
dialog to specify the configuration name opens on selection of the menu item. If suc-
cessfully a name is specified the comparison window opens. The model validator
window will freeze until the comparison window is closed. Initially all configura-
tions from the state in the model validator are compared. While the configurations

34 Chapter 3. Extension of USE

may have been loaded from a file, it can contain unsaved changes. The state with
changes is used for comparison.

The comparison window has a configuration selection area on the left, with func-
tion buttons on the bottom. The comparison overview is the main part of the win-
dow. Initially all configurations are selected and the overview contains the compari-
son overview for comparing all configurations. An overview is given with a matrix.
The upper row and left column each contain all selected configurations names. Cells
under the upper row and right of the left column contain each the comparison result
symbol for the configurations indicated by the left cell in the row and the upper cell
in the column. Inverted comparison and comparison with configurations itself is
processed.

In the selection area, a selection of configurations to be compared can be made.
Clicking the button is necessary for applying the selection to update the overview.
Single selection can be made by clicking on the listed name. Multi line selection can
be made holding the shift button on keyboard and then clicking on the listed name.
All names are selected, starting with the lastly selected name and ending with the
now selected name. The present selection can be expanded via multi selection by
holding the command button on keyboard and then clicking on the listed name.
Additional selection options are accessible via the corresponding button. Options to
select all names or deselect all names are provided. Here, also the found families,
regarding the compared section currently displayed in the overview area, are listed.
For each family, there is an option to only select all family members.

Comparison details are here also given textually in the form that is described in
the previous section. Each comparison details of the pairwise comparison are acces-
sible via double click in the corresponding cells in the matrix in the overview area.
Details will be provided in a separate comparison details window. The comparison
overview window will freeze until the comparison details window is closed. The
comparison details window contains the textual representation of the comparison
details.

3.1. Configuration comparison 35

FIGURE 3.1: UML-based Specification Environment initial compari-
son overview for comparing configurations from listing 3.1

36 Chapter 3. Extension of USE

FIGURE 3.2: UML-based Specification Environment comparison
overview selection options for example shown in fig. 3.1

FIGURE 3.3: UML-based Specification Environment initial compari-
son overview for comparing configurations from listing 3.1

3.1. Configuration comparison 37

FIGURE 3.4: UML-based Specification Environment comparison
overview for comparing selected configurations from listing 3.1

Figure 3.1 shows the initial comparison window for comparing configurations
from listing 3.1. All configurations are selected initially and therefor the overview
shows the comparisons of all contained configurations. Figure 3.2 shows the se-
lection options given for the comparison window content. The option to select the
found family is hovered. The comparison details window opens when double click-
ing on the corresponding comparison result type symbol in a cell of the matrix in the

38 Chapter 3. Extension of USE

overview area. It is shown in fig. 3.3. The overview panel potentially exceeds a fully
displayable size. If the window is too small, the overview area becomes scrollable
in vertical and horizontal dimensions. With selecting less configurations to be com-
pared, the information to display in the overview area decreases and therefor also
the size needed decreases. Figure 3.4 shows the comparison window in which only
a subset of the configurations is selected.

3.2 Constraint satisfaction problems applied for generation
of configurations

USE already provides functionality to generate configurations with fixed default val-
ues. The problems with this and the potential benefits of a more complex generation
feature are covered here. A clever generation feature is implemented. The under-
lying problem and the benefits of this feature are presented in the following. The
following sections contain details and examples of the implemented feature.

Initial configurations, generated by USE, contain fixed default values. In most
cases, such a default configuration does not represent an appropriate search space in
terms of bounded model checking. On most of the models, no instances can be found
with those default configurations. Additionally, the time needed for computing this
result is sometimes very short, but also often very long.

The implemented feature provides the definition of element specific initial bounds.
This can be done on different levels. Initial bounds can be specified generally for all
model elements. They also can be specified generally for all model elements but
specifically for classes or one class and so on. The precision of the initial bounds is
selected by the user. The specification solely on the top level provides a simple and
fast option. With the initial bounds a bounds tightening procedure is started. The
result is a configuration that has exactly the initial bounds or more tight bounds.
The bounds tightening process reduces the search space for model instance find-
ing. It does not reduce the set of model instances to be found. Since the imple-
mented bounds tightening process can only be applied for finite domains, the initial
bounds specification can not contain unlimited domains. This would be possible in
the configurations. The implemented feature provides options to overwrite attribute
bounds with special values, representing boundlessness, after the bounds tightening
procedure.

There may be other and simpler possibilities to solve the underlying problem.
The applied concepts are adopted for other features. Therefor, the costs for imple-
mentation are shared. The implemented feature is very complex but also provides
various precision possibilities with the flexible initial bounds specification.

There are several benefits of the implemented feature. First of all, the bounds
tightening may not be possible due to inconsistencies in the model or inappropriate
initial bounds. To verify that it is not caused by inappropriate initial bounds, the
clever generation process can be started again with most general initial bounds. If
bounds tightening is not possible once again, obviously the model contains incon-
sistencies so that model instances can not exist. Another benefit is that the bounds
tightening eliminates search space. Therefor, the model instance finding process
may become faster. The implemented feature also enables all type settings for types
that are used in the model. The present default generation process does not enable
model specific types. Therefor, this must be enabled by hand. The implemented
feature disables also all type settings for types that are not used in the model.

3.2. Constraint satisfaction problems applied for generation of configurations 39

The implemented feature is presented in detail in the following subsections. The
first section presents the crucial concept of bounds tightening applied for the gener-
ation procedure. Adjustment options, that are applied after bounds tightening, are
presented in the second section. The last two sections present the integrations in the
UIs.

3.2.1 Bounds tightening for configurations with derived model specific
attributes

Bounds tightening is achieved using CSPs with simple ranges for variable domains.
The concept of bounds tightening is presented in the following. Variables for all
model elements are taken, representing the minimum and maximum number of in-
stances. Constraints are derived from several other model aspects, e.g. the relations
of classes and the multiplicities of associations. On the resulting CSP, a redundant
search space removal procedure is applied. The variable domains in the resulting
optimised CSP are then transferred to configuration aspects for the corresponding
model elements. Theses steps are presented in detail in the following.

The specification of variables and their domains is the first step of the bounds
tightening procedure. A variable is created for each class and association. A vari-
able is also created for each attribute that is owned by a class. This differs from the
concept in the configurations. There are settings for a variable only on most general
level in the configuration. Here, also for abstract classes variables are created. Re-
garding classes and associations the variables represent the number of instances of
these elements. The variables for attributes represent the numbers of objects with
value for the attribute. Only finite domains for variables are allowed. The domains
are represented as simple ranges. The value −1 for attribute lower bounds and at-
tribute and association upper bounds can not be expressed. Configuration aspects
for type domains, invariants and options are not included in the bounds tighten-
ing process. The initial domains for all variables here must be specified using the
corresponding UI.

Adding model specific constraints to the CSP is the second step of the bounds
tightening procedure. There a four kinds of constraints. There are constraints for
generalisations. Secondly, there are constraints for the dependencies of the number
of defined attributes to the amount of owning classes instances. Thirdly, there are
constraints for the dependencies of the number of links regarding the multiplicities
and for the numbers of associated objects. Lastly, there are constraints derived from
the model invariants. A constraint is added for each class with subclasses. The num-
ber of objects for a parent class must be equal to the sum of numbers of objects of
its child classes. At least one constraint is added for each attribute. The number
of objects of each attributes owning class must be greater than or equal the number
of defined attributes. For each binary association up to four constraints are added,
because for each of the two association ends up to two constraints are added. The
number of links must be greater than or equal the minimum multiplicity of the as-
sociation end times the number of objects of the class of the other association end. If
the multiplicity is unbound, 0 is used as minimum multiplicity. The number of links
must be less than or equal the maximum multiplicity of the association end times
the number of objects of the class of the other association end. If the multiplicity is
unbound, no constraint for the maximum multiplicity is added. If the minimum and
maximum multiplicity is equal, only one corresponding constraint is added. Then
the number of links must be equal to the equal minimum and maximum multiplicity
of the association end times the number of objects of the class of the other association

40 Chapter 3. Extension of USE

end. Associations with more than two ends are currently ignored. No constraints
are added for model invariants. Deriving constraints from model invariants is very
complex, because there are various special cases to handle. Clarisó, González, and
Cabot (2019) already presented a method to generate OCL expression specific CSP
constraints for invariants. The current implementation may be extended to include
this method.

An external Java framework for CSP functionality is used for the domain optimi-
sation. The Choco Solver version 4.10.2 is used. It is an open-source Java library for
constraint programming. The generated CSP is translated to a structure defined in
the framework. The optimisation is processed by using the appropriate functionality
provided by the framework.

Adopting the variables domains of the optimised CSP in a configuration is the
last step. Firstly, a configuration is generated with the default generation process.
This configuration is enriched by the bounds represented by the model elements
variables domains. For classes and associations the minimum and maximum num-
bers of instances are set to the domain bounds of the corresponding CSP variables.
The inherited attributes of all classes are not respected in this process. Only the at-
tributes directly defined are respected for each class. The minimum and maximum
numbers of defined attributes are set to the domain bounds of the corresponding
CSP variables. As last action, all needed type settings are enabled. Type settings
gets enabled when there exists an attribute of that type, whose maximum defined
value is not 0. Otherwise they get disabled. Several configuration aspects are un-
changed. In detail, all values for preferred and required values settings, the values
for integer and real minimum and maximum settings, the value for real step setting,
the values for string minimum and maximum number of different values settings
and the option settings and invariant settings, as well as the values for minimum
and maximum number of elements for collection type attributes are unchanged.

At this point, a configuration is already generated. The value −1 for attribute
lower bounds and attribute and association upper bounds is not supported until the
generation procedure reaches this point. The clever generation procedure supports
additional options for actions applied after the CSP bounds tightening result is trans-
ferred to a configuration. The first option is to set all attribute lower bounds to −1.
The second option is to set all attribute upper bounds to −1 when they are greater
than or equal the upper bound of their owning class. An attribute specific option
choice is as complex as processing those attribute specific modifications manually.
This is why its scope has been kept so general.

1 V = {
2 Class . Person . A t t r i b u t e . favoriteNumber ,
3 Class . Person . A t t r i b u t e . id ,
4 Class . Indiv idual . A t t r i b u t e . id ,
5 Class . Pet . A t t r i b u t e . id ,
6 Class . Individual ,
7 Class . Person . A t t r i b u t e . lName ,
8 Class . Person . A t t r i b u t e . yearB ,
9 Class . Pet . A t t r i b u t e . nickName ,

10 Class . Person . A t t r i b u t e . nicknames ,
11 Class . Person . A t t r i b u t e . fName ,
12 Assoc ia t ion . P e t S i t t i n g ,
13 Assoc ia t ion . Parenthood ,
14 Class . Person ,
15 Class . Pet
16 }
17
18 D = {

3.2. Constraint satisfaction problems applied for generation of configurations 41

19 [1 , 1 0 0] ,
20 [1 , 1 0 0] ,
21 [1 , 1 0 0] ,
22 [1 , 1 0 0] ,
23 [1 , 1 0 0] ,
24 [1 , 1 0 0] ,
25 [1 , 1 0 0] ,
26 [1 , 1 0 0] ,
27 [1 , 1 0 0] ,
28 [1 , 1 0 0] ,
29 [1 , 1 0 0] ,
30 [1 , 1 0 0] ,
31 [1 , 1 0 0] ,
32 [1 , 1 0 0]
33 }
34
35 C = {
36 " Association.PetSitting = 1 ∗ Class.Pet "
37 "Class.Person ≥ Class.Person.Attribute.yearB "
38 " Association.Parenthood ≥ 0 ∗ Class.Person "
39 " Association.Parenthood ≥ 0 ∗ Class.Person "
40 " Association.PetSitting ≥ 2 ∗ Class.Person "
41 "Class.Person ≥ Class.Person.Attribute.lName "
42 "Class.Person ≥ Class.Person.Attribute. f avoriteNumber "
43 "Class.Person ≥ Class.Person.Attribute.id "
44 " Association.Parenthood ≤ 2 ∗ Class.Person "
45 "Class.Pet ≥ Class.Pet.Attribute.nickName "
46 "Class.Individual = Class.Pet + Class.Person "
47 "Class.Person ≥ Class.Person.Attribute.nicknames "
48 "Class.Person ≥ Class.Person.Attribute. f Name "
49 "Class.Pet ≥ Class.Pet.Attribute.id "
50 "Class.Individual ≥ Class.Individual.Attribute.id "
51 }

LISTING 3.2: Constraint satisfaction problem for model from
fig. 2.1 with general one to 100 domains

18 D = {
19 [1 , 4 9] ,
20 [1 , 4 9] ,
21 [1 , 1 0 0] ,
22 [1 , 9 9] ,
23 [3 , 1 0 0] ,
24 [1 , 4 9] ,
25 [1 , 4 9] ,
26 [1 , 9 9] ,
27 [1 , 4 9] ,
28 [1 , 4 9] ,
29 [2 , 9 9] ,
30 [1 , 9 8] ,
31 [1 , 4 9] ,
32 [2 , 9 9]
33 }

LISTING 3.3: Optimised domains of constraint satisfaction
problem for model from fig. 2.1 with general one to 100 domains

1 [conf ig1]
2
3 Integer_min = −10
4 Integer_max = 10
5
6 String_max = 10

42 Chapter 3. Extension of USE

7
8 Real_min = −2.0
9 Real_max = 2 . 0

10 Real_step = 0 . 5
11
12 # −−−

Indiv idual
13
14 Individual_id_min = −1
15 Individual_id_max = −1
16
17 #

−−−
Person

18 Person_min = 1
19 Person_max = 49
20
21 Person_fName_min = −1
22 Person_fName_max = −1
23 Person_favoriteNumber_min = −1
24 Person_favoriteNumber_max = −1
25 Person_lName_min = −1
26 Person_lName_max = −1
27 Person_nicknames_min = −1
28 Person_nicknames_max = −1
29 Person_nicknames_minSize = 0
30 Person_nicknames_maxSize = −1
31 Person_yearB_min = −1
32 Person_yearB_max = −1
33
34 # Parenthood (parent : Person , c h i l d : Person) − − − − − − − − − − − − − −

− − − − −
35 Parenthood_min = 1
36 Parenthood_max = 98
37
38 # P e t S i t t i n g (s i t t e r : Person , pet : Pet) − − − − − − − − − − − − − − − −

− − − − −
39 PetS i t t ing_min = 2
40 PetSi t t ing_max = 99
41
42 #

−−
Pet

43 Pet_min = 2
44 Pet_max = 99
45
46 Pet_nickName_min = −1
47 Pet_nickName_max = −1
48 #

−−

49 a g g r e g a t i o n c y c l e f r e e n e s s = on
50 forbiddensharing = on

LISTING 3.4: Optimised UML-based Specification Environment
instance finder configuration for model from fig. 2.1 with general

one to 100 domains

Using as most general domain specification a range from one to 100, the CSP
shown in listing 3.2 is generated for the previously presented UML class diagram

3.2. Constraint satisfaction problems applied for generation of configurations 43

model. Constraints for the generalisation of Pet and Person with Individual, con-
straints for all attributes of all classes and constraints for all association ends are con-
tained in this example. Beside the simple constraints for generalisation and depen-
dencies of attributes to classes, the constraints for association ends are noteworthy.
The end child of association Parenthood with multiplicity at least zero and the end
parent of association Parenthood with multiplicity zero up to two result in the two
constraints constraining the number of links to be greater than or equal zero. The
end parent also constraining the number of links to be less than or equal two times
the number of objects of class Person. The end sitter of association PetSitting
with multiplicity one constrains the number of links to exactly the number of objects
of class Pet. The other end pet with multiplicity two up to four or six or more than
six does not sole constrain the maximum number of links. The minimum number of
links is constrained to be at least two times the number of objects for class Person.

Applying the bounds tightening procedure, the domains are reduced. Listing 3.3
shows the optimised CSP domains for listing 3.2. Since there is at least one object for
Person, there must be two links of PetSitting and therefor two objects of class Pet.
In addition, it follows that there must be at least three objects of class Individual.
Since there is at least one object of class Person, there can only be 99 objects of class
Pet, because they are all objects of class Individual and there can only be 100 objects
of class Individual. Since there can only be 99 objects of class Pet, there also can
only be 99 links of PetSitting and therefor there can only be 49 objects of class
Person.

The numbers of objects of class Pet is at least two times the number of objects
of class Person and therefor there can exist only up to 33 objects of class Person
when there can only exits 100 objects of class Individual. This is not covered with
the given constraints. Advanced constraint generation or further processing of the
constraints may result in even tighter domains. The space of different combina-
tions of domain values represented by the CSP variables from listing 3.2 is in list-
ing 3.3 nevertheless already reduced from 10014 = 1028 to 100 ∗ 992 ∗ 984 ∗ 497 =
6, 13122497554589853891984 ∗ 1025. This means an reduction by at least factor 163.

A configuration adopting the optimised domains is shown in listing 3.4. The
options to conditionally set attribute lower and upper bounds to −1 are applied.
The minimum and maximum numbers of links are adopted from the CSP domains
for both associations. For the two non abstract classes the configurations aspects are
adopted but not for the abstract class. The computed information for abstract classes
is discarded with the current implementation of the model validator plugin. Since
all three types are used for attributes of classes which may have instances, there are
configuration aspects for all three types.

3.2.2 Command-line interface integration

The presented configuration optimisation and generation concepts are implemented
in USE. It extends the functionality of the USE Shell, the CLI. This is explained in the
following.

Prerequisite for using the functionality is an UML/OCL model loaded in USE.
The clever generation command is available as modelvalidator –createSmartConfig
and mv -csc. As mandatory argument, the path to a configuration file must be spec-
ified. An already existing file at that path will not be read but may be overwritten.
Optionally flags can be specified. The invariants are respected on generating the
CSP constraints with –respectOclConstraints and -roc. This is not supported yet.

44 Chapter 3. Extension of USE

Specifying the flag will currently result in a corresponding information and pre-
mature discontinuance. With –mandatorizeAttributes and -ma the generated con-
figuration will have value −1 for all minimum numbers of defined attributes. With
–generalizeAttributeUpperBounds and -gab the generated configuration will have
value −1 for all maximum numbers of defined attributes, if the computed number
is equal or greater than the maximum number of instances of the owning class. Fi-
nally the initial bounds must be specified. Two values are mandatory. The first
value is the general lower bound and the second value is the general upper bound.
More precise initial bounds can be optionally specified afterwards. For all model
elements and the three types of model elements an option is provided. More pre-
cise bounds can be specified with <option>.[<lb>,<ub>]. <lb> and <ub> must be
replaced by the lower and upper bound values. The value of the upper bound must
be equal or greater than the value of the lower bound. <option> must be replaced
by a model elements option. Classes, Attributes and Associations are the op-
tions to specify general bounds for kinds of model elements. To be more precise,
the options Class.<class> for classes, Class.<class>.Attribute.<attribute> for
attributes and Association.<association> for associations are provided. <class>,
<attribute> and <association> must be replaced by the model elements name.
The bounds tightening procedure may fail because there can be specified initial
bounds for that some CSP constraints are contradictory. In this case, no configura-
tion is generated but the appropriate information is given. Elsewise, a configuration
is generated and saved as a file at the specified path.

3.2.3 Graphical user interface integration

The clever generation functionality is also integrated in the GUI. This is explained in
the following and then complemented by adapting the example from the previous
section.

Prerequisite for using the functionality is an UML/OCL model loaded in USE.
The clever generation command is available as menu item New (clever) in menu
Configuration, in the menu bar at the top of the model validator window. A dialog
to specify the configuration name opens on selection of the menu item. The clever
generation window opens if successfully a name is specified. The model validator
window will freeze until the clever generation window is closed. The clever gen-
eration window contains an option area at the top. For each of the three options
that are also supported on CLI, there is a checkbox. Initially only the checkbox for
enabling respecting OCL invariants for the CSP constraints is disabled. When en-
abling the option, currently an error dialog pops up, which informs about that this
functionality is not supported. The option disables itself. The main area displays the
initial bounds specification. For all model elements and the three model elements
types, there is firstly a checkbox for enabling precise specification or for disabling.
Disabling the checkbox means to adopt the more general specification. For all these
and for the most general initial bounds specification, there are two number input
fields. Initially all deactivatable specifications are deactivated and the most initial
bounds are set to the range from one to 100. On the bottom of the window there
is a button that starts the generation. The clever generation window closes. When
the generation process fails, a dialog informs about the error. Elsewise, the model
validator window will display the newly generated configuration.

3.2. Constraint satisfaction problems applied for generation of configurations 45

FIGURE 3.5: UML-based Specification Environment clever generation
view for model from fig. 2.1

Figure 3.5 shows the initial clever generation window for the model from fig. 2.1.
The number of model elements depends on the model. Therefor, there may be more
model elements than their specification options can be displayed at the same time.
The window is to small to display all specification options at once. Therefor, the win-
dow area containing the specification options is scrollable, which solves the prob-
lem.

46 Chapter 3. Extension of USE

3.3 Validation of configurations

Several problems are present with the permissive specification of configuration as-
pects. Validation of the absence of the corresponding problems may be a valuable
feature. With the previously presented elimination of redundant search space also
an adoption for validation already suggests itself. A configuration validation fea-
ture is implemented. The underlying problem and the benefits of this feature are
presented in the following. The following sections contain details and examples of
the implemented feature.

Configurations can specify inappropriate search spaces in terms of bounded mo-
del checking. Simple but inappropriate configuration details may cause the result
of not finding any instance. The absence of certain kinds of inconsistencies could be
validated automatically. Additionally, USE currently allows to specify search space
aspects, that are obviously contradictory.

A feature is implemented that allows to analyse configurations for invalidities.
Several validity rules are specified, which can be evaluated on all configurations.
These rules are typified regarding the significance of the indicated invalidity. Fur-
thermore, this is complemented with providing modification suggestions for rule
violations. Also, the absence of redundant search space is defined as validity rule.

In the following subsections the implemented feature is presented in detail. The
first section presents the adaption of the bounds tightening concept applied for the
validation procedure. The general validation concepts are then presented in the
second section. Here, the details of the underlying problems are not explained in
advance but this introduction is implied in the presentation of the conceptualised
validity rules. The feature supports proposing modifications for fixing invalidities.
This is presented in the third section with the general application procedure of these
fixes. The last two sections present the integrations in the UIs.

3.3.1 Constraint satisfaction problems applied for validation of instance
finder configurations

The concept of bounds tightening can be applied to validate whether a configuration
represents redundant search space. In the following, it is presented how this is done
in detail.

As a prerequisite, several kinds of inconsistencies must not be present for suc-
cessfully applying the procedure explained in the following. The inconsistencies,
that must not be present, are described in the next section. Generally, the integra-
tion of the here presented validation aspects into the overall validation procedure, is
included in the next section.

First of all, a copy is created for the to be validated configuration. Later on, the
redundant search space will be eliminated using the copy and then the represented
search spaces will be compared. The differences indicate presence of redundant
search space.

Only the bounds regarding model elements, e.g. classes, attributes and associ-
ations, are of relevance for the bounds tightening procedure. Only those are pro-
cessed in the copying process. Some aspects of the to be copied configuration are
not suitable for the bounds tightening procedure and therefor must be replaced by
appropriate values. The minimum and maximum numbers of objects are adopted
for the copy. If the minimum number of defined attributes is−1 for an attribute, then
the owning classes bounds are adopted. The minimum number of objects are used
for the minimum number of defined attributes and the maximum number of objects

3.3. Validation of configurations 47

are used for the maximum number of defined attributes. If the minimum number of
defined attributes is not −1 but the maximum number of defined attributes is −1,
then the minimum number of defined attributes is adopted. As maximum number
of defined attributes the larger value of the minimum number of defined attributes
and the maximum number of objects of the owning class is used. Elsewise, the min-
imum and maximum numbers of defined attributes are adopted for the copy. The
minimum numbers of links are adopted for the copy. If for an association the max-
imum number of links is −1, then the highest applicable integer number is used.
Elsewise, the maximum number of links is adopted for the copy. The highest appli-
cable integer number is 2147483646. This is highest integer value, representable in
Java, minus one. The subtraction is done because the higher value results in errors
with the used CSP framework.

Since the initial domain bounds specification in terms of CSP variables is pos-
sible specifically for all model elements, the configuration aspects contained in the
copy can be used for the initial domain bounds specification. The minimum and
maximum values used in all these bounds are computed. They are used as most
general bounds in the initial domain bounds specification. With the initial domain
bounds specification, a clever generation procedure is processed and the resulting
configuration is further used. The model elements configuration aspects of the gen-
erated configuration and the original configuration are compared. If there are dif-
fering configuration aspects that represent a tighter search space with the generated
configuration, then the original configuration contains redundant search space.

3.3.2 Validity rules

For validation of absence of inconsistencies in configurations, it suggests itself to de-
fine the unwanted inconsistencies. This is done here with a definition of 32 rules.
For the procedure of evaluating the rules, there is the special aspect that some rules
depend on no violations of specific other rules. It is specified for each rule on which
other rules it depends on. Since one rule can depend on inviolations of two other
rules, which both depend on inviolation of one same rule, the dependency struc-
turally is a representable as a graph. For deterministic terminating rule evaluating
procedure, there must be no loops in the dependency structure.

48 Chapter 3. Extension of USE

Rule Definition overview
1 Integer type settings must be conditionally enabled.
2 Integer type settings must be conditionally disabled.
3 Minimum integer value must be less than or equal maximum.
4 Preferred integer values must not contain invalid values.
5 All rules regarding integer type settings must be inviolated.
6 String type settings must be conditionally enabled.
7 String type settings must be conditionally disabled.
8 Minimum and maximum number of strings must be greater than 0.
9 Minimum number of strings must be less than or equal maximum.
10 Preferred string values must not contain to much values.
11 All rules regarding string type settings must be inviolated.
12 Real type settings must be conditionally enabled.
13 Real type settings must be conditionally disabled.
14 Minimum real value must be less than or equal maximum.
15 Real step value must be less than or equal difference of maximum and mini-

mum.
16 Maximum real value must be reachable from minimum in steps of real step

value.
17 Preferred real values must not contain invalid values.
18 All rules regarding real type settings must be inviolated.
19 All rules regarding type settings must be inviolated.
20 Minimum and maximum number of objects must be greater than or equal 0.
21 Minimum number of objects must be greater less or equal maximum.
22 Preferred objects must not contain too much values.
23 Minimum and maximum number of objects of abstract classes must be sums

of directly derived classes.
24 Maximum number of links must be greater than or equal −1.
25 Minimum number of links must be greater than or equal 0.
26 Maximum number of links must be greater than or equal minimum if not−1.
27 Required links must not contain invalid object names.
28 Minimum and maximum number of links must be greater than or equal num-

ber of required links.
29 All rules regarding association settings must be inviolated.
30 All rules regarding class settings must be inviolated.
31 Minimum number of defined attributes must be greater than or equal −1.
32 Maximum number of defined attributes must be greater than or equal −1.
33 Minimum number of defined attributes must be less than or equal maximum

if not −1.
34 Maximum number of defined attributes must be less than or equal maximum

number of objects if not −1.
35 Minimum number of contained attributes for collection type attributes must

be greater than or equal 0.
36 Maximum number of contained attributes for collection type attributes must

be greater than or equal minimum or −1.
37 All rules regarding attribute settings must be inviolated.
38 Invariants must be unnegated if not active.
39 All rules regarding invariant settings must be inviolated.
40 The configuration must not represent search space that contains redundant

search space.
41 All other rules must be inviolated.

TABLE 3.5: Validity rules overview

3.3. Validation of configurations 49

Rule
Inviolation

dependencies
Definition

1 ∅ This is violated when integer type settings are disabled but
should be enabled. They should be enabled if there is at least
one class that is configured to potentially have instances and
that has at least one attribute of type integer that is configured
to potentially be defined.

2 ∅ This is violated when integer type settings are enabled but
should be disabled. They should be disabled if there is not at
least one class that is configured to potentially have instances
and that has at least one attribute of type integer that is con-
figured to potentially be defined.

3 {1, 2} This is violated if integer type settings are enabled and the
minimum integer number is not less than or equal the maxi-
mum integer number.

4 {3} This is violated if integer type settings are enabled and the
not all preferred integer values are contained in the domain
defined by minimum and maximum integer number.

5 {4} Is only not violated if implicitly all rules regarding configura-
tion aspects for integer type are not violated.

6 ∅ This is violated when string type settings are disabled but
should be enabled. They should be enabled if there is at least
one class that is configured to potentially have instances and
that has at least one attribute of type string that is configured
to potentially be defined.

7 ∅ This is violated when string type settings are enabled but
should be disabled. They should be disabled if there is not at
least one class that is configured to potentially have instances
and that has at least one attribute of type sting that is config-
ured to potentially be defined.

8 {6, 7} This is violated if string type settings are enabled and the min-
imum and maximum number of string values is less than or
equal 0.

9 {8} This is violated if string type settings are enabled and the min-
imum number of string values is not less than or equal the
maximum number of string values.

10 {8} This is violated if string type settings are enabled and the pre-
ferred values contain more elements than the maximum num-
ber of string values specifies.

11 {9, 10} Is only not violated if implicitly all rules regarding configura-
tion aspects for string type are not violated.

12 ∅ This is violated when real type settings are disabled but
should be enabled. They should be enabled if there is at least
one class that is configured to potentially have instances and
that has at least one attribute of type real that is configured to
potentially be defined.

TABLE 3.6: Validity rules (Part 1)

50 Chapter 3. Extension of USE

Rule
Inviolation

dependencies
Definition

13 ∅ This is violated when real type settings are enabled but
should be disabled. They should be disabled if there is not at
least one class that is configured to potentially have instances
and that has at least one attribute of type real that is config-
ured to potentially be defined.

14 {12, 13} This is violated if real type settings are enabled and the mini-
mum real number is not less than or equal the maximum real
number.

15 {14} This is violated if real type settings are enabled and the real
step value is not less than or equal the difference of maximum
and minimum real number.

16 {15} This is violated if real type settings are enabled and the mod-
ulo of difference of maximum and minimum real and the real
step value is not 0. This means the maximum real number
must be reachable from the minimum real number in steps of
the real step value.

17 {16} This is violated if real type settings are enabled and not all
preferred real values are contained in the domain defined
by minimum and maximum real numbers and the real step
value.

18 {17} Is only not violated if implicitly all rules regarding configura-
tion aspects for real type are not violated.

19 {5, 11, 18} Is only not violated if implicitly all rules regarding all config-
uration aspects for types are not violated.

20 ∅ This is violated if for at least one class the minimum or maxi-
mum number of objects is not greater than or equal 0.

21 {20} This is violated if for at least one class the minimum number
of objects is not less than or equal the maximum number of
objects.

22 {21} This is violated if for at least one class the preferred values
contain more elements than the maximum number of objects
specifies.

23 {21} This is violated if for at least one abstract class the minimum
number of objects is not equal to the sum of the minimum
numbers of objects of directly derived classes or the maxi-
mum number of objects is not equal to the sum of the maxi-
mum numbers of objects of directly derived classes.

24 ∅ This is violated if for at least one association the maximum
number of links is not greater than or equal to −1.

25 ∅ This is violated if for at least one association the minimum
number of links is not greater than or equal to 0.

26 {24, 25} This is violated if for at least one association the maximum
number of links is not −1 and not greater than or equal to the
minimum number of links.

TABLE 3.7: Validity rules (Part 2)

3.3. Validation of configurations 51

Rule
Inviolation

dependencies
Definition

27 {26} This is violated if not all object names contained in
the preferred links are contained in the preferred object
names.

28 {27} This is violated if for at least one association the number
of required links is less than or equal to the minimum
and maximum number of links.

29 {28} Is only not violated if implicitly all rules regarding con-
figuration aspects for associations are not violated.

30 {22, 23} Is only not violated if implicitly all rules regarding con-
figuration aspects for classes are not violated.

31 ∅ This is violated if for at least one attribute the minimum
number of defined attributes is not greater than or equal
to −1.

32 ∅ This is violated if for at least one attribute the maximum
number of defined attributes is not greater than or equal
to −1.

33 {31, 32} This is violated if for at least one attribute the minimum
number of defined attributes is not −1 and is also not
less than or equal to the maximum number of defined
attributes.

34 {30, 33} This is violated if for at least one attribute the maximum
is not −1 and not less than or equal the number of ob-
jects of the owning class.

35 ∅ This is violated if for at least one attribute of collection
type the minimum number of contained elements in de-
fined attributes is not greater than or equal to 0.

36 {35} This is violated if for at least one attribute of collec-
tion type the maximum number of contained elements
in defined attributes is not −1 and not greater than or
equal to the minimum number of contained elements in
defined attributes.

37 {34, 36} Is only not violated if implicitly all rules regarding con-
figuration aspects for classes and their attributes are not
violated.

38 ∅ This is violated if for at one invariant is configured to be
negated while it is not configured to be activated.

39 {38} Is only not violated if implicitly all rules regarding con-
figuration aspects for invariants are not violated.

40 {30, 37, 29} This is violated if the model elements configuration as-
pects represent a search space containing redundant
search space.

41 {19, 30, 37, 29, 39, 40} Is only not violated if implicitly all rules are not vio-
lated.

TABLE 3.8: Validity rules (Part 3)

52 Chapter 3. Extension of USE

41

19

29

39

30

37

40

38

34 36

3533

32 31

22 23

21

20

28

27

26

25 24

5 11 18

4

3

2 1

9 10

8

6 7

17

16

15

14

13 12

FIGURE 3.6: Inconsistency dependency structure for validity rules

The set of validity rules is presented in table 3.6, 3.7 and 3.8. 41 rules are defined,
containing 32 rules that have an explicit validity definition. The other rules are just
containers for subsets of the rules.

Figure 3.6 shows the evaluation dependency structure of the validity rules. Rules
without an explicit validity definition are visualised with a darker background. Ob-
viously there are no loops. The dependency structure also does only show finite
chains of dependency relations. Therefor, the rule evaluating procedure can be de-
terministic and terminating.

3.3. Validation of configurations 53

When evaluating a validity rule, firstly all validity rules the rule depends on are
evaluated. If they are all not violated and there is a specific validity definition for
the rule, it is evaluated whether it is not violated. If they are all not violated and
there is no specific validity definition, the rule is not violated. The overall validation
is achieved by starting with rule 41. Implicitly, all other rules are not allowed to be
violated.

A rule can be violated more than once, when validating one configuration. If the
model contains multiple non abstract classes, then for example rule 20 can be vio-
lated for each class. This provides an extended basis for proposing applicable fixes
for violations. When evaluating a rule, not only the first violation but all violations
of the rule are computed.

3.3.3 Proposed applicable fixes

For violations of validity rules, there may are some potential modifications on the
relevant configuration aspects, that bring absence of the violations. The computation
of proposed applicable modifications, that (partially) fix the relevant configuration
aspects, is implemented. This proposed fixes are presented in the following. The
modifications each depends on the corresponding validity rules.

Violated
rule

Proposed applicable fixes

1 Multiple fixes are provided:
• Enable integer type settings.
• For each integer attribute whose maximum defined value is greater

than 0 and whose classes maximum number of instances is not 0,
set minimum and maximum number of its owning class to 0.
• For each integer attribute whose maximum defined value is greater

than 0 and whose classes maximum number of instances is not 0,
set minimum and maximum number of defined attributes to 0.

2 Disable integer type settings.
3 Multiple fixes are provided:

• Set minimum integer value to value of maximum integer value.
• Set maximum integer value to value of minimum integer value.

4 Multiple fixes are provided:
• Remove all values from the preferred integer values that are not

contained in the domain represented by minimum and maximum
integer values.
• Set minimum integer value to lowest value contained in preferred

integer values if this value is lower than the original minimum in-
teger value.
• Set maximum integer value to highest value contained in preferred

integer values if this value is higher than the original maximum
integer value.
• If both foregoing fixes are provided, they are also provided as bun-

dle.

TABLE 3.9: Proposed applicable fixes for validity rules (Part 1)

54 Chapter 3. Extension of USE

Violated
rule

Proposed applicable fixes

6 Multiple fixes are provided:
• Enable string type settings.
• For each string attribute whose maximum defined value is greater

than 0 and whose classes maximum number of instances is not 0,
set minimum and maximum number of its owning class to 0.
• For each string attribute whose maximum defined value is greater

than 0 and whose classes maximum number of instances is not 0,
set minimum and maximum number of defined attributes to 0.

7 Disable string type settings.
8 Multiple fixes are provided:

• If minimum and maximum numbers of different string values are
less than 0, set both to 0.
• If minimum number of different string values is less than 0, set it

to 0.
• If maximum number of different string values is less than 0, set it

to 0.
9 Multiple fixes are provided:

• Set minimum number of different string values to value of maxi-
mum number of different string values.
• Set maximum number of different string values to value of mini-

mum number of different string values.
10 Multiple fixes are provided:

• Set maximum number of different string values to size of preferred
string values.
• Remove the last preferred string values so that the size is equal to

the maximum number of different string values.
12 Multiple fixes are provided:

• Enable real type settings.
• For each real attribute which maximum defined value greater than

0 and whose classes maximum number of instances is not 0 set min-
imum and maximum number of its owning class to 0.
• For each real attribute which maximum defined value greater than

0 and whose classes maximum number of instances is not 0 set min-
imum and maximum number of defined attributes to 0.

13 Disable real type settings.
14 Multiple fixes are provided:

• Set minimum real value to value of maximum real value.
• Set maximum real value to value of minimum real value.

15 Multiple fixes are provided:
• If real step value is less than 0, set it to the difference of maximum

and minimum real values.
• If real step value is greater than the difference of maximum and

minimum real values, set the maximum real value to the sum of
the difference and the minimum real value.
• If real step value is greater than the difference of maximum and

minimum real values, set the minimum real value to the difference
of the maximum real value and the other difference.

TABLE 3.10: Proposed applicable fixes for validity rules (Part 2)

3.3. Validation of configurations 55

Violated
rule

Proposed applicable fixes

16 Multiple fixes are provided:
• If there exists a lower value than the maximum real value for that

modulo of difference of this value and minimum real and the real
step value is 0 and this value is greater than the minimum real
value, set the maximum real value to this value.
• Set the maximum real value to the next higher value for that mod-

ulo of difference of this value and minimum real and the real step
value is 0.
• Set the real step value to the difference of the maximum and mini-

mum real value.
17 Multiple fixes are provided:

• Set minimum real value to lowest value contained in preferred real
values if this value is lower than the original minimum real value.
• Remove all values from the preferred real values that are lower

than the minimum real value.
• Set maximum real value to highest value contained in preferred

real values if this value is higher than the original maximum real
value.
• Remove all values from the preferred real values that are higher

than the maximum real value.
• Remove all values from the preferred real values that are greater

than or equal to the minimum real value and less than or equal
to the maximum real value but are not contained in the domain
represented by minimum and maximum real value and the real
step value.
• Remove all values from the preferred real values that are not con-

tained in the domain represented by minimum and maximum real
value and the real step value.

20 Multiple fixes are provided for each class this is violated for:
• If the minimum and maximum numbers of objects is less than 0,

set both to 0.
• If the minimum number of objects is less than 0, set it to 0.
• If the maximum number of objects is less than 0, set it to 0.

21 Multiple fixes are provided for each class this is violated for:
• Set minimum number of objects to value of maximum number of

objects.
• Set maximum number of objects to value of minimum number of

objects.
22 Multiple fixes are provided for each class this is violated for:

• Set maximum number objects to size of preferred object names.
• Remove the last preferred objects names so that the size is equal to

the maximum number of objects.

TABLE 3.11: Proposed applicable fixes for validity rules (Part 3)

56 Chapter 3. Extension of USE

Violated
rule

Proposed applicable fixes

23 Multiple fixes are provided for each class this is violated for:
• If the minimum number of objects is greater than the sum of the

minimum numbers of objects of the derived classes and the maxi-
mum number of objects is less than the sum of the maximum num-
bers of objects of the derived classed set both to the corresponding
sum.
• If the minimum number of objects is greater than the sum of the

minimum numbers of objects of the derived classes set the mini-
mum number of objects to the sum.
• If the maximum number of objects is less than the sum of the max-

imum numbers of objects of the derived classed set the maximum
number of objects to the sum.

24 Multiple fixes are provided for each association this is violated for:
• If the maximum number of links is less than −1, set it to −1.
• If the maximum number of links is less than −1, set it to 0.

25 If the minimum number of links is less than 0, set it to 0.
26 Multiple fixes are provided for each association this is violated for: If the

maximum number of links is not −1 and the minimum number of links
is greater than the maximum number of links:
• Set the minimum number of links to 0.
• Set the maximum number of links to −1.
• Set the minimum number of links to the maximum number of links.
• Set the maximum number of links to the minimum number of links.

27 Multiple fixes are provided for each association this is violated for:
• Remove all required links containing instance names that are not

contained in the preferred instance names of the corresponding
classes.
• If there are ten or less links to be removed, provide a removal of

each.
• For each class the preferred instance names do not contain corre-

sponding instance names from the required links add the missing
instance names.
• If there are more than one class with the foregoing fix, provide also

a bundled fix of those.
28 Multiple fixes are provided for each association this is violated for:

• If minimum and maximum numbers of links are less than the size
of required links, set both to the size of required links.
• If minimum number of links is less than the size of required links,

set the minimum number of links to the size of required links.
• If maximum number of links is less than the size of required links,

set the maximum number of links to the size of required links.
31 Multiple fixes are provided for each attribute this is violated for: If the

minimum number of defined attributes is less than −1:
• Set it to −1.
• Set it to 0.

TABLE 3.12: Proposed applicable fixes for validity rules (Part 4)

3.3. Validation of configurations 57

Violated
rule

Proposed applicable fixes

32 Multiple fixes are provided for each attribute this is violated for: If the
maximum number of defined attributes is less than −1:
• Set it to −1.
• Set it to 0.

33 Multiple fixes are provided for each attribute this is violated for: If the
maximum number of defined attributes is not than−1 and the minimum
number of defined attributes is greater than the maximum number of
defined attributes:
• Set the minimum number of defined attributes to 0.
• Set the maximum number of defined attributes to −1.
• Set the minimum number of defined attributes to the maximum

number of defined attributes.
• Set the maximum number of defined attributes to the minimum

number of defined attributes.
34 Multiple fixes are provided for each attribute this is violated for: If the

maximum number of defined attributes is greater than the maximum
number of objects of the owning class:
• Set the maximum number of defined attributes to 0.
• Set the maximum number of defined attributes to the maximum

number of objects of the owning class.
• Set the maximum number of defined attributes to −1.
• Set the maximum number of objects of the owning class to the max-

imum number of defined attributes.
35 Set the minimum number of contained elements to 0.
36 Multiple fixes are provided for each attribute this is violated for:

• Set the maximum number of contained elements to the minimum
number of contained elements.
• Set the maximum number of contained elements to −1.

38 Multiple fixes are provided for each invariant this is violated for:
• Set the invariant activated.
• Set the invariant unnegated.

TABLE 3.13: Proposed applicable fixes for validity rules (Part 5)

58 Chapter 3. Extension of USE

Violated
rule

Proposed applicable fixes

40 Multiple fixes are provided for each model element this is violated for:
• For classes:

– If minimum number of objects is less than the optimised min-
imum number of objects, set it to the optimised value.

– If maximum number of objects is greater than the optimised
maximum number of objects, set it to the optimised value.

– If minimum number of objects is less than the optimised min-
imum number of objects and the maximum number of objects
is greater than the optimised maximum number of objects, set
both to their corresponding optimised value.

• For attributes:
– If minimum number of defined attributes is less than the op-

timised minimum number of defined attributes, set it to the
optimised value.

– If maximum number of defined attributes is greater than the
optimised maximum number of defined attributes, set it to the
optimised value.

– If minimum number of defined attributes is less than the opti-
mised minimum number of defined attributes and the max-
imum number of defined attributes is greater than the op-
timised maximum number of defined attributes, set both to
their corresponding optimised value.

• For associations:
– If minimum number of links is less than the optimised mini-

mum number of links, set it to the optimised value.
– If maximum number of links is greater than the optimised

maximum number of links, set it to the optimised value.
– If minimum number of links is less than the optimised min-

imum number of links and the maximum number of links
is greater than the optimised maximum number of links, set
both to their corresponding optimised value.

TABLE 3.14: Proposed applicable fixes for validity rules (Part 6)

The set of proposed applicable fixes for violated rules is presented with table 3.9
to 3.14. Fixes are only computed for the 32 rules, that have an explicit validity def-
inition. There is always is a fix proposed for each rule, that brings absence of the
violation. Since a rule may be violated more than once, not all violations of the rule
may be absent after applying the fix. There may also be fixes for some violations,
that do not bring absence of the violation. For example, if rule 4 is violated and all
the fixes are provided but only the second fix is applied, the rule will be still violated.
This is the case, when the preferred integer values contain values that are less than
the minimum integer value and values that are greater than the maximum integer
value. After applying the second fix with setting the minimum integer value to the
lowest value contained in the preferred integer values, the preferred integer values
still contain values that are greater than the maximum integer value. Therefor, the
same rule is still violated after applying the second fix. A differentiation is given
with so called full fixes and partial fixes. Applying full fixes resolves a violation but

3.3. Validation of configurations 59

partial fixes do not resolve violations.
Applying fixes may cause other rules to be violated. This can occur when a vio-

lation is fixed and then the rules are evaluated that are not evaluated before because
the evaluation depends on inviolation of the before violated rule. But also when ap-
plying fixes other rules may become violated, whose evaluation does not depend on
inviolation of the fixed violated rule. For example, if rule 40 is violated so that the
third or second fix is applied, then rule 34 may become violated. When modifying
the maximum number of objects for a class, also the valid maximum numbers of de-
fined attributes for all attributes of the class change implicitly. If there is a value for
an attribute of the class that is greater than the new maximum of objects, then rule
34 will be violated. The process of applying rules must be iteratively and also user
driven, because the fixes to be applied must be selected by the user.

Generally the concept of the procedure of applying fixes is the same for both UIs.
Firstly, all violations and fixes are presented. The user then may select a fix to apply
but also has the option to not apply any fix. After applying a fix the procedure op-
tionally starts from the beginning. In the whole procedure only a cached version of
the configuration may be edited. The option of replacing the original configuration
with the modified configuration will be given later. This differs for the different UIs.

3.3.4 Command-line interface integration

The presented validation concepts are implemented in USE. It extends the function-
ality of the USE Shell, the CLI. This is explained in the following.

Prerequisite for using the functionality is an UML/OCL model loaded in USE.
The validation command is available as modelvalidator -validateConfig and mv
-vc. As mandatory argument, the path to a configuration file must be specified. The
respected configurations from the file can be optionally selected by specifying the
names as arguments. When no (valid) names are specified, all configurations from
the file are validated. Specified names are validated before validation. When a name
is specified twice it will be only used once in the validation process. If a name is
specified that is not contained in the file, it is ignored. In both cases an informative
output is given. When (valid) names are specified only the corresponding configu-
rations from the file are validated. All violations of validity rules are presented tex-
tually. There may be multiple violations for some rules. For each violation, the fixes
are also presented textually. The command for validation with interactive fixing is
available as modelvalidator -fixConfig and mv -fc. As mandatory argument, the
path to a configuration file must be specified. A valid name of a configuration con-
tained in the file must also be specified. The corresponding configuration from the
file is validated. All violations of validity rules are presented textually. There may
be multiple violations for some rules. For each violation, the fixes are also presented
textually. A number, which is unique per fixing iteration, is given for each proposed
fix. After the textual presentation of the validation result is given, one can give the
number of a fix as an input or exit the validation process with or without saving
the modified configuration in its file. For the last two options, also unique constant
numbers are given.

1 [conf ig1]
2
3 Integer_min = 10
4 Integer_max = −10

LISTING 3.5: UML-based Specification Environment instance
finder configuration for model from fig. 2.1

60 Chapter 3. Extension of USE

1 Config conf ig1 i s i n v a l i d .
2 Rule INTEGER_SETTINGS_MIN_LESS_THAN_OR_EQUAL_MAX i s v i o l a t e d .
3 Integer_min (1 0) should be l e s s than or equal Integer_max (−10)

.
4 To get c l o s e r to v a l i d i t y perform one of the fol lowing

f i x e s :
5 [fF] | Set Integer_min to −10.
6 [fF] | Set Integer_max to 1 0 .
7 Rule STRING_SETTINGS_NESSESSARY i s v i o l a t e d .
8 S e t t i n g s f o r S t r i n g should be enabled . There i s a t l e a s t one

c l a s s which have an a t t r i b u t e of type S t r i n g and i s
configured to be able to have i n s t a n c e s and to have values
f o r t h a t a t t r i b u t e .

9 To get c l o s e r to v a l i d i t y perform one of the fol lowing
f i x e s :

10 [fF] | Enable s e t t i n g s f o r S t r i n g .
11 [pF] | Set Individual_min to 0 and Individual_max to 0 .
12 [pF] | Set Individual_id_min to 0 and Individual_id_max

to 0 .
13 [pF] | Set Pet_min to 0 and Pet_max to 0 .
14 [pF] | Set Pet_id_min to 0 and Pet_id_max to 0 .
15 [pF] | Set Pet_nickName_min to 0 and Pet_nickName_max

to 0 .
16 [pF] | Set Person_min to 0 and Person_max to 0 .
17 [pF] | Set Person_lName_min to 0 and Person_lName_max

to 0 .
18 [pF] | Set Person_id_min to 0 and Person_id_max to 0 .
19 [pF] | Set Person_fName_min to 0 and Person_fName_max

to 0 .
20 Rule REAL_SETTINGS_NESSESSARY i s v i o l a t e d .
21 S e t t i n g s f o r Real should be enabled . There i s a t l e a s t one

c l a s s which have an a t t r i b u t e of type Real and i s
configured to be able to have i n s t a n c e s and to have values
f o r t h a t a t t r i b u t e .

22 To get c l o s e r to v a l i d i t y perform one of the fol lowing
f i x e s :

23 [fF] | Enable s e t t i n g s f o r Real .
24 [fF] | Set Person_min to 0 and Person_max to 0 .
25 [fF] | Set Person_favoriteNumber_min to 0 and

Person_favoriteNumber_max to 0 .
26 Rule

CLASS_SETTINGS_ABSTRACT_CLASS_BOUNDS_EQUALS_SUM_OF_BOUNDS_OF_DERIVED_CLASSES
i s v i o l a t e d .

27 Individual_min (1) should be l e s s than or equal 2 and
Individual_max (1) should be g r e a t e r than or equal 2
because the lower bound of an a b s t r a c t Class needs to be
l e s s than or equal the sum of the lower bounds of derived
Classes and the upper bound needs to be g r e a t e r than or
equal the sum of the upper bounds of the derived Classes (
Pet , Person) .

28 To get c l o s e r to v a l i d i t y perform the fol lowing f i x :
29 [fF] | Set Individual_max to 2 .

LISTING 3.6: UML-based Specification Environment command-
line interface output for validation of configuration from

listing 3.5

Listing 3.6 shows the output for validation of the configuration from listing 3.5.
Obviously, four rules are violated with this configuration. The explicitly given in-
teger minimum and maximum value are not valid, because the minimum value is
greater than the maximum value. String type and real type settings are not enabled,
because no configuration aspects are specified for that. But they need to be enabled,

3.3. Validation of configurations 61

because there is the default value 1 used for at least class Person and−1 as minimum
number of defined attributes for all attributes of the class. This class has at least one
attribute of both types. The corresponding type settings must be given. While there
is no option to apply the fixes in this paradigm, the presentation of the fixes givens
crucial information.

1 [conf ig1]
2
3 Integer_min = 10
4 Integer_max = −10
5
6 String_max = 10
7
8 Real_max = 1 0 . 0
9

10 Pet_min = 2
11 Pet_max = 4
12
13 Person_max = 4
14
15 Individual_max = 8
16
17 Parenthood_max = −1
18
19 PetSi t t ing_max = −1

LISTING 3.7: UML-based Specification Environment textual
instance finder configurations for model from fig. 2.1 used for

fixing of invalidities

1 Val idat ion r e s u l t s :
2
3 Config conf ig1 i s i n v a l i d .
4 Rule INTEGER_SETTINGS_MIN_LESS_THAN_OR_EQUAL_MAX i s v i o l a t e d .
5 Integer_min (1 0) should be l e s s than or equal Integer_max (−10)

.
6 To get c l o s e r to v a l i d i t y perform one of the fol lowing

f i x e s :
7 (1) [fF] | Set Integer_min to −10.
8 (2) [fF] | Set Integer_max to 1 0 .
9 Rule SETTINGS_UNTIGHTENABLE_BOUNDS i s v i o l a t e d .

10 Tighter bounds are computed f o r c l a s s Indiv idual based on the
other s e t t i n g s .

11 To get c l o s e r to v a l i d i t y perform one of the fol lowing
f i x e s :

12 (3) [pF] | Set Individual_min to 3 .
13 (4) [pF] | Set Individual_max to 6 .
14 (5) [fF] | Set Individual_min to 3 and Individual_max to 6 .
15 Tighter bounds are computed f o r c l a s s Person based on the other

s e t t i n g s .
16 To get c l o s e r to v a l i d i t y perform the fol lowing f i x :
17 (6) [fF] | Set Person_max to 2 .
18 Tighter bounds are computed f o r a s s o c i a t i o n P e t S i t t i n g based on

the other s e t t i n g s .
19 To get c l o s e r to v a l i d i t y perform the fol lowing f i x :
20 (7) [fF] | Set Pe tS i t t ing_min to 2 .
21
22 Please choose a f i x to apply by i t s number
23 or type " 0 " to save the c o n f i g u r a t i o n in the current s t a t e and

terminate t h i s f i x i n g process
24 or "−1" to terminate t h i s f i x i n g process without saving .
25 option : 2

62 Chapter 3. Extension of USE

26
27 Val idat ion r e s u l t s :
28
29 Config conf ig1 i s i n v a l i d .
30 Rule SETTINGS_UNTIGHTENABLE_BOUNDS i s v i o l a t e d .
31 Tighter bounds are computed f o r c l a s s Indiv idual based on the

other s e t t i n g s .
32 To get c l o s e r to v a l i d i t y perform one of the fol lowing

f i x e s :
33 (1) [pF] | Set Individual_min to 3 .
34 (2) [pF] | Set Individual_max to 6 .
35 (3) [fF] | Set Individual_min to 3 and Individual_max to 6 .
36 Tighter bounds are computed f o r c l a s s Person based on the other

s e t t i n g s .
37 To get c l o s e r to v a l i d i t y perform the fol lowing f i x :
38 (4) [fF] | Set Person_max to 2 .
39 Tighter bounds are computed f o r a s s o c i a t i o n P e t S i t t i n g based on

the other s e t t i n g s .
40 To get c l o s e r to v a l i d i t y perform the fol lowing f i x :
41 (5) [fF] | Set Pe tS i t t ing_min to 2 .
42
43 Please choose a f i x to apply by i t s number
44 or type " 0 " to save the c o n f i g u r a t i o n in the current s t a t e and

terminate t h i s f i x i n g process
45 or "−1" to terminate t h i s f i x i n g process without saving .
46 option : 5
47
48 Val idat ion r e s u l t s :
49
50 Config conf ig1 i s i n v a l i d .
51 Rule SETTINGS_UNTIGHTENABLE_BOUNDS i s v i o l a t e d .
52 Tighter bounds are computed f o r c l a s s Indiv idual based on the

other s e t t i n g s .
53 To get c l o s e r to v a l i d i t y perform one of the fol lowing

f i x e s :
54 (1) [pF] | Set Individual_min to 3 .
55 (2) [pF] | Set Individual_max to 6 .
56 (3) [fF] | Set Individual_min to 3 and Individual_max to 6 .
57 Tighter bounds are computed f o r c l a s s Person based on the other

s e t t i n g s .
58 To get c l o s e r to v a l i d i t y perform the fol lowing f i x :
59 (4) [fF] | Set Person_max to 2 .
60
61 Please choose a f i x to apply by i t s number
62 or type " 0 " to save the c o n f i g u r a t i o n in the current s t a t e and

terminate t h i s f i x i n g process
63 or "−1" to terminate t h i s f i x i n g process without saving .
64 option : 4
65
66 Val idat ion r e s u l t s :
67
68 Config conf ig1 i s i n v a l i d .
69 Rule SETTINGS_UNTIGHTENABLE_BOUNDS i s v i o l a t e d .
70 Tighter bounds are computed f o r c l a s s Indiv idual based on the

other s e t t i n g s .
71 To get c l o s e r to v a l i d i t y perform one of the fol lowing

f i x e s :
72 (1) [pF] | Set Individual_min to 3 .
73 (2) [pF] | Set Individual_max to 6 .
74 (3) [fF] | Set Individual_min to 3 and Individual_max to 6 .
75
76 Please choose a f i x to apply by i t s number

3.3. Validation of configurations 63

77 or type " 0 " to save the c o n f i g u r a t i o n in the current s t a t e and
terminate t h i s f i x i n g process

78 or "−1" to terminate t h i s f i x i n g process without saving .
79 option : 3
80
81 Val idat ion r e s u l t s :
82
83 Config conf ig1 i s va l id .
84
85
86 Please type " 0 " to save the c o n f i g u r a t i o n in the current s t a t e and

terminate t h i s f i x i n g process
87 or "−1" to terminate t h i s f i x i n g process without saving .
88 option : 0

LISTING 3.8: UML-based Specification Environment command-
line interface output for fixing of invalidities of configuration

from listing 3.7

1 [conf ig1]
2
3 Integer_min = 10
4 Integer_max = 10
5
6 String_max = 10
7
8 Real_min = −2.0
9 Real_max = 1 0 . 0

10 Real_step = 0 . 5
11
12 # −−−

Indiv idual
13
14 Individual_id_min = −1
15 Individual_id_max = −1
16
17 #

−−−
Person

18 Person_min = 1
19 Person_max = 2
20
21 Person_fName_min = −1
22 Person_fName_max = −1
23 Person_favoriteNumber_min = −1
24 Person_favoriteNumber_max = −1
25 Person_lName_min = −1
26 Person_lName_max = −1
27 Person_nicknames_min = −1
28 Person_nicknames_max = −1
29 Person_nicknames_minSize = 0
30 Person_nicknames_maxSize = −1
31 Person_yearB_min = −1
32 Person_yearB_max = −1
33
34 # Parenthood (parent : Person , c h i l d : Person) − − − − − − − − − − − − − −

− − − − −
35 Parenthood_min = 1
36 Parenthood_max = −1
37
38 # P e t S i t t i n g (s i t t e r : Person , pet : Pet) − − − − − − − − − − − − − − − −

− − − − −
39 PetS i t t ing_min = 2

64 Chapter 3. Extension of USE

40 PetSi t t ing_max = −1
41
42 #

−−
Pet

43 Pet_min = 2
44 Pet_max = 4
45
46 Pet_nickName_min = −1
47 Pet_nickName_max = −1
48 #

−−

49 a g g r e g a t i o n c y c l e f r e e n e s s = on
50 forbiddensharing = on

LISTING 3.9: UML-based Specification Environment textual
instance finder configurations for model from fig. 2.1 resulting

with fixing of invalidities (listing 3.8)

Listing 3.8 shows the output for fixing the violations of validity rules from list-
ing 3.7. The configuration aspects for integer values are here also not valid. Firstly
this is fixed by setting the integer maximum value to 10. Then no other rules than
rule 40 are violated. There are tighter bounds computed for the two non abstract
classes. Since bounds for abstract classes with deriving classes can be derived from
the deriving classes, in the second and third step of the interactive fixing process
the proposed fixes are applied for the bounds of the two non abstract classes. In the
fourth step the proposed bounds for the abstract class are applied. The configuration
is then saved, which results in the configuration presented in listing 3.9.

3.3.5 Graphical user interface integration

The validation functionality is also integrated in the GUI. This is explained in the
following and then complemented by adapting the example from the previous sec-
tion.

Prerequisites for using the functionality are an UML/OCL model loaded in USE
and an existing model validator configuration for the model loaded with the model
validator plugin. The comparison command is available as menu item Check, in
menu Configuration, in the menu bar at the top of the model validator window.
Clicking the menu item opens a validation window. The model validator window
will freeze until the validation window is closed. Initially the configuration from the
state in the model validator window is validated. While the configuration may have
been loaded from a file, it can contain unsaved changes. The state with changes is
used for validation.

All violations of validity rules are presented textually in the validation window.
Their information are grouped by a frame. There may be multiple violations for
some rules. For each violation the fixes are also presented textually. A button for ap-
plying the fix is given for each fix. On the bottom of the window an initially checked
checkbox is given. When it is checked, the window will close after applying a fix.
Elsewise, the window will reopen and the validation results for the modified config-
uration are given. When it is computed that there are no invalidities, the validation
window does not open or reopen but a dialog informs about this result.

3.3. Validation of configurations 65

FIGURE 3.7: UML-based Specification Environment validation
overview for validation of configuration from listing 3.7

Figure 3.7 shows the validation window for validation of the configuration from
listing 3.7. Here, an equivalent fixing process to the process documented in listing 3.8
can be done. The configuration can be saved by using the functions from the model
validator window.

67

Chapter 4

Evaluation

Three implemented features for complementing workflows regarding validation and
verification of UML class diagrams with USE are presented previously. Since the ap-
plication of the features have also disadvantages, it is for example associated with
more effort for users, it should be highlighted that there are also benefits. This chap-
ter presents the evaluation of crucial aspects of only one of the features. After that,
other ideas on not performed evaluation are also presented.

The instance finder can be utilised for several validation and verification use
cases. For each the suitability of the instance finder configuration is crucial. Configu-
rations can represent redundant search space. Redundant search space may already
be absent for configurations generated with the clever generation feature. Compar-
ing instance finding processes execution times for processes with simple configura-
tions and clever configurations gives information about whether the feature reduces
time expenditures. For meaningful results the clever configurations must be gener-
ated on the basis of the simple configurations. A wide range of models and forms of
configurations for each model must also be considered. The evaluation whether the
clever generation feature reduces instance finding execution times is presented in
the following. Data is generated based on a wide set of configurations and random
models. A similar evaluation is done by Clarisó, González, and Cabot (2019).

The clever generation procedure will always fail for models if the instance finder
can not find instances with the corresponding simple configuration. Also, the clever
generation procedure will always fail for uninstantiable models. For such models,
the time needed for the clever generation procedure to fail can be compared with the
time needed to proof uninstantiability in context of the corresponding simple con-
figuration. For generally instanticiable models, the time needed for instance finding
with a simple configuration can be compared with the sum of the times needed for
generating the corresponding clever configuration and executing instance finding
with this. Therefor, two sets of random models are needed. One with only generally
instanticiable models and one with only uninstanticiable models are needed.

For the generated models and configurations only some model elements are rele-
vant. Since invariants are not respected in clever generation only classes and associ-
ations are relevant. Multiplicities of associations and whether classes are abstract or
derived are also relevant. Model and configuration aspects for invariants, attributes
and types can be ignored. This determines the parameters of the random model
generation procedure.

Seven parameters are used for the random model generation procedure. Firstly
A is the probability of each pair of classes to be part of binary associations. Secondly
C is the number of classes. CA is the probability of each class to be abstract. CD
is the probability of each class to be derived. N and M are two bounds used in the
set of possible multiplicities. Lastly it must be given whether the model must be
generally instanticiable or uninstanticiable.

68 Chapter 4. Evaluation

In the procedure of generation of a random model firstly C classes are generated.
Each class is abstract with the probability CA. For each generated class then option-
ally a parent class is assigned. Each class have a parent class with the probability CD.
The parent is chosen randomly from all generated classes. It can not be the original
class or a class that is directly or incrementally derived from the original class. Then
for each pair of classes, also for each class with itself and for pairs with inverted
elements, a binary association is generated with the probability A. The two multi-
plicities for the association are each selected randomly from the set of multiplicities
containing [0, 1], [1, 1], [0,*], [1,*], [0, N], [N,*] and [N, M].

Parameter
Value for

instantiable models
Value for

uninstantiable models
As {2, 5} {15, 20}
Cs {10, 25} {50, 100}

CAs {5, 10, 20} {5, 10, 20}
CDs {5, 25, 50} {5, 25, 50}
Ns {2} {2}
Ms {10} {10}

number of models {5} {5}

TABLE 4.1: Applied parameter values for generation of sets of ran-
dom models

For the generation of sets of random models a set of values for each of this pa-
rameters is used as parameter, namely As, Cs, CAs, CDs, Ns, Ms. Additionally the
number of models for each combination of the parameters values must be speci-
fied. It must also be specified whether all models must be generally instanticiable
or uninstanticiable. The values from table 4.1 for the parameters for the generation
of sets of random models are used for generally instanticiable and uninstanticiable
models. For each of the two types of models 180 models are generated. Since other
model aspects are not modeled, uninstantiability can only be achieved with conflict-
ing multiplicities in association. This may be enhanced with the dependency hierar-
chy and the property of classes to be abstract. The presence of these instantiability
problems are more probable with more classes. In the process of generating ran-
dom model, also models that do not fulfil the selected property, of being generally
instantiable or uninstantiable, were generated but discarded. With inappropriate pa-
rameters, that result in lots of generated models to be discarded, a lot of time may be
needed. For this reason, generally instantiable models are searched with less classes
and lower probabilities of each pair of classes to be associated. Uninstantiable mod-
els are searched with more classes and higher probabilities of each pair of classes to
be associated.

The consistency check use case is applicated for the evaluation. It checks whether
at least one object diagram can be generated for a class diagram in context of the
search space represented by an instance finder configuration. Four parameters are
used for the evaluation procedure. Firstly it is the set of models. Then Bs, a set of
bounds B, must be given, which is used for the general bounds of simple configura-
tions and the initial bounds for the clever generation procedure. Since there may be
other influences on the time expenditures on the performing system, the number of
runs per combination of model and B must be specified. Data generated on multiple

Chapter 4. Evaluation 69

runs can be compared and outliers can be identified. The averaged time expendi-
tures are used instead of single ones. Lastly, a maximum time must be specified. It
is used for each consistency check.

Parameter
Value for

instantiable models
Value for

uninstantiable models
Bs {[1, 10], [1, 100], [1, 250]} {[1, 10], [1, 100]}

number of runs 3 3
maximum time 180 seconds 60 seconds

TABLE 4.2: Applied parameter values for evaluation

The two sets of models are used for the generation. Table 4.2 shows the values
for the other parameters for the evaluation procedure. Three processes are included
in each run for a model. These are explained in the following. Ignoring other time
consuming performances in the evaluation procedure, the overall needed time for
the procedure is therefor limited to 874800 seconds (243 hours) for generally instan-
tiable models and to 194400 seconds (54 hours) for uninstantiable models. Since the
parameters are selected with the intend to not only show cases where the maximum
time would be exceeded, the actual overall time expenditures of the two evaluation
processes are much lower than these limits. For uninstantiable models the wider
bounds [1, 250] are not contained in the parameters. Here, a more less maximum
time of 60 seconds was chosen, because with the bounds [1, 100] already the maxi-
mum time is exceeded oftenly. Therefor, also no valuable time expenditures would
be observed with wider bounds.

The first step in the overall evaluation procedure is to document the time expen-
ditures. Further information is derived on this basis. A data entry is generated for
each model. It documents the model generation parameter values and three time ex-
penditures for each run in combination with each B. This contains the time needed
for the clever generation procedure and the two time expenditures of performing the
consistency check with a simple configuration and with the clever generated config-
uration. The latter one is −1 if the clever generation procedure fails in all runs for
a model. The clever generation procedure either fails or does not fail in all runs for
a model. Therefor, either all time expenditures for the consistency check on a mo-
del and clever generated configuration based on B are −1 or none of these are −1.
This must be clarified since averaging sets of time expenditures containing −1 and
accurate values must be avoided.

Information can be derived from the generated data in the evaluation procedure.
For each B for each of the three kinds of time expenditures in each data entry the
averaged time expenditure is computed. For uninstantiable models this must be
always −1 for all consistency checks using the cleverly generated configurations.
For generally instantiable models this can be −1 for some consistency checks using
the cleverly generated configurations. If no configuration can be cleverly generated
based on B for a generally instantiable model, the combination of model and B is
ignored. In that case, this special information must be documented also. This must
be done, because averaging sets of time expenditures containing −1 and accurate
values must be avoided. For all applicated parameter values for the random model
generation, e.g. for each 5 (minus the ignored) models, for each B for each of the
three kinds of time expenditures the averaged time expenditure is computed. The

70 Chapter 4. Evaluation

resulting data entries contains the model generation parameter values, the num-
ber of models whose results are averaged and three averaged time expenditures for
each B. Then for each entry for each B the sum of the time expenditures of the clever
generation procedure and the consistency check procedure with the resulting con-
figuration is added. 0 instead of −1 is used for the computation of the sum when
the consistency check procedure time expenditure is −1. The quotient of the aver-
aged time expenditures of the consistency check with the simple configurations and
the sum is added. This represents the speedup of the time expenditures using the
feature against using the original functionality with not optimised configurations.

Several other parameters may influence the time expenditures. This contains the
specs of the executing system or, to be more precise, the allocated resources. The
evaluation is executed on 64-bit OS with a quad-core CPU with 2,5 GHz and 16GB
RAM. USE version 5.1.0 and Java version 1.8 is used. Each execution of USE is done
while using the JVM options -Xms2G -Xmx2G. For the model validator plugin the
default settings are used.

Header Meaning
A Probability of each pair of classes to be part of binary associations,

given in percent.
C Number of classes.

CA Probability of each class to be abstract, given in percent.
CD Probability of each class to be derived, given in percent.
N First bound for possible multiplicities.
M Second bound for possible multiplicities.

...Ts ... This is given for each of the next three headers. It represents the
numbers of timeouts in the processes there.

VD ... Averaged time expenditures for the consistency check process with
the configurations with the following general bounds.

GC ... Averaged time expenditures for the clever generation process with
the following initial bounds.

VC ... Averaged time expenditures for the consistency check process with
the clever generated configurations based on the following initial
bounds. The value is −1 if no configuration could be created.

Speedup ... The speedup resulting from dividing the corresponding “VD” value
by the sum of the “GC” and “VC” values. If the “VC” value is −1,
then 0 is used instead. The speedup has suffix + if there are time-
outs only for corresponding “VD” value. The speedup has suffix
− if there are timeouts only for corresponding “GC” and/or “VC”
values. The speedup has suffix ? if there are timeouts only for cor-
responding “GC” and/or “VC” values and also for the “VD” value.

TABLE 4.3: Meanings of headers in tables presenting evaluation data

Table 4.3 shows the meaning of headers in the following tables that present eval-
uation data. Regarding the speedup, there are three possible suffixes added to the
speedup value. This depends on the presence of timeouts. For the interpretation of
data the presence of the suffix ? is hindering. This means there were timeouts ex-
ceeded in both kind of processes that are compared. Timeouts exceeded with usage
of a simple configuration and with generating and using a clever configuration. One
may not now if the real time expenditure is less or more.

Chapter 4. Evaluation 71

A
C

C
A

C
D

N
M

VD [1, 10]

VD_Ts [1, 10]

VD [1, 100]

VD_Ts [1, 100]

VD [1, 250]

VD_Ts [1, 250]

GC [1, 10]

GC_Ts [1, 10]

GC [1, 100]

GC_Ts [1, 100]

GC [1, 250]

GC_Ts [1, 250]

VC [1, 10]

VC_Ts [1, 10]

VC [1, 100]

VC_Ts [1, 100]

VC [1, 250]

VC_Ts [1, 250]

Speedup [1, 10]

Speedup [1, 100]

Speedup [1, 250]

2
10

10
25

2
10

1,
62

0
40

,5
9

3
82

,2
2

6
1,

44
0

1,
33

0
1,

34
0

1,
07

0
1,

08
0

0,
97

0
0,

65
16

,8
1+

35
,6

9+
2

10
10

50
2

10
2,

19
0

31
,5

4
0

10
9,

13
9

1,
96

0
1,

71
0

1,
95

0
1,

58
0

1,
47

0
1,

59
0

0,
62

9,
90

30
,8

1+
2

10
10

5
2

10
1,

44
0

3,
98

0
23

,9
0

0
1,

44
0

1,
13

0
1,

42
0

0,
95

0
0,

73
0

0,
98

0
0,

60
2,

14
9,

97
2

10
5

25
2

10
1,

43
0

89
,3

1
0

14
1,

36
9

1,
09

0
1,

20
0

1,
57

0
0,

71
0

1,
10

0
0,

95
0

0,
79

38
,7

9
56

,0
2+

2
10

5
50

2
10

1,
60

0
18

,0
0

0
10

9,
19

9
1,

56
0

1,
36

0
1,

93
0

0,
94

0
1,

20
0

1,
71

0
0,

64
7,

02
30

,0
0+

2
10

5
5

2
10

1,
82

0
74

,6
0

6
10

6,
10

6
1,

57
0

1,
45

0
1,

51
0

1,
07

0
1,

08
0

1,
37

0
0,

69
29

,4
0+

36
,7

6+
2

10
20

25
2

10
1,

08
0

2,
97

0
43

,6
7

1
0,

97
0

0,
97

0
0,

98
0

0,
65

0
0,

64
0

0,
66

0
0,

67
1,

84
26

,5
4+

2
10

20
50

2
10

1,
52

0
41

,7
5

0
85

,4
9

3
1,

35
0

1,
35

0
1,

34
0

1,
02

0
0,

90
0

1,
16

0
0,

64
18

,6
0

34
,2

1+
2

10
20

5
2

10
1,

11
0

48
,6

6
3

87
,6

2
6

0,
96

0
0,

98
0

1,
12

0
0,

65
0

0,
65

0
0,

79
0

0,
69

29
,7

2+
45

,8
9+

2
25

5
25

2
10

1,
93

0
93

,9
0

4
17

3,
90

11
1,

11
0

1,
45

0
1,

96
0

0,
65

0
1,

28
0

1,
30

0
1,

10
34

,3
3+

53
,4

5+
2

25
5

50
2

10
7,

81
0

11
2,

68
9

16
5,

47
12

1,
58

0
1,

72
0

1,
72

0
1,

28
0

1,
21

0
1,

30
0

2,
74

38
,3

7+
54

,8
6+

2
25

5
5

2
10

1,
87

0
38

,7
0

0
11

9,
71

6
1,

56
0

1,
31

0
1,

56
0

1,
27

0
1,

03
0

0,
95

0
0,

66
16

,5
0

47
,6

1+
2

25
10

25
2

10
1,

47
0

79
,4

1
6

18
0,

00
15

1,
20

0
1,

71
0

1,
34

0
0,

66
0

1,
34

0
1,

05
0

0,
79

26
,0

3+
75

,2
8+

2
25

10
50

2
10

4,
56

0
12

5,
11

3
18

0,
00

15
1,

71
0

1,
59

0
1,

72
0

1,
40

0
0,

91
0

1,
43

0
1,

47
50

,1
0+

57
,0

2+
2

25
10

5
2

10
1,

13
0

5,
69

0
60

,4
7

0
1,

11
0

1,
12

0
1,

24
0

0,
66

0
0,

67
0

0,
92

0
0,

64
3,

19
28

,0
6

2
25

20
25

2
10

2,
27

0
38

,9
6

1
10

3,
45

6
1,

09
0

1,
46

0
1,

58
0

0,
66

0
1,

28
0

0,
93

0
1,

30
14

,1
9+

41
,2

7+
2

25
20

50
2

10
1,

98
0

25
,9

9
0

16
2,

73
12

1,
75

0
1,

64
0

1,
65

0
1,

60
0

1,
06

0
1,

55
0

0,
59

9,
61

50
,7

5+
2

25
20

5
2

10
1,

20
0

3,
99

0
35

,9
6

0
1,

14
0

1,
44

0
1,

20
0

0,
90

0
0,

89
0

0,
91

0
0,

59
1,

71
17

,0
5

5
10

10
25

2
10

1,
68

0
19

,0
0

0
11

2,
82

8
1,

75
0

1,
50

0
1,

62
0

0,
90

0
1,

53
0

1,
42

0
0,

64
6,

27
37

,1
4+

5
10

10
50

2
10

14
,0

9
0

58
,3

1
3

80
,6

6
6

1,
78

0
1,

63
0

1,
77

0
1,

39
0

1,
14

0
1,

72
0

4,
44

20
,9

9+
23

,1
7+

5
10

10
5

2
10

2,
06

0
8,

06
0

57
,7

6
3

1,
98

0
1,

61
0

1,
14

0
1,

76
0

1,
14

0
1,

03
0

0,
55

2,
93

26
,6

5+
5

10
5

25
2

10
1,

41
0

93
,1

0
3

16
8,

09
9

1,
12

0
1,

75
0

1,
61

0
0,

77
0

1,
41

0
1,

03
0

0,
75

29
,4

6+
63

,7
1+

5
10

5
50

2
10

37
,9

4
3

88
,2

3
5

14
7,

72
9

1,
27

0
1,

12
0

1,
50

0
0,

78
0

0,
93

0
1,

03
0

18
,4

5+
42

,9
9+

58
,3

2+

TABLE 4.4: Evaluation data for generally instantiable models (Part 1)
The models are generated with the parameters from table 4.1. The
evaluation is processed with parameters from table 4.2. See table 4.3
for meanings of headers. All time expenditures are given in seconds.

72 Chapter 4. Evaluation

A
C

C
A

C
D

N
M

VD [1, 10]

VD_Ts [1, 10]

VD [1, 100]

VD_Ts [1, 100]

VD [1, 250]

VD_Ts [1, 250]

GC [1, 10]

GC_Ts [1, 10]

GC [1, 100]

GC_Ts [1, 100]

GC [1, 250]

GC_Ts [1, 250]

VC [1, 10]

VC_Ts [1, 10]

VC [1, 100]

VC_Ts [1, 100]

VC [1, 250]

VC_Ts [1, 250]

Speedup [1, 10]

Speedup [1, 100]

Speedup [1, 250]

5
10

5
5

2
10

1,
60

0
44

,4
3

3
10

9,
20

3
1,

24
0

1,
25

0
1,

25
0

1,
02

0
0,

89
0

0,
78

0
0,

71
20

,7
7+

53
,9

7+
5

10
20

25
2

10
1,

80
0

12
,7

1
0

76
,2

3
6

1,
69

0
1,

93
0

2,
07

0
1,

33
0

1,
72

0
1,

60
0

0,
59

3,
48

20
,7

8+
5

10
20

50
2

10
1,

54
0

69
,3

7
3

12
2,

99
6

1,
32

0
1,

58
0

1,
34

0
0,

88
0

1,
53

0
0,

72
0

0,
70

22
,3

1+
59

,8
1+

5
10

20
5

2
10

1,
70

0
2,

63
0

13
,2

8
0

1,
54

0
1,

55
0

2,
09

0
1,

23
0

1,
08

0
1,

77
0

0,
61

1,
00

3,
44

5
25

5
25

2
10

38
,1

9
3

11
2,

04
7

18
0,

00
15

1,
75

0
1,

41
0

1,
58

0
1,

21
0

0,
98

0
1,

03
0

12
,9

2+
46

,8
4+

68
,8

9+
5

25
5

50
2

10
4,

79
0

13
1,

20
7

18
0,

00
15

1,
69

0
1,

42
0

1,
66

0
1,

20
0

1,
00

0
1,

36
0

1,
66

54
,1

4+
59

,5
4+

5
25

5
5

2
10

1,
79

0
33

,7
8

0
18

0,
00

15
1,

61
0

1,
37

0
1,

37
0

1,
09

0
0,

73
0

0,
85

0
0,

66
16

,1
2

81
,0

1+
5

25
10

25
2

10
1,

60
0

15
,3

3
0

17
9,

76
14

1,
79

0
1,

50
0

1,
97

0
1,

05
0

1,
17

0
1,

54
0

0,
57

5,
75

51
,2

1+
5

25
10

50
2

10
2,

01
0

81
,0

7
3

18
0,

00
15

1,
90

0
1,

95
0

1,
83

0
1,

43
0

1,
31

0
1,

63
0

0,
60

24
,9

0+
52

,0
1+

5
25

10
5

2
10

1,
43

0
11

,9
4

0
18

0,
00

15
1,

42
0

1,
23

0
1,

60
0

0,
91

0
0,

78
0

1,
05

0
0,

62
5,

95
67

,9
9+

5
25

20
25

2
10

1,
20

0
15

,0
8

0
16

4,
71

12
1,

24
0

1,
59

0
2,

06
0

0,
66

0
1,

28
0

1,
24

0
0,

63
5,

26
49

,8
3+

5
25

20
50

2
10

1,
81

0
79

,8
3

3
18

0,
00

15
1,

31
0

1,
71

0
1,

87
0

0,
67

0
1,

68
0

1,
39

0
0,

91
23

,5
4+

55
,1

9+
5

25
20

5
2

10
1,

16
0

8,
16

0
13

2,
15

8
1,

21
0

1,
20

0
1,

45
0

0,
66

0
0,

80
0

0,
96

0
0,

62
4,

07
54

,7
7+

TABLE 4.5: Evaluation data for generally instantiable models (Part 2)
The models are generated with the parameters from table 4.1. The
evaluation is processed with parameters from table 4.2. See table 4.3
for meanings of headers. All time expenditures are given in seconds.

Chapter 4. Evaluation 73

A C CA CD N M B Ignored models
2 25 5 50 2 10 [1, 10] 1
2 25 20 50 2 10 [1, 10] 1
5 25 5 25 2 10 [1, 10] 1
5 25 5 50 2 10 [1, 10] 2
5 25 10 50 2 10 [1, 10] 1
5 25 20 50 2 10 [1, 10] 1

TABLE 4.6: Numbers of models that are ignored in table 4.4 and ta-
ble 4.5

Table 4.4 and table 4.5 show the time expenditures for the compared processes
on generally instantiable models. There could have been failed clever generation
processes, because the models must not be instantiable with every configuration.
Table 4.6 shows that for seven models no configurations could be cleverly generated
with [1, 10]. The combinations of [1, 10] and these models were ignored in the av-
eraging process. Not all averaged values are based on the same number of models.
These seven cases are an example of how the consistency check result may be solely
caused by the inappropriate too small search space. In all seven cases there can
be found model instances with larger search space. All speedup values are useful.
None of the speedup values has suffix ?. Also, the suffix − is not present. Both of
the compared processes are faster under specific circumstances. Consistency checks
with simple configurations are often faster than with cleverly generating configura-
tions, if the original represented search space is small. This becomes apparent with
[1, 10]. Consistency checks with simple configurations are slower than with clev-
erly generating configurations, if the original represented search space is big. This
becomes apparent with [1, 100] and [1, 250]. For bigger search spaces the speedup
may be even higher. The data shows some main results. Firstly, the time expendi-
tures for the clever generation of configurations does not seem to be dependent on
the original search space. They also does seem to be nearly constant. Secondly, the
time expenditures for the consistency check with cleverly generated configurations
does also seem to be nearly constant. Thirdly, the larger the original search space is,
the larger the time expenditure is for consistency checks with simple configurations.
Lastly, the larger the original search space is, the more time is saved for consistency
checks with preceding redundant search space removal.

74 Chapter 4. Evaluation

A
C

C
A

C
D

N
M

VD [1, 10]

VD_Ts [1, 10]

VD [1, 100]

VD_Ts [1, 100]

GC [1, 10]

GC_Ts [1, 10]

GC [1, 100]

GC_Ts [1, 100]

VC [1, 10]

VC_Ts [1, 10]

VC [1, 100]

VC_Ts [1, 100]

Speedup [1, 10]

Speedup [1, 100]

15
50

10
25

2
10

3,
53

0
9,

67
0

3,
03

0
3,

20
0

0,
00

0
0,

00
0

1,
16

3,
02

15
50

10
50

2
10

4,
23

0
8,

45
0

3,
13

0
3,

25
0

0,
00

0
0,

00
0

1,
35

2,
60

15
50

10
5

2
10

2,
83

0
8,

76
0

3,
15

0
3,

29
0

0,
00

0
0,

00
0

0,
90

2,
66

15
50

5
25

2
10

5,
01

0
16

,1
1

2
3,

31
0

3,
91

0
0,

00
0

0,
00

0
1,

51
4,

12
+

15
50

5
50

2
10

7,
36

0
39

,7
6

9
4,

66
0

4,
75

0
0,

00
0

0,
00

0
1,

58
8,

37
+

15
50

5
5

2
10

3,
62

0
40

,8
7

9
3,

32
0

4,
44

0
0,

00
0

0,
00

0
1,

09
9,

20
+

15
10

0
5

25
2

10
6,

73
0

60
,0

0
15

9,
41

0
9,

82
0

0,
00

0
0,

00
0

0,
72

6,
11
+

15
10

0
5

50
2

10
13

,9
1

0
60

,0
0

15
11

,2
2

0
10

,8
2

0
0,

00
0

0,
00

0
1,

24
5,

54
+

15
10

0
5

5
2

10
5,

63
0

60
,0

0
15

10
,4

8
0

10
,6

3
0

0,
00

0
0,

00
0

0,
54

5,
64
+

15
50

20
25

2
10

3,
80

0
60

,0
0

15
3,

76
0

3,
76

0
0,

00
0

0,
00

0
1,

01
15

,9
6+

15
50

20
50

2
10

3,
99

0
60

,0
0

15
3,

21
0

3,
10

0
0,

00
0

0,
00

0
1,

24
19

,3
3+

15
50

20
5

2
10

3,
19

0
60

,0
0

15
3,

91
0

3,
32

0
0,

00
0

0,
00

0
0,

82
18

,0
5+

15
10

0
10

25
2

10
6,

42
0

60
,0

0
15

10
,9

8
0

11
,3

6
0

0,
00

0
0,

00
0

0,
59

5,
28
+

15
10

0
10

50
2

10
12

,8
8

0
60

,0
0

15
11

,3
0

0
11

,2
1

0
0,

00
0

0,
00

0
1,

14
5,

35
+

15
10

0
10

5
2

10
5,

16
0

60
,0

0
15

10
,7

0
0

10
,1

8
0

0,
00

0
0,

00
0

0,
48

5,
90
+

15
10

0
20

25
2

10
5,

94
0

60
,0

0
15

10
,6

0
0

10
,6

8
0

0,
00

0
0,

00
0

0,
56

5,
62
+

15
10

0
20

50
2

10
9,

28
0

60
,0

0
15

10
,5

4
0

10
,8

0
0

0,
00

0
0,

00
0

0,
88

5,
56
+

15
10

0
20

5
2

10
4,

59
0

60
,0

0
15

10
,7

4
0

10
,6

3
0

0,
00

0
0,

00
0

0,
43

5,
65
+

20
50

10
25

2
10

9,
12

0
60

,0
0

15
3,

76
0

3,
87

0
0,

00
0

0,
00

0
2,

42
15

,5
1+

20
50

10
50

2
10

6,
21

0
60

,0
0

15
4,

52
0

4,
03

0
0,

00
0

0,
00

0
1,

37
14

,8
7+

20
50

10
5

2
10

2,
77

0
60

,0
0

15
3,

66
0

4,
08

0
0,

00
0

0,
00

0
0,

76
14

,7
0+

20
50

5
25

2
10

4,
49

0
60

,0
0

15
4,

39
0

4,
12

0
0,

00
0

0,
00

0
1,

02
14

,5
7+

20
50

5
50

2
10

20
,6

5
3

60
,0

0
15

3,
42

0
4,

17
0

0,
00

0
0,

00
0

6,
03
+

14
,3

9+

TABLE 4.7: Evaluation data for uninstantiable models (Part 1) The
models are generated with the parameters from table 4.1. The eval-
uation is processed with parameters from table 4.2. See table 4.3 for

meanings of headers. All time expenditures are given in seconds.

Chapter 4. Evaluation 75

A
C

C
A

C
D

N
M

VD [1, 10]

VD_Ts [1, 10]

VD [1, 100]

VD_Ts [1, 100]

GC [1, 10]

GC_Ts [1, 10]

GC [1, 100]

GC_Ts [1, 100]

VC [1, 10]

VC_Ts [1, 10]

VC [1, 100]

VC_Ts [1, 100]

Speedup [1, 10]

Speedup [1, 100]

20
50

5
5

2
10

2,
47

0
60

,0
0

15
3,

29
0

4,
34

0
0,

00
0

0,
00

0
0,

75
13

,8
2+

20
10

0
5

25
2

10
8,

21
0

60
,0

0
15

14
,1

9
0

15
,0

8
0

0,
00

0
0,

00
0

0,
58

3,
98
+

20
10

0
5

50
2

10
24

,5
2

0
60

,0
0

15
15

,0
7

0
15

,6
1

0
0,

00
0

0,
00

0
1,

63
3,

84
+

20
10

0
5

5
2

10
6,

79
0

60
,0

0
15

15
,2

2
0

15
,0

6
0

0,
00

0
0,

00
0

0,
45

3,
98
+

20
50

20
25

2
10

2,
85

0
60

,0
0

15
3,

53
0

3,
48

0
0,

00
0

0,
00

0
0,

81
17

,2
4+

20
50

20
50

2
10

5,
09

0
60

,0
0

15
3,

78
0

4,
30

0
0,

00
0

0,
00

0
1,

34
13

,9
6+

20
50

20
5

2
10

3,
30

0
60

,0
0

15
3,

96
0

3,
90

0
0,

00
0

0,
00

0
0,

83
15

,3
8+

20
10

0
10

25
2

10
7,

77
0

60
,0

0
15

14
,6

3
0

14
,9

3
0

0,
00

0
0,

00
0

0,
53

4,
02
+

20
10

0
10

50
2

10
14

,8
1

0
60

,0
0

15
15

,1
6

0
15

,9
1

0
0,

00
0

0,
00

0
0,

98
3,

77
+

20
10

0
10

5
2

10
7,

03
0

60
,0

0
15

16
,3

6
0

15
,8

4
0

0,
00

0
0,

00
0

0,
43

3,
79
+

20
10

0
20

25
2

10
6,

79
0

60
,0

0
15

15
,2

3
0

14
,8

2
0

0,
00

0
0,

00
0

0,
45

4,
05
+

20
10

0
20

50
2

10
12

,9
9

0
60

,0
0

15
14

,7
5

0
14

,9
2

0
0,

00
0

0,
00

0
0,

88
4,

02
+

20
10

0
20

5
2

10
5,

69
0

60
,0

0
15

14
,7

9
0

14
,7

9
0

0,
00

0
0,

00
0

0,
38

4,
06
+

TABLE 4.8: Evaluation data for uninstantiable models (Part 2) The
models are generated with the parameters from table 4.1. The eval-
uation is processed with parameters from table 4.2. See table 4.3 for

meanings of headers. All time expenditures are given in seconds.

Table 4.7 and table 4.8 show the time expenditures for the compared processes
on uninstantiable models. Since those are uninstantiable, no configurations should
be generated with the clever generation procedure. The time expenditures for con-
sistency checks with cleverly generated configurations must always be −1. Since
0 is used instead of −1 in the averaging procedure, all averaged values therefor
must be 0. Here, all averaged values for “VC [1, 10]” and “VC [1, 100]” are 0. All
speedup values are useful. None of the speedup values has suffix ?. Also, the suffix
− is not present. Both of the compared processes are faster under specific circum-
stances. Consistency checks with simple configurations are often faster than with
cleverly generating configurations if the original represented search space is small.
This becomes apparent with [1, 10]. Consistency checks with simple configurations
are slower than with cleverly generated configurations if the original represented

76 Chapter 4. Evaluation

search space is big. This becomes apparent with [1, 100]. The data shows some main
results. Firstly, the larger the original search space is, the larger the time expenditure
is for consistency checks with simple configurations. Secondly, the time expendi-
tures for the clever generation of configurations does not seem to be dependent on
the original search space. Lastly, the larger the original search space is, the more time
is saved for consistency checks with preceding redundant search space removal.

Comparing the time expenditures for generally instantiable and uninstantiable
models, the data from table 4.4, 4.5, 4.7 and 4.8 shows also some other results. While
the time expenditures for the clever generation of configurations does seem to be
nearly constant for generally instantiable models, they do not seem to be constant
for uninstantiable models. They are also lower for generally instantiable models.

The data has shown that the larger the original search space is, the more time
is saved for consistency checks with preceding redundant search space removal.
Therefor, the extended functionality brings benefits. Since the absolute additional
time needed for small search spaces is very low, it can be ignored that more time is
needed for small search spaces with the extended functionality.

The evaluation of the comparisons and validation features is associated with
quite a lot of effort. This also applies to the evaluation of some aspects of the clever
generation feature. The opinions of experts or users on the usability of this features
could be collected and analysed. The number of such persons is not large. Also, the
communication and data collection would be very time consuming. Another idea
on evaluation is to determine the influence of the usage of each feature on validation
and verification processes. Regarding the comparisons and validation features, data
of real projects is needed here. This implies that the two features are already used
in real projects. One idea is to compare time expenditure of projects. Each with and
without the usage of the feature. Running projects twice underlies crucial influences
that may prevent deriving useful information of collected data. In the paradigm that
each two runs are done by different people, this fact alone may cause different time
expenditures. In the paradigm that each two runs are done by the same people, one
may need less time on the second run because of knowledge generated in the first
run. Again, this fact alone may cause different time expenditures.

77

Chapter 5

Conclusion and outlook

Aspects of the USE instance finder plugin, that could be improved, were presented.
Extended functionality is implemented. This includes the missing possibility to
compare configurations automised on the first hand. On the other hand, this also
includes the missing possibility to create new configurations, so that at least one
instance can be found with each of them. Lastly, the possibility to find specified
invalid configuration aspects was missing. To avert these three problems, the func-
tionality of the USE instance finder has been extended. Now configurations can be
compared automised. In addition, new configurations can be created in a very flex-
ible way. Finally, some validity rules for configurations have been established. For
configurations, it is now possible to check if they are valid with respect to the rules.
For configurations that are not valid, applicable corrections are suggested. This sup-
ports the process of identifying aspects of configurations that cause invalidity and
to correct them.

Regarding time saving in model V&V, it was evaluated if at least the extended
possibility to generate new configurations lowers time expenditures. The evaluation
was performed under representative circumstances. Many scenarios were evaluated
in a wide variety of several dimensions. The result can be divided into two cases.
Similar or negligibly more time is required with the extended functionality in the
scenarios where little time was already required with original functionality. This can
be ignored since the absolute additional time is very low. Much less time is required
with the extended functionality in the scenarios in which a lot of time was already
required with original functionality. This is crucial because the absolute saved time
can be very high.

In the evaluation only an extension of the USE instance finder has been respected.
However, it is obvious that the other extensions also support model V&V processes.
Regarding the validity of instance finder configurations, there are concepts imple-
mented and presented. They support the presentation of this complex kind of infor-
mation and provide much derived information. Regarding the suitability of configu-
rations, the new generation feature and also the validity feature support the removal
of unsuitable search space. This results in lower time expenditures in model V&V.
Therefor, the research hypothesis holds. Since it holds, there is a communicable way
of ensuring validity and suitability of bounds specifications for the USE instance
finder of UML class diagrams. This is also the answer to the research question.
There may be other problems with the instance finder and also other possibilities to
solve such problems, while the answer to the research question remains the same.

The objectives of this work have been achieved. But there a several other points
of further work. Selected points of further work are outlined in the following.

The developed concept for comparison of configurations does not include all
types of aspects of configurations. For several aspects the comparison is not actu-
ally processed. Instead, it is worked with the result that these aspects are ignored

78 Chapter 5. Conclusion and outlook

in comparison. The implementation already provides the structure for aspect spe-
cific comparison of all aspects. The implementations that compute those constant
results only need to be simply replaced by appropriate implementations. But before,
the aspect specific comparison concepts must be developed. Since there are other
crucial problems to be dealt with, here only selected aspects are respected with the
implemented comparison concept.

The developed concept for validation of configurations could be also applied in
more complex procedures. It is always possible to calculate the resulting configura-
tion for each proposed correction. This can be done iteratively also. Therefor, there
may exist also chains of corrections for an invalid configuration. It can be deter-
mined which chains of corrections are the shortest. A system for automised applica-
tion of corrections can be implemented. An approach may be to additionally classify
corrections to handling them differently. Sets of valid configurations resulting from
different chaining of the application of corrections, could be used as suggested cor-
rections of invalid configurations. An automatised selection is possible on this basis.
The chain of corrections to be applied can also be used with the comparison func-
tionality to convey the difference between an original invalid configuration and its
valid corrected configuration. The concept model checking can also be applied here.
The absence of finite chains of corrections whose application would result in a valid
configuration can be proved. There can be infinite chains of corrections too. How-
ever, those never lead to a valid configuration. It can be pointed out in advance
that the application of validation and correction cannot produce this desired result.
Instead, a configuration would have to be changed in some other way than by the
suggested corrections. Also, for any other change of the configuration it could be
calculated in advance if the resulting configuration is valid. In case it is not, it could
be calculated again if there is at least one valid corrected configuration which can
be produced by a chain of corrections from the validation functionality. Whether a
specific modification helps the configuration to become valid could be computed for
each modification of an invalid configuration.

The concept of CSPs is used for redundant search space removal on search space
represented by USE instance finder configuration. The implemented extended func-
tionality does not respect the OCL constraints of the UML/OCL models when build-
ing a CSP for such a model for redundant search space removal. Clarisó, González,
and Cabot (2019) already presented approaches to derive CSP constraints for the
OCL constraints. Beside the currently respected elements class and associations and
the aspects of classes to be abstract or derived, also the elements attribute, types
and constraints become involved. With this, more redundant search space may be
removed or identified. Since the whole procedure becomes more complex, also ad-
ditional time expenditures may are implied.

79

Bibliography

Biere, Armin and Daniel Kröning (2018). “SAT-Based Model Checking”. In: Handbook
of Model Checking. Ed. by Edmund M. Clarke, Thomas A. Henzinger, and Helmut
Veith. Cham: Springer International Publishing. ISBN: 9783319105758. DOI: 10.
1007/978-3-319-10575-8_1.

Brambilla, Marco, Jordi Cabot, and Manuel Wimmer (2012). Model-Driven Software
Engineering in Practice. Morgan & Claypool Publishers. ISBN: 9781608458820. DOI:
10.2200/S00441ED1V01Y201208SWE001.

Cabot, Jordi, Robert Clarisó, and Daniel Riera (Mar. 2014). “On the verification of
UML/OCL class diagrams using constraint programming”. In: Journal of Systems
and Software 93, pp. 1–23. DOI: 10.1016/j.jss.2014.03.023.

Clarisó, Robert, Carlos A. González, and Jordi Cabot (Apr. 2019). “Smart Bound Se-
lection for the Verification of UML/OCL Class Diagrams”. In: vol. 45. 4, pp. 412–
426. DOI: 10.1109/TSE.2017.2777830.

Clarke, Edmund M., Thomas A. Henzinger, and Helmut Veith (2018). “Introduction
to Model Checking”. In: Handbook of Model Checking. Ed. by Edmund M. Clarke,
Thomas A. Henzinger, and Helmut Veith. Cham: Springer International Publish-
ing. ISBN: 9783319105758. DOI: 10.1007/978-3-319-10575-8_1.

Cooper, Martin C., Wafa Jguirim, and David A. Cohen (2018). “Domain Reduction
for Valued Constraints by Generalising Methods from CSP”. In: Principles and
Practice of Constraint Programming. Ed. by John Hooker. Cham: Springer Interna-
tional Publishing, pp. 64–80. ISBN: 9783319983349.

Florez, Hector and Marcelo Leon (2018). “Model Driven Engineering Approach to
Configure Software Reusable Components”. In: Applied Informatics. Ed. by Hector
Florez, Cesar Diaz, and Jaime Chavarriaga. Cham: Springer International Pub-
lishing, pp. 352–363. ISBN: 9783030015350.

Ghedira, Khaled (2013). Constraint Satisfaction Problems: CSP Formalisms and Tech-
niques. 1. Aufl. Computer engineering and IT series. Cham: Wiley-ISTE. ISBN:
184821460X and 1118574575 and 9781118574577 and 9781118574577.

Giraldo, Fáber D. et al. (June 2018). “Considerations about quality in model-driven
engineering”. In: Software Quality Journal 26.2, pp. 685–750. DOI: 10.1007/s11219-
016-9350-6.

Gogolla, Martin, Frank Hilken, and Khanh-Hoang Doan (2018). “Achieving Model
Quality through Model Validation, Verification and Exploration”. In: Computer
Languages, Systems & Structures 54, pp. 474–511. DOI: 10.1016/j.cl.2017.10.
001.

“IEEE Standard Glossary of Software Engineering Terminology” (Dec. 1990). In:
IEEE Std 610.12-1990. DOI: 10.1109/IEEESTD.1990.101064.

ISO/IEC 19501:2005 (Apr. 2005). https://www.iso.org/standard/32620.html.
Abruf: 06.12.2019.

Jácome, Santiago, Juan Ferreira, and Maria Corral-Diaz (Oct. 2017). “Software De-
velopment Tools in Model-Driven Engineering”. In: DOI: 10.1109/CONISOFT.
2017.00024.

https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.2200/S00441ED1V01Y201208SWE001
https://doi.org/10.1016/j.jss.2014.03.023
https://doi.org/10.1109/TSE.2017.2777830
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/s11219-016-9350-6
https://doi.org/10.1007/s11219-016-9350-6
https://doi.org/10.1016/j.cl.2017.10.001
https://doi.org/10.1016/j.cl.2017.10.001
https://doi.org/10.1109/IEEESTD.1990.101064
https://www.iso.org/standard/32620.html
https://doi.org/10.1109/CONISOFT.2017.00024
https://doi.org/10.1109/CONISOFT.2017.00024

80 Bibliography

Ludewig, Jochen (2000). “Software Engineering in the Year 2000 Minus and Plus
Ten”. In: IEEE Std 610.12-1990.

Ludewig, Jochen and Horst Lichter (2013). Software Engineering. Grundlagen, Men-
schen, Prozesse, Techniken. 3., korrigierte Aufl. Heidelberg: dpunkt.verlag. ISBN:
9783864912986.

Muller, Pierre-Alain et al. (July 2012). “Modeling modeling modeling”. In: Software
& Systems Modeling 11.3, pp. 347–359. DOI: 10.1007/s10270-010-0172-x.

Object Constraint Language 2.4 (Feb. 2014). https://www.omg.org/spec/OCL/2.4/
PDF. Abruf: 11.12.2019.

Przigoda, Nils, Judith Wille Robert and Przigoda, and Rolf Drechsler (2018). Auto-
mated Validation and Verification of UML/OCL Models Using Satisfiability Solvers.
Cham: Springer. ISBN: 9783319728148.

Selic, Bran (2006). “UML 2: A model-driven development tool”. In: IBM Systems Jour-
nal 45.3, pp. 607–620.

Seshia, Sanjit A., Natasha Sharygina, and Stavros Tripakis (2018). “Modeling for Ver-
ification”. In: Handbook of Model Checking. Ed. by Edmund M. Clarke, Thomas A.
Henzinger, and Helmut Veith. Cham: Springer International Publishing. ISBN:
9783319105758. DOI: 10.1007/978-3-319-10575-8_1.

Unified Modeling Language (UML), Version 2.5.1 (Dec. 2017). https://www.omg.org/
spec/UML/2.5.1/PDF. Abruf: 16.07.2019.

USE documentation (Mar. 2007). http://www.db.informatik.uni- bremen.de/
projects/use/use-documentation.pdf. Abruf: 10.01.2020.

USE: UML-based Specification Environment (2020). https://sourceforge.net/projects/
useocl/. Abruf: 10.01.2020.

Whittle, Jon, John Hutchinson, and Mark Rouncefield (Mar. 2014). “The State of
Practice in Model-Driven Engineering”. In: IEEE Software 31.3, pp. 79–85. DOI:
10.1109/MS.2013.65.

https://doi.org/10.1007/s10270-010-0172-x
https://www.omg.org/spec/OCL/2.4/PDF
https://www.omg.org/spec/OCL/2.4/PDF
https://doi.org/10.1007/978-3-319-10575-8_1
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
http://www.db.informatik.uni-bremen.de/projects/use/use-documentation.pdf
http://www.db.informatik.uni-bremen.de/projects/use/use-documentation.pdf
https://sourceforge.net/projects/useocl/
https://sourceforge.net/projects/useocl/
https://doi.org/10.1109/MS.2013.65

81

Appendix A

Example output for comparing
configurations

1 1 . conf ig1 <= conf ig2 :
2 Comparisons t h a t are ignored
3 Person_lName i s ignored .
4 Pet i s ignored .
5 Parenthood i s ignored .
6 Person_id i s ignored .
7 Person_fName i s ignored .
8 Indiv idua l_ id i s ignored .
9 Person_nicknames i s ignored .

10 Pet_nickName i s ignored .
11 forbiddensharing i s ignored .
12 Person i s ignored .
13 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
14 Indiv idual i s ignored .
15 Person_favoriteNumber i s ignored .
16 I n t e g e r i s ignored .
17 Pet_ id i s ignored .
18 Person_yearB i s ignored .
19 P e t S i t t i n g i s ignored .
20 S t r i n g i s ignored .
21 Comparisons t h a t c l a s s i f y as equal
22 S t r i n g enabled value i s both f a l s e .
23 I n v a r i a n t s e t t i n g s are empty .
24 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;

Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .
25 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [

Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

26 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [
Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

27 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max
=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .

28 Real enabled value i s both f a l s e .
29 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [

Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

30 Comparisons t h a t c l a s s i f y as r i g h t i s broad
31 Integer_min and Integer_max c l a s s i f y as r i g h t i s broad (l e f t : [

Integer_min=−10 ; Integer_max =10] ; r i g h t : [Integer_min=−100 ;
Integer_max =100]) .

32
33 2 . conf ig1 >= conf ig3 :
34 Comparisons t h a t are ignored
35 S t r i n g i s ignored .
36 Person_fName i s ignored .

82 Appendix A. Example output for comparing configurations

37 Person i s ignored .
38 P e t S i t t i n g i s ignored .
39 Indiv idual i s ignored .
40 Pet i s ignored .
41 Person_lName i s ignored .
42 Parenthood i s ignored .
43 Person_favoriteNumber i s ignored .
44 Pet_ id i s ignored .
45 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
46 forbiddensharing i s ignored .
47 I n t e g e r i s ignored .
48 Indiv idua l_ id i s ignored .
49 Pet_nickName i s ignored .
50 Person_yearB i s ignored .
51 Person_nicknames i s ignored .
52 Person_id i s ignored .
53 Comparisons t h a t c l a s s i f y as equal
54 S t r i n g enabled value i s both f a l s e .
55 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [

Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

56 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [
Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

57 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;
Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .

58 I n v a r i a n t s e t t i n g s are empty .
59 Real enabled value i s both f a l s e .
60 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max

=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .
61 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [

Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

62 Comparisons t h a t c l a s s i f y as l e f t i s broad
63 Integer_min and Integer_max c l a s s i f y as l e f t i s broad (l e f t : [

Integer_min=−10 ; Integer_max =10] ; r i g h t : [Integer_min =0 ;
Integer_max =10]) .

64
65 3 . conf ig1 != conf ig4 :
66 Comparisons t h a t are ignored
67 Person_favoriteNumber i s ignored .
68 Person_nicknames i s ignored .
69 Indiv idua l_ id i s ignored .
70 Pet i s ignored .
71 Person_fName i s ignored .
72 S t r i n g i s ignored .
73 Person_yearB i s ignored .
74 Indiv idual i s ignored .
75 I n t e g e r i s ignored .
76 P e t S i t t i n g i s ignored .
77 Pet_ id i s ignored .
78 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
79 Person i s ignored .
80 Person_lName i s ignored .
81 Parenthood i s ignored .
82 Person_id i s ignored .
83 Pet_nickName i s ignored .
84 forbiddensharing i s ignored .
85 Comparisons t h a t c l a s s i f y as equal
86 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max

=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .
87 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;

Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .

Appendix A. Example output for comparing configurations 83

88 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [
Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

89 S t r i n g enabled value i s both f a l s e .
90 Real enabled value i s both f a l s e .
91 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [

Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

92 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [
Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

93 I n v a r i a n t s e t t i n g s are empty .
94 Comparisons t h a t c l a s s i f y as l e f t prel imary overlapping
95 Integer_min and Integer_max c l a s s i f y as l e f t i s overlapping (l e f t :

[Integer_min=−10 ; Integer_max =10] ; r i g h t : [Integer_min =0 ;
Integer_max =100]) .

96
97 4 . conf ig1 != conf ig5 :
98 Comparisons t h a t are ignored
99 Indiv idual i s ignored .

100 Person_yearB i s ignored .
101 P e t S i t t i n g i s ignored .
102 Pet i s ignored .
103 Person_lName i s ignored .
104 Person i s ignored .
105 Person_fName i s ignored .
106 Pet_nickName i s ignored .
107 Parenthood i s ignored .
108 Person_id i s ignored .
109 forbiddensharing i s ignored .
110 S t r i n g i s ignored .
111 Person_favoriteNumber i s ignored .
112 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
113 I n t e g e r i s ignored .
114 Pet_ id i s ignored .
115 Indiv idua l_ id i s ignored .
116 Person_nicknames i s ignored .
117 Comparisons t h a t c l a s s i f y as equal
118 I n v a r i a n t s e t t i n g s are empty .
119 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [

Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

120 Real enabled value i s both f a l s e .
121 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [

Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

122 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [
Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

123 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max
=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .

124 S t r i n g enabled value i s both f a l s e .
125 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;

Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .
126 Comparisons t h a t c l a s s i f y as l e f t prel imary overlapping
127 Integer_min and Integer_max c l a s s i f y as l e f t i s overlapping (l e f t :

[Integer_min=−10 ; Integer_max =10] ; r i g h t : [Integer_min =0 ;
Integer_max =1000]) .

128
129 5 . conf ig1 >= conf ig6 :
130 Comparisons t h a t are ignored
131 P e t S i t t i n g i s ignored .
132 forbiddensharing i s ignored .

84 Appendix A. Example output for comparing configurations

133 Person_favoriteNumber i s ignored .
134 Pet i s ignored .
135 I n t e g e r i s ignored .
136 Pet_ id i s ignored .
137 Person_id i s ignored .
138 Person i s ignored .
139 Person_yearB i s ignored .
140 Person_fName i s ignored .
141 Person_lName i s ignored .
142 Indiv idual i s ignored .
143 Pet_nickName i s ignored .
144 Parenthood i s ignored .
145 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
146 S t r i n g i s ignored .
147 Person_nicknames i s ignored .
148 Indiv idua l_ id i s ignored .
149 Comparisons t h a t c l a s s i f y as equal
150 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [

Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

151 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [
Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

152 Real enabled value i s both f a l s e .
153 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [

Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

154 S t r i n g enabled value i s both f a l s e .
155 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;

Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .
156 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max

=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .
157 I n v a r i a n t s e t t i n g s are empty .
158 Comparisons t h a t c l a s s i f y as l e f t i s broad
159 Integer_min and Integer_max c l a s s i f y as l e f t i s broad (l e f t : [

Integer_min=−10 ; Integer_max =10] ; r i g h t : [Integer_min=−10 ;
Integer_max=0]) .

160
161 6 . conf ig1 != conf ig7 :
162 Comparisons t h a t are ignored
163 S t r i n g i s ignored .
164 forbiddensharing i s ignored .
165 P e t S i t t i n g i s ignored .
166 Person i s ignored .
167 Person_nicknames i s ignored .
168 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
169 Person_fName i s ignored .
170 Pet_ id i s ignored .
171 Person_favoriteNumber i s ignored .
172 Pet i s ignored .
173 Indiv idual i s ignored .
174 Person_id i s ignored .
175 Person_yearB i s ignored .
176 Parenthood i s ignored .
177 I n t e g e r i s ignored .
178 Indiv idua l_ id i s ignored .
179 Person_lName i s ignored .
180 Pet_nickName i s ignored .
181 Comparisons t h a t c l a s s i f y as equal
182 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max

=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .
183 I n v a r i a n t s e t t i n g s are empty .

Appendix A. Example output for comparing configurations 85

184 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;
Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .

185 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [
Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

186 Real enabled value i s both f a l s e .
187 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [

Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

188 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [
Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

189 S t r i n g enabled value i s both f a l s e .
190 Comparisons t h a t c l a s s i f y as l e f t d i s j o i n t
191 Integer_min and Integer_max c l a s s i f y as l e f t d i s j o i n t (l e f t : [

Integer_min=−10 ; Integer_max =10] ; r i g h t : [Integer_min =100 ;
Integer_max =1000]) .

192
193 7 . conf ig1 != conf ig8 :
194 Comparisons t h a t are ignored
195 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
196 Indiv idual i s ignored .
197 Person_id i s ignored .
198 Person_fName i s ignored .
199 I n t e g e r i s ignored .
200 Person_lName i s ignored .
201 Person_yearB i s ignored .
202 Person_nicknames i s ignored .
203 Pet_nickName i s ignored .
204 P e t S i t t i n g i s ignored .
205 Pet i s ignored .
206 S t r i n g i s ignored .
207 forbiddensharing i s ignored .
208 Pet_ id i s ignored .
209 Indiv idua l_ id i s ignored .
210 Person i s ignored .
211 Person_favoriteNumber i s ignored .
212 Parenthood i s ignored .
213 Comparisons t h a t c l a s s i f y as equal
214 Real enabled value i s both f a l s e .
215 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [

Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

216 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [
Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

217 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [
Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

218 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max
=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .

219 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;
Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .

220 S t r i n g enabled value i s both f a l s e .
221 I n v a r i a n t s e t t i n g s are empty .
222 Comparisons t h a t c l a s s i f y as r i g h t d i s j o i n t
223 Integer_min and Integer_max c l a s s i f y as r i g h t d i s j o i n t (l e f t : [

Integer_min=−10 ; Integer_max =10] ; r i g h t : [Integer_min
=−100000 ; Integer_max=−10000]) .

224
225 8 . conf ig2 >= conf ig3 :
226 Comparisons t h a t are ignored
227 S t r i n g i s ignored .

86 Appendix A. Example output for comparing configurations

228 Person_id i s ignored .
229 Indiv idua l_ id i s ignored .
230 I n t e g e r i s ignored .
231 Pet_ id i s ignored .
232 Indiv idual i s ignored .
233 forbiddensharing i s ignored .
234 Person_favoriteNumber i s ignored .
235 Parenthood i s ignored .
236 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
237 Pet_nickName i s ignored .
238 Pet i s ignored .
239 Person_nicknames i s ignored .
240 Person i s ignored .
241 Person_fName i s ignored .
242 P e t S i t t i n g i s ignored .
243 Person_lName i s ignored .
244 Person_yearB i s ignored .
245 Comparisons t h a t c l a s s i f y as equal
246 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max

=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .
247 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [

Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

248 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [
Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

249 I n v a r i a n t s e t t i n g s are empty .
250 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;

Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .
251 S t r i n g enabled value i s both f a l s e .
252 Real enabled value i s both f a l s e .
253 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [

Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

254 Comparisons t h a t c l a s s i f y as l e f t i s broad
255 Integer_min and Integer_max c l a s s i f y as l e f t i s broad (l e f t : [

Integer_min=−100 ; Integer_max =100] ; r i g h t : [Integer_min =0 ;
Integer_max =10]) .

256
257 9 . conf ig2 >= conf ig4 :
258 Comparisons t h a t are ignored
259 Person_yearB i s ignored .
260 Pet i s ignored .
261 Indiv idua l_ id i s ignored .
262 Person_lName i s ignored .
263 Parenthood i s ignored .
264 Indiv idual i s ignored .
265 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
266 Pet_nickName i s ignored .
267 S t r i n g i s ignored .
268 Person_id i s ignored .
269 P e t S i t t i n g i s ignored .
270 forbiddensharing i s ignored .
271 Person i s ignored .
272 Person_fName i s ignored .
273 Person_favoriteNumber i s ignored .
274 Pet_ id i s ignored .
275 I n t e g e r i s ignored .
276 Person_nicknames i s ignored .
277 Comparisons t h a t c l a s s i f y as equal
278 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [

Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

Appendix A. Example output for comparing configurations 87

279 Real enabled value i s both f a l s e .
280 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [

Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

281 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [
Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

282 I n v a r i a n t s e t t i n g s are empty .
283 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;

Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .
284 S t r i n g enabled value i s both f a l s e .
285 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max

=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .
286 Comparisons t h a t c l a s s i f y as l e f t i s broad
287 Integer_min and Integer_max c l a s s i f y as l e f t i s broad (l e f t : [

Integer_min=−100 ; Integer_max =100] ; r i g h t : [Integer_min =0 ;
Integer_max =100]) .

288
289 1 0 . conf ig2 != conf ig5 :
290 Comparisons t h a t are ignored
291 S t r i n g i s ignored .
292 Person_fName i s ignored .
293 I n t e g e r i s ignored .
294 Pet_ id i s ignored .
295 forbiddensharing i s ignored .
296 Indiv idual i s ignored .
297 Parenthood i s ignored .
298 Person_lName i s ignored .
299 Pet_nickName i s ignored .
300 Person i s ignored .
301 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
302 P e t S i t t i n g i s ignored .
303 Person_nicknames i s ignored .
304 Indiv idua l_ id i s ignored .
305 Pet i s ignored .
306 Person_favoriteNumber i s ignored .
307 Person_id i s ignored .
308 Person_yearB i s ignored .
309 Comparisons t h a t c l a s s i f y as equal
310 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [

Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

311 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;
Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .

312 I n v a r i a n t s e t t i n g s are empty .
313 Real enabled value i s both f a l s e .
314 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [

Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

315 S t r i n g enabled value i s both f a l s e .
316 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [

Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

317 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max
=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .

318 Comparisons t h a t c l a s s i f y as l e f t prel imary overlapping
319 Integer_min and Integer_max c l a s s i f y as l e f t i s overlapping (l e f t :

[Integer_min=−100 ; Integer_max =100] ; r i g h t : [Integer_min =0
; Integer_max =1000]) .

320
321 1 1 . conf ig2 >= conf ig6 :
322 Comparisons t h a t are ignored
323 Person_id i s ignored .

88 Appendix A. Example output for comparing configurations

324 Pet_ id i s ignored .
325 Indiv idua l_ id i s ignored .
326 P e t S i t t i n g i s ignored .
327 Pet i s ignored .
328 Person_fName i s ignored .
329 I n t e g e r i s ignored .
330 forbiddensharing i s ignored .
331 S t r i n g i s ignored .
332 Indiv idual i s ignored .
333 Person_nicknames i s ignored .
334 Parenthood i s ignored .
335 Person_favoriteNumber i s ignored .
336 Person_yearB i s ignored .
337 Person i s ignored .
338 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
339 Person_lName i s ignored .
340 Pet_nickName i s ignored .
341 Comparisons t h a t c l a s s i f y as equal
342 Real enabled value i s both f a l s e .
343 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max

=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .
344 S t r i n g enabled value i s both f a l s e .
345 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [

Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

346 I n v a r i a n t s e t t i n g s are empty .
347 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;

Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .
348 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [

Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

349 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [
Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

350 Comparisons t h a t c l a s s i f y as l e f t i s broad
351 Integer_min and Integer_max c l a s s i f y as l e f t i s broad (l e f t : [

Integer_min=−100 ; Integer_max =100] ; r i g h t : [Integer_min=−10
; Integer_max=0]) .

352
353 1 2 . conf ig2 != conf ig7 :
354 Comparisons t h a t are ignored
355 Indiv idua l_ id i s ignored .
356 Person i s ignored .
357 Person_yearB i s ignored .
358 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
359 S t r i n g i s ignored .
360 Person_nicknames i s ignored .
361 P e t S i t t i n g i s ignored .
362 Person_lName i s ignored .
363 I n t e g e r i s ignored .
364 Pet i s ignored .
365 Person_favoriteNumber i s ignored .
366 Pet_nickName i s ignored .
367 forbiddensharing i s ignored .
368 Person_fName i s ignored .
369 Person_id i s ignored .
370 Indiv idual i s ignored .
371 Pet_ id i s ignored .
372 Parenthood i s ignored .
373 Comparisons t h a t c l a s s i f y as equal
374 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [

Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

Appendix A. Example output for comparing configurations 89

375 Real enabled value i s both f a l s e .
376 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max

=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .
377 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [

Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

378 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;
Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .

379 S t r i n g enabled value i s both f a l s e .
380 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [

Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

381 I n v a r i a n t s e t t i n g s are empty .
382 Comparisons t h a t c l a s s i f y as l e f t prel imary overlapping
383 Integer_min and Integer_max c l a s s i f y as l e f t i s overlapping (l e f t :

[Integer_min=−100 ; Integer_max =100] ; r i g h t : [Integer_min
=100 ; Integer_max =1000]) .

384
385 1 3 . conf ig2 != conf ig8 :
386 Comparisons t h a t are ignored
387 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
388 Person_favoriteNumber i s ignored .
389 Person_lName i s ignored .
390 Pet_ id i s ignored .
391 S t r i n g i s ignored .
392 Person i s ignored .
393 P e t S i t t i n g i s ignored .
394 I n t e g e r i s ignored .
395 Indiv idual i s ignored .
396 Pet i s ignored .
397 Parenthood i s ignored .
398 forbiddensharing i s ignored .
399 Pet_nickName i s ignored .
400 Person_id i s ignored .
401 Person_fName i s ignored .
402 Indiv idua l_ id i s ignored .
403 Person_nicknames i s ignored .
404 Person_yearB i s ignored .
405 Comparisons t h a t c l a s s i f y as equal
406 Real enabled value i s both f a l s e .
407 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;

Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .
408 I n v a r i a n t s e t t i n g s are empty .
409 S t r i n g enabled value i s both f a l s e .
410 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [

Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

411 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [
Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

412 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [
Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

413 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max
=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .

414 Comparisons t h a t c l a s s i f y as r i g h t d i s j o i n t
415 Integer_min and Integer_max c l a s s i f y as r i g h t d i s j o i n t (l e f t : [

Integer_min=−100 ; Integer_max =100] ; r i g h t : [Integer_min
=−100000 ; Integer_max=−10000]) .

416
417 1 4 . conf ig3 <= conf ig4 :
418 Comparisons t h a t are ignored
419 I n t e g e r i s ignored .

90 Appendix A. Example output for comparing configurations

420 Indiv idua l_ id i s ignored .
421 Person_lName i s ignored .
422 Person_yearB i s ignored .
423 Parenthood i s ignored .
424 Pet i s ignored .
425 Person_fName i s ignored .
426 Person_favoriteNumber i s ignored .
427 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
428 Person i s ignored .
429 Person_id i s ignored .
430 forbiddensharing i s ignored .
431 Pet_nickName i s ignored .
432 Pet_ id i s ignored .
433 Indiv idual i s ignored .
434 P e t S i t t i n g i s ignored .
435 Person_nicknames i s ignored .
436 S t r i n g i s ignored .
437 Comparisons t h a t c l a s s i f y as equal
438 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [

Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

439 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [
Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

440 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [
Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

441 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max
=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .

442 I n v a r i a n t s e t t i n g s are empty .
443 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;

Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .
444 Real enabled value i s both f a l s e .
445 S t r i n g enabled value i s both f a l s e .
446 Comparisons t h a t c l a s s i f y as r i g h t i s broad
447 Integer_min and Integer_max c l a s s i f y as r i g h t i s broad (l e f t : [

Integer_min =0 ; Integer_max =10] ; r i g h t : [Integer_min =0 ;
Integer_max =100]) .

448
449 1 5 . conf ig3 <= conf ig5 :
450 Comparisons t h a t are ignored
451 Person_fName i s ignored .
452 I n t e g e r i s ignored .
453 Pet_nickName i s ignored .
454 S t r i n g i s ignored .
455 Indiv idual i s ignored .
456 Person_favoriteNumber i s ignored .
457 Pet i s ignored .
458 Pet_ id i s ignored .
459 forbiddensharing i s ignored .
460 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
461 Parenthood i s ignored .
462 Person_id i s ignored .
463 Person i s ignored .
464 Person_lName i s ignored .
465 P e t S i t t i n g i s ignored .
466 Indiv idua l_ id i s ignored .
467 Person_nicknames i s ignored .
468 Person_yearB i s ignored .
469 Comparisons t h a t c l a s s i f y as equal
470 S t r i n g enabled value i s both f a l s e .
471 Real enabled value i s both f a l s e .

Appendix A. Example output for comparing configurations 91

472 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [
Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

473 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;
Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .

474 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [
Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

475 I n v a r i a n t s e t t i n g s are empty .
476 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [

Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

477 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max
=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .

478 Comparisons t h a t c l a s s i f y as r i g h t i s broad
479 Integer_min and Integer_max c l a s s i f y as r i g h t i s broad (l e f t : [

Integer_min =0 ; Integer_max =10] ; r i g h t : [Integer_min =0 ;
Integer_max =1000]) .

480
481 1 6 . conf ig3 != conf ig6 :
482 Comparisons t h a t are ignored
483 Person_nicknames i s ignored .
484 Pet_ id i s ignored .
485 Parenthood i s ignored .
486 forbiddensharing i s ignored .
487 Indiv idual i s ignored .
488 Person_lName i s ignored .
489 S t r i n g i s ignored .
490 Person_fName i s ignored .
491 Person_yearB i s ignored .
492 Pet i s ignored .
493 P e t S i t t i n g i s ignored .
494 Person_favoriteNumber i s ignored .
495 I n t e g e r i s ignored .
496 Person_id i s ignored .
497 Indiv idua l_ id i s ignored .
498 Person i s ignored .
499 Pet_nickName i s ignored .
500 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
501 Comparisons t h a t c l a s s i f y as equal
502 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [

Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

503 Real enabled value i s both f a l s e .
504 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max

=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .
505 I n v a r i a n t s e t t i n g s are empty .
506 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [

Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

507 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [
Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

508 S t r i n g enabled value i s both f a l s e .
509 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;

Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .
510 Comparisons t h a t c l a s s i f y as r i g h t prel imary overlapping
511 Integer_min and Integer_max c l a s s i f y as r i g h t i s overlapping (l e f t :

[Integer_min =0 ; Integer_max =10] ; r i g h t : [Integer_min=−10 ;
Integer_max=0]) .

512
513 1 7 . conf ig3 != conf ig7 :
514 Comparisons t h a t are ignored

92 Appendix A. Example output for comparing configurations

515 Indiv idual i s ignored .
516 Person_id i s ignored .
517 Indiv idua l_ id i s ignored .
518 Parenthood i s ignored .
519 Person_nicknames i s ignored .
520 P e t S i t t i n g i s ignored .
521 Person i s ignored .
522 Person_lName i s ignored .
523 Person_favoriteNumber i s ignored .
524 Person_yearB i s ignored .
525 I n t e g e r i s ignored .
526 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
527 Pet i s ignored .
528 Pet_nickName i s ignored .
529 Pet_ id i s ignored .
530 Person_fName i s ignored .
531 S t r i n g i s ignored .
532 forbiddensharing i s ignored .
533 Comparisons t h a t c l a s s i f y as equal
534 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [

Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

535 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [
Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

536 S t r i n g enabled value i s both f a l s e .
537 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;

Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .
538 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [

Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

539 Real enabled value i s both f a l s e .
540 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max

=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .
541 I n v a r i a n t s e t t i n g s are empty .
542 Comparisons t h a t c l a s s i f y as l e f t d i s j o i n t
543 Integer_min and Integer_max c l a s s i f y as l e f t d i s j o i n t (l e f t : [

Integer_min =0 ; Integer_max =10] ; r i g h t : [Integer_min =100 ;
Integer_max =1000]) .

544
545 1 8 . conf ig3 != conf ig8 :
546 Comparisons t h a t are ignored
547 Indiv idual i s ignored .
548 Person_lName i s ignored .
549 Person_id i s ignored .
550 I n t e g e r i s ignored .
551 P e t S i t t i n g i s ignored .
552 Parenthood i s ignored .
553 Person_fName i s ignored .
554 S t r i n g i s ignored .
555 Person i s ignored .
556 Pet i s ignored .
557 Person_favoriteNumber i s ignored .
558 Person_nicknames i s ignored .
559 Pet_ id i s ignored .
560 Pet_nickName i s ignored .
561 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
562 Indiv idua l_ id i s ignored .
563 forbiddensharing i s ignored .
564 Person_yearB i s ignored .
565 Comparisons t h a t c l a s s i f y as equal

Appendix A. Example output for comparing configurations 93

566 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [
Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

567 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;
Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .

568 I n v a r i a n t s e t t i n g s are empty .
569 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [

Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

570 Real enabled value i s both f a l s e .
571 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max

=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .
572 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [

Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

573 S t r i n g enabled value i s both f a l s e .
574 Comparisons t h a t c l a s s i f y as r i g h t d i s j o i n t
575 Integer_min and Integer_max c l a s s i f y as r i g h t d i s j o i n t (l e f t : [

Integer_min =0 ; Integer_max =10] ; r i g h t : [Integer_min =−100000
; Integer_max=−10000]) .

576
577 1 9 . conf ig4 <= conf ig5 :
578 Comparisons t h a t are ignored
579 Person i s ignored .
580 Person_nicknames i s ignored .
581 forbiddensharing i s ignored .
582 I n t e g e r i s ignored .
583 Person_yearB i s ignored .
584 P e t S i t t i n g i s ignored .
585 Person_fName i s ignored .
586 Parenthood i s ignored .
587 Indiv idua l_ id i s ignored .
588 Pet_nickName i s ignored .
589 Person_favoriteNumber i s ignored .
590 Person_lName i s ignored .
591 Pet_ id i s ignored .
592 Pet i s ignored .
593 S t r i n g i s ignored .
594 Indiv idual i s ignored .
595 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
596 Person_id i s ignored .
597 Comparisons t h a t c l a s s i f y as equal
598 Real enabled value i s both f a l s e .
599 I n v a r i a n t s e t t i n g s are empty .
600 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;

Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .
601 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [

Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

602 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max
=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .

603 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [
Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

604 S t r i n g enabled value i s both f a l s e .
605 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [

Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

606 Comparisons t h a t c l a s s i f y as r i g h t i s broad
607 Integer_min and Integer_max c l a s s i f y as r i g h t i s broad (l e f t : [

Integer_min =0 ; Integer_max =100] ; r i g h t : [Integer_min =0 ;
Integer_max =1000]) .

608

94 Appendix A. Example output for comparing configurations

609 2 0 . conf ig4 != conf ig6 :
610 Comparisons t h a t are ignored
611 P e t S i t t i n g i s ignored .
612 Person i s ignored .
613 Person_id i s ignored .
614 Person_yearB i s ignored .
615 Pet i s ignored .
616 Person_favoriteNumber i s ignored .
617 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
618 S t r i n g i s ignored .
619 Pet_nickName i s ignored .
620 Person_nicknames i s ignored .
621 Indiv idual i s ignored .
622 Person_fName i s ignored .
623 Parenthood i s ignored .
624 I n t e g e r i s ignored .
625 Person_lName i s ignored .
626 Indiv idua l_ id i s ignored .
627 Pet_ id i s ignored .
628 forbiddensharing i s ignored .
629 Comparisons t h a t c l a s s i f y as equal
630 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max

=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .
631 S t r i n g enabled value i s both f a l s e .
632 Real enabled value i s both f a l s e .
633 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [

Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

634 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [
Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

635 I n v a r i a n t s e t t i n g s are empty .
636 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;

Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .
637 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [

Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

638 Comparisons t h a t c l a s s i f y as r i g h t prel imary overlapping
639 Integer_min and Integer_max c l a s s i f y as r i g h t i s overlapping (l e f t :

[Integer_min =0 ; Integer_max =100] ; r i g h t : [Integer_min=−10
; Integer_max=0]) .

640
641 2 1 . conf ig4 != conf ig7 :
642 Comparisons t h a t are ignored
643 Indiv idual i s ignored .
644 Person_nicknames i s ignored .
645 Person_lName i s ignored .
646 Person i s ignored .
647 Pet i s ignored .
648 Person_favoriteNumber i s ignored .
649 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
650 Person_id i s ignored .
651 P e t S i t t i n g i s ignored .
652 Pet_ id i s ignored .
653 Pet_nickName i s ignored .
654 Parenthood i s ignored .
655 Person_yearB i s ignored .
656 Person_fName i s ignored .
657 I n t e g e r i s ignored .
658 Indiv idua l_ id i s ignored .
659 forbiddensharing i s ignored .
660 S t r i n g i s ignored .
661 Comparisons t h a t c l a s s i f y as equal

Appendix A. Example output for comparing configurations 95

662 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [
Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

663 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;
Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .

664 Real enabled value i s both f a l s e .
665 I n v a r i a n t s e t t i n g s are empty .
666 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max

=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .
667 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [

Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

668 S t r i n g enabled value i s both f a l s e .
669 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [

Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

670 Comparisons t h a t c l a s s i f y as l e f t prel imary overlapping
671 Integer_min and Integer_max c l a s s i f y as l e f t i s overlapping (l e f t :

[Integer_min =0 ; Integer_max =100] ; r i g h t : [Integer_min =100 ;
Integer_max =1000]) .

672
673 2 2 . conf ig4 != conf ig8 :
674 Comparisons t h a t are ignored
675 Person_yearB i s ignored .
676 S t r i n g i s ignored .
677 Person_id i s ignored .
678 Indiv idua l_ id i s ignored .
679 I n t e g e r i s ignored .
680 forbiddensharing i s ignored .
681 Person_favoriteNumber i s ignored .
682 P e t S i t t i n g i s ignored .
683 Pet_ id i s ignored .
684 Pet_nickName i s ignored .
685 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
686 Pet i s ignored .
687 Person_lName i s ignored .
688 Indiv idual i s ignored .
689 Parenthood i s ignored .
690 Person i s ignored .
691 Person_nicknames i s ignored .
692 Person_fName i s ignored .
693 Comparisons t h a t c l a s s i f y as equal
694 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [

Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

695 Real enabled value i s both f a l s e .
696 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [

Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

697 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [
Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

698 S t r i n g enabled value i s both f a l s e .
699 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max

=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .
700 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;

Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .
701 I n v a r i a n t s e t t i n g s are empty .
702 Comparisons t h a t c l a s s i f y as r i g h t d i s j o i n t
703 Integer_min and Integer_max c l a s s i f y as r i g h t d i s j o i n t (l e f t : [

Integer_min =0 ; Integer_max =100] ; r i g h t : [Integer_min =−100000
; Integer_max=−10000]) .

704

96 Appendix A. Example output for comparing configurations

705 2 3 . conf ig5 != conf ig6 :
706 Comparisons t h a t are ignored
707 Person i s ignored .
708 Parenthood i s ignored .
709 Person_nicknames i s ignored .
710 S t r i n g i s ignored .
711 I n t e g e r i s ignored .
712 Person_id i s ignored .
713 Person_lName i s ignored .
714 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
715 Pet_nickName i s ignored .
716 Indiv idua l_ id i s ignored .
717 Pet_ id i s ignored .
718 Person_yearB i s ignored .
719 Person_favoriteNumber i s ignored .
720 Indiv idual i s ignored .
721 P e t S i t t i n g i s ignored .
722 Person_fName i s ignored .
723 forbiddensharing i s ignored .
724 Pet i s ignored .
725 Comparisons t h a t c l a s s i f y as equal
726 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [

Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

727 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [
Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

728 S t r i n g enabled value i s both f a l s e .
729 Real enabled value i s both f a l s e .
730 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;

Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .
731 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [

Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

732 I n v a r i a n t s e t t i n g s are empty .
733 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max

=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .
734 Comparisons t h a t c l a s s i f y as r i g h t prel imary overlapping
735 Integer_min and Integer_max c l a s s i f y as r i g h t i s overlapping (l e f t :

[Integer_min =0 ; Integer_max =1000] ; r i g h t : [Integer_min=−10
; Integer_max=0]) .

736
737 2 4 . conf ig5 >= conf ig7 :
738 Comparisons t h a t are ignored
739 Pet_ id i s ignored .
740 Person_fName i s ignored .
741 P e t S i t t i n g i s ignored .
742 Parenthood i s ignored .
743 Indiv idua l_ id i s ignored .
744 Person_lName i s ignored .
745 S t r i n g i s ignored .
746 Pet i s ignored .
747 forbiddensharing i s ignored .
748 Person_yearB i s ignored .
749 Indiv idual i s ignored .
750 Person_id i s ignored .
751 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
752 Person_nicknames i s ignored .
753 Pet_nickName i s ignored .
754 Person i s ignored .
755 I n t e g e r i s ignored .
756 Person_favoriteNumber i s ignored .
757 Comparisons t h a t c l a s s i f y as equal

Appendix A. Example output for comparing configurations 97

758 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;
Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .

759 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [
Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

760 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max
=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .

761 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [
Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

762 S t r i n g enabled value i s both f a l s e .
763 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [

Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

764 Real enabled value i s both f a l s e .
765 I n v a r i a n t s e t t i n g s are empty .
766 Comparisons t h a t c l a s s i f y as l e f t i s broad
767 Integer_min and Integer_max c l a s s i f y as l e f t i s broad (l e f t : [

Integer_min =0 ; Integer_max =1000] ; r i g h t : [Integer_min =100 ;
Integer_max =1000]) .

768
769 2 5 . conf ig5 != conf ig8 :
770 Comparisons t h a t are ignored
771 Person i s ignored .
772 Person_yearB i s ignored .
773 Person_lName i s ignored .
774 Pet_ id i s ignored .
775 Person_nicknames i s ignored .
776 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
777 I n t e g e r i s ignored .
778 Pet_nickName i s ignored .
779 forbiddensharing i s ignored .
780 Parenthood i s ignored .
781 Pet i s ignored .
782 Indiv idua l_ id i s ignored .
783 Person_favoriteNumber i s ignored .
784 P e t S i t t i n g i s ignored .
785 Indiv idual i s ignored .
786 S t r i n g i s ignored .
787 Person_id i s ignored .
788 Person_fName i s ignored .
789 Comparisons t h a t c l a s s i f y as equal
790 Real enabled value i s both f a l s e .
791 I n v a r i a n t s e t t i n g s are empty .
792 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [

Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

793 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [
Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

794 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [
Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

795 S t r i n g enabled value i s both f a l s e .
796 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;

Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .
797 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max

=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .
798 Comparisons t h a t c l a s s i f y as r i g h t d i s j o i n t
799 Integer_min and Integer_max c l a s s i f y as r i g h t d i s j o i n t (l e f t : [

Integer_min =0 ; Integer_max =1000] ; r i g h t : [Integer_min
=−100000 ; Integer_max=−10000]) .

800

98 Appendix A. Example output for comparing configurations

801 2 6 . conf ig6 != conf ig7 :
802 Comparisons t h a t are ignored
803 S t r i n g i s ignored .
804 P e t S i t t i n g i s ignored .
805 Indiv idua l_ id i s ignored .
806 Person_lName i s ignored .
807 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
808 Person_nicknames i s ignored .
809 forbiddensharing i s ignored .
810 Parenthood i s ignored .
811 Person_fName i s ignored .
812 Person_yearB i s ignored .
813 Person_id i s ignored .
814 Pet_ id i s ignored .
815 Person i s ignored .
816 Indiv idual i s ignored .
817 I n t e g e r i s ignored .
818 Pet i s ignored .
819 Person_favoriteNumber i s ignored .
820 Pet_nickName i s ignored .
821 Comparisons t h a t c l a s s i f y as equal
822 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [

Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

823 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [
Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

824 S t r i n g enabled value i s both f a l s e .
825 I n v a r i a n t s e t t i n g s are empty .
826 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [

Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

827 Real enabled value i s both f a l s e .
828 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;

Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .
829 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max

=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .
830 Comparisons t h a t c l a s s i f y as l e f t d i s j o i n t
831 Integer_min and Integer_max c l a s s i f y as l e f t d i s j o i n t (l e f t : [

Integer_min=−10 ; Integer_max=0] ; r i g h t : [Integer_min =100 ;
Integer_max =1000]) .

832
833 2 7 . conf ig6 != conf ig8 :
834 Comparisons t h a t are ignored
835 Person_nicknames i s ignored .
836 Indiv idual i s ignored .
837 Pet_nickName i s ignored .
838 Pet_ id i s ignored .
839 Person_lName i s ignored .
840 forbiddensharing i s ignored .
841 Person i s ignored .
842 I n t e g e r i s ignored .
843 Person_yearB i s ignored .
844 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
845 S t r i n g i s ignored .
846 Person_id i s ignored .
847 P e t S i t t i n g i s ignored .
848 Indiv idua l_ id i s ignored .
849 Parenthood i s ignored .
850 Person_fName i s ignored .
851 Person_favoriteNumber i s ignored .
852 Pet i s ignored .
853 Comparisons t h a t c l a s s i f y as equal

Appendix A. Example output for comparing configurations 99

854 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max
=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .

855 S t r i n g enabled value i s both f a l s e .
856 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [

Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

857 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;
Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .

858 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [
Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

859 I n v a r i a n t s e t t i n g s are empty .
860 Real enabled value i s both f a l s e .
861 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [

Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

862 Comparisons t h a t c l a s s i f y as r i g h t d i s j o i n t
863 Integer_min and Integer_max c l a s s i f y as r i g h t d i s j o i n t (l e f t : [

Integer_min=−10 ; Integer_max=0] ; r i g h t : [Integer_min =−100000
; Integer_max=−10000]) .

864
865 2 8 . conf ig7 != conf ig8 :
866 Comparisons t h a t are ignored
867 a g g r e g a t i o n c y c l e f r e e n e s s i s ignored .
868 Indiv idua l_ id i s ignored .
869 Person_lName i s ignored .
870 Parenthood i s ignored .
871 I n t e g e r i s ignored .
872 Person i s ignored .
873 Pet_ id i s ignored .
874 Person_id i s ignored .
875 Pet_nickName i s ignored .
876 Person_favoriteNumber i s ignored .
877 Indiv idual i s ignored .
878 P e t S i t t i n g i s ignored .
879 forbiddensharing i s ignored .
880 Pet i s ignored .
881 S t r i n g i s ignored .
882 Person_nicknames i s ignored .
883 Person_fName i s ignored .
884 Person_yearB i s ignored .
885 Comparisons t h a t c l a s s i f y as equal
886 PetS i t t ing_min and PetSi t t ing_max c l a s s i f y e q u a l i t y (l e f t : [

Pe tS i t t ing_min =1 ; PetSi t t ing_max =1] ; r i g h t : [Pe tS i t t ing_min
=1 ; PetSi t t ing_max =1]) .

887 Individual_min and Individual_max c l a s s i f y e q u a l i t y (l e f t : [
Individual_min =1 ; Individual_max=1] ; r i g h t : [Individual_min
=1 ; Individual_max=1]) .

888 Parenthood_min and Parenthood_max c l a s s i f y e q u a l i t y (l e f t : [
Parenthood_min=1 ; Parenthood_max=1] ; r i g h t : [Parenthood_min
=1 ; Parenthood_max=1]) .

889 Person_min and Person_max c l a s s i f y e q u a l i t y (l e f t : [Person_min=1 ;
Person_max=1] ; r i g h t : [Person_min=1 ; Person_max=1]) .

890 S t r i n g enabled value i s both f a l s e .
891 Pet_min and Pet_max c l a s s i f y e q u a l i t y (l e f t : [Pet_min=1 ; Pet_max

=1] ; r i g h t : [Pet_min=1 ; Pet_max=1]) .
892 I n v a r i a n t s e t t i n g s are empty .
893 Real enabled value i s both f a l s e .
894 Comparisons t h a t c l a s s i f y as r i g h t d i s j o i n t
895 Integer_min and Integer_max c l a s s i f y as r i g h t d i s j o i n t (l e f t : [

Integer_min =100 ; Integer_max =1000] ; r i g h t : [Integer_min
=−100000 ; Integer_max=−10000]) .

896

100 Appendix A. Example output for comparing configurations

897
898 Overview :
899
900 | 1 | <= | conf ig1 | conf ig2 |
901 | 2 | >= | conf ig1 | conf ig3 |
902 | 3 | != | conf ig1 | conf ig4 |
903 | 4 | != | conf ig1 | conf ig5 |
904 | 5 | >= | conf ig1 | conf ig6 |
905 | 6 | != | conf ig1 | conf ig7 |
906 | 7 | != | conf ig1 | conf ig8 |
907 | 8 | >= | conf ig2 | conf ig3 |
908 | 9 | >= | conf ig2 | conf ig4 |
909 | 10 | != | conf ig2 | conf ig5 |
910 | 11 | >= | conf ig2 | conf ig6 |
911 | 12 | != | conf ig2 | conf ig7 |
912 | 13 | != | conf ig2 | conf ig8 |
913 | 14 | <= | conf ig3 | conf ig4 |
914 | 15 | <= | conf ig3 | conf ig5 |
915 | 16 | != | conf ig3 | conf ig6 |
916 | 17 | != | conf ig3 | conf ig7 |
917 | 18 | != | conf ig3 | conf ig8 |
918 | 19 | <= | conf ig4 | conf ig5 |
919 | 20 | != | conf ig4 | conf ig6 |
920 | 21 | != | conf ig4 | conf ig7 |
921 | 22 | != | conf ig4 | conf ig8 |
922 | 23 | != | conf ig5 | conf ig6 |
923 | 24 | >= | conf ig5 | conf ig7 |
924 | 25 | != | conf ig5 | conf ig8 |
925 | 26 | != | conf ig6 | conf ig7 |
926 | 27 | != | conf ig6 | conf ig8 |
927 | 28 | != | conf ig7 | conf ig8 |
928
929 The comparison shows 1 family with more than two members :
930 1 : [config2 , config3 , config4 , config5 , config6 , config7 , conf ig1]

LISTING A.1: UML-
based Specification Environment command-line interface output

for comparing configurations from listing 3.1

101

Appendix B

Formal proof: Arbitrary operands
order for comparison results
merging

In the following it is proofed that the order of to be merged types is arbitrary when
merging configuration comparison partial comparison result types.

Proof via mathematical induction:
It must be proofed, that the result of the n-ary merge is independent of the order
of the selected operands for the application of the underlying binary merge. Let
nmerge(o1, . . . , on) be a function with n ≥ 2 arguments where o1, . . . , on ∈ O are
symbols from table 3.1. Let nmerge(o1, . . . , on) = nmerge(nmerge(o1, . . . , on−1), on)
be the recursive definition of the function for n ≥ 3. Let the result of nmerge(o1, o2)
be defined in table 3.2.

Base step:
It must be proved that the statement is valid for n = 2, the smallest number. It must
hold ∀o1, o2 ∈ O : nmerge(o1, o2) = nmerge(o2, o1). This holds since the result of
nmerge(o1, o2) and nmerge(o2, o1) are defined in the inverted matrix in table 3.2. For
n = 2 the function is therefor independent of the sequence of the operands.

Induction step:
It will be proved that if the statement applies to a certain number n, the statement
also applies to n + 1, the next larger number. It must hold ∀o1, ..., on−1, on, on+1 ∈ O :

nmerge(nmerge(o1, ..., on), on+1) = nmerge(nmerge(nmerge(o1, ..., on−1), on), on+1)

= nmerge(nmerge(on, nmerge(o1, ..., on−1)), on+1)

= nmerge(nmerge(on+1, on), nmerge(o1, ..., on−1))

= nmerge(nmerge(on, on+1), nmerge(o1, ..., on−1))

= nmerge(nmerge(nmerge(o1, ..., on−1), on+1), on)

= nmerge(nmerge(on+1, nmerge(o1, ..., on−1)), on)

(B.1)
This is formulated so that for n + 1 the property can only be fulfilled if it is fulfilled
for n. Regarding n = 3, all parts nmerge(o1, ..., on−1) are independent of the sequence
of the operands, which is shown in the base step. So when B.1 holds for n = 3 when
it holds for n = 2, it also holds for n + 1 when it holds for n because when it holds
for n = 3, then it also holds for n = 4 and so on. Therefor, it is to be proofed that B.1
holds for n = 3. It is to be shown that for all possible combinations it holds that the

102
Appendix B. Formal proof: Arbitrary operands order for comparison results

merging

result is independent of the order. It must hold ∀o1, o2, o3 ∈ O :
nmerge(o1, o2, o3) = nmerge(nmerge(o1, o2), o3)

= nmerge(nmerge(o1, o3), o2)

= nmerge(nmerge(o2, o1), o3)

= nmerge(nmerge(o2, o3), o1)

= nmerge(nmerge(o3, o1), o2)

= nmerge(nmerge(o3, o2), o1)

(B.2)

Since nmerge(nmerge(o1, o3), o2) = nmerge(nmerge(o3, o1), o2), nmerge(nmerge(o1, o2), o3) =
nmerge(nmerge(o2, o1), o3) and nmerge(nmerge(o2, o3), o1) = nmerge(nmerge(o3, o2), o1)
already hold because of the order independence, only ∀o1, o2, o3 ∈ O :

nmerge(o1, o2, o3) = nmerge(nmerge(o1, o2), o3)

= nmerge(nmerge(o1, o3), o2)

= nmerge(nmerge(o2, o3), o1)

(B.3)

must hold. This is shown in the following for all variants of o1, o2, o3 ∈ O.

When all three operands are equal the result is the same as the operands.

When two of the three operands are equal it is not obvious that here too the result
is independent of the operands order. However, this can be shown by case
distinction for all o1, o2 ∈ O, where o1 6= o2. It must hold ∀{o1, o2} ⊂ O :

nmerge(nmerge(o1, o1), o2) = nmerge(nmerge(o2, o1), o1)

= nmerge(nmerge(o1, o2), o1)

= nmerge(nmerge(o2, o2), o1)

= nmerge(nmerge(o1, o2), o2)

= nmerge(nmerge(o2, o1), o2)

(B.4)

Since nmerge(nmerge(o2, o1), o1) = nmerge(nmerge(o1, o2), o1) and nmerge(nmerge(o1, o2), o2) =
nmerge(nmerge(o2, o1), o2) already holds because of the order independence,
only the following must hold ∀{o1, o2} ⊂ O :

nmerge(nmerge(o1, o1), o2) = nmerge(nmerge(o2, o1), o1)

= nmerge(nmerge(o2, o2), o1)

= nmerge(nmerge(o1, o2), o2)

(B.5)

{!?, !!}
!? = nmerge(nmerge(!?, !?), !!)

= nmerge(nmerge(!!, !?), !?)
= nmerge(nmerge(!!, !!), !?)
= nmerge(nmerge(!?, !!), !!)

(B.6)

{!?, ..}
!? = nmerge(nmerge(!?, !?), ..)

= nmerge(nmerge(.., !?), !?)
= nmerge(nmerge(.., ..), !?)
= nmerge(nmerge(!?, ..), ..)

(B.7)

Appendix B. Formal proof: Arbitrary operands order for comparison results
merging

103

{!?, !=}
!? = nmerge(nmerge(!?, !?), !=)

= nmerge(nmerge(!=, !?), !?)
= nmerge(nmerge(!=, !=), !?)
= nmerge(nmerge(!?, !=), !=)

(B.8)

{!?, ==}
!? = nmerge(nmerge(!?, !?), ==)

= nmerge(nmerge(==, !?), !?)
= nmerge(nmerge(==, ==), !?)
= nmerge(nmerge(!?, ==), ==)

(B.9)

{!?, >=}
!? = nmerge(nmerge(!?, !?), >=)

= nmerge(nmerge(>=, !?), !?)
= nmerge(nmerge(>=, >=), !?)
= nmerge(nmerge(!?, >=), >=)

(B.10)

{!?, <=}
!? = nmerge(nmerge(!?, !?), <=)

= nmerge(nmerge(<=, !?), !?)
= nmerge(nmerge(<=, <=), !?)
= nmerge(nmerge(!?, <=), <=)

(B.11)

{!?, lO}
!? = nmerge(nmerge(!?, !?), lO)

= nmerge(nmerge(lO, !?), !?)
= nmerge(nmerge(lO, lO), !?)
= nmerge(nmerge(!?, lO), lO)

(B.12)

{!?, rO}
!? = nmerge(nmerge(!?, !?), rO)

= nmerge(nmerge(rO, !?), !?)
= nmerge(nmerge(rO, rO), !?)
= nmerge(nmerge(!?, rO), rO)

(B.13)

{!?, lD}
!? = nmerge(nmerge(!?, !?), lD)

= nmerge(nmerge(lD, !?), !?)
= nmerge(nmerge(lD, lD), !?)
= nmerge(nmerge(!?, lD), lD)

(B.14)

{!?, rD}
!? = nmerge(nmerge(!?, !?), rD)

= nmerge(nmerge(rD, !?), !?)
= nmerge(nmerge(rD, rD), !?)
= nmerge(nmerge(!?, rD), rD)

(B.15)

104
Appendix B. Formal proof: Arbitrary operands order for comparison results

merging

{!!, ..}
!! = nmerge(nmerge(!!, !!), ..)

= nmerge(nmerge(.., !!), !!)
= nmerge(nmerge(.., ..), !!)
= nmerge(nmerge(!!, ..), ..)

(B.16)

{!!, !=}
!! = nmerge(nmerge(!!, !!), !=)

= nmerge(nmerge(!=, !!), !!)
= nmerge(nmerge(!=, !=), !!)
= nmerge(nmerge(!!, !=), !=)

(B.17)

{!!, ==}
!! = nmerge(nmerge(!!, !!), ==)

= nmerge(nmerge(==, !!), !!)
= nmerge(nmerge(==, ==), !!)
= nmerge(nmerge(!!, ==), ==)

(B.18)

{!!, >=}
!! = nmerge(nmerge(!!, !!), >=)

= nmerge(nmerge(>=, !!), !!)
= nmerge(nmerge(>=, >=), !!)
= nmerge(nmerge(!!, >=), >=)

(B.19)

{!!, <=}
!! = nmerge(nmerge(!!, !!), <=)

= nmerge(nmerge(<=, !!), !!)
= nmerge(nmerge(<=, <=), !!)
= nmerge(nmerge(!!, <=), <=)

(B.20)

{!!, lO}
!! = nmerge(nmerge(!!, !!), lO)

= nmerge(nmerge(lO, !!), !!)
= nmerge(nmerge(lO, lO), !!)
= nmerge(nmerge(!!, lO), lO)

(B.21)

{!!, rO}
!! = nmerge(nmerge(!!, !!), rO)

= nmerge(nmerge(rO, !!), !!)
= nmerge(nmerge(rO, rO), !!)
= nmerge(nmerge(!!, rO), rO)

(B.22)

{!!, lD}
!! = nmerge(nmerge(!!, !!), lD)

= nmerge(nmerge(lD, !!), !!)
= nmerge(nmerge(lD, lD), !!)
= nmerge(nmerge(!!, lD), lD)

(B.23)

Appendix B. Formal proof: Arbitrary operands order for comparison results
merging

105

{!!, rD}
!! = nmerge(nmerge(!!, !!), rD)

= nmerge(nmerge(rD, !!), !!)
= nmerge(nmerge(rD, rD), !!)
= nmerge(nmerge(!!, rD), rD)

(B.24)

{.., !=}
!= = nmerge(nmerge(.., ..), !=)

= nmerge(nmerge(!=, ..), ..)
= nmerge(nmerge(!=, !=), ..)
= nmerge(nmerge(.., !=), !=)

(B.25)

{.., ==}
== = nmerge(nmerge(.., ..), ==)

= nmerge(nmerge(==, ..), ..)
= nmerge(nmerge(==, ==), ..)
= nmerge(nmerge(.., ==), ==)

(B.26)

{.., >=}
>= = nmerge(nmerge(.., ..), >=)

= nmerge(nmerge(>=, ..), ..)
= nmerge(nmerge(>=, >=), ..)
= nmerge(nmerge(.., >=), >=)

(B.27)

{.., <=}
<= = nmerge(nmerge(.., ..), <=)

= nmerge(nmerge(<=, ..), ..)
= nmerge(nmerge(<=, <=), ..)
= nmerge(nmerge(.., <=), <=)

(B.28)

{.., lO}
lO = nmerge(nmerge(.., ..), lO)

= nmerge(nmerge(lO, ..), ..)
= nmerge(nmerge(lO, lO), ..)
= nmerge(nmerge(.., lO), lO)

(B.29)

{.., rO}
rO = nmerge(nmerge(.., ..), rO)

= nmerge(nmerge(rO, ..), ..)
= nmerge(nmerge(rO, rO), ..)
= nmerge(nmerge(.., rO), rO)

(B.30)

{.., lD}
lD = nmerge(nmerge(.., ..), lD)

= nmerge(nmerge(lD, ..), ..)
= nmerge(nmerge(lD, lD), ..)
= nmerge(nmerge(.., lD), lD)

(B.31)

106
Appendix B. Formal proof: Arbitrary operands order for comparison results

merging

{.., rD}
rD = nmerge(nmerge(.., ..), rD)

= nmerge(nmerge(rD, ..), ..)
= nmerge(nmerge(rD, rD), ..)
= nmerge(nmerge(.., rD), rD)

(B.32)

{!=, ==}
!= = nmerge(nmerge(!=, !=), ==)

= nmerge(nmerge(==, !=), !=)
= nmerge(nmerge(==, ==), !=)
= nmerge(nmerge(!=, ==), ==)

(B.33)

{!=, >=}
!= = nmerge(nmerge(!=, !=), >=)

= nmerge(nmerge(>=, !=), !=)
= nmerge(nmerge(>=, >=), !=)
= nmerge(nmerge(!=, >=), >=)

(B.34)

{!=, <=}
!= = nmerge(nmerge(!=, !=), <=)

= nmerge(nmerge(<=, !=), !=)
= nmerge(nmerge(<=, <=), !=)
= nmerge(nmerge(!=, <=), <=)

(B.35)

{!=, lO}
!= = nmerge(nmerge(!=, !=), lO)

= nmerge(nmerge(lO, !=), !=)
= nmerge(nmerge(lO, lO), !=)
= nmerge(nmerge(!=, lO), lO)

(B.36)

{!=, rO}
!= = nmerge(nmerge(!=, !=), rO)

= nmerge(nmerge(rO, !=), !=)
= nmerge(nmerge(rO, rO), !=)
= nmerge(nmerge(!=, rO), rO)

(B.37)

{!=, lD}
!= = nmerge(nmerge(!=, !=), lD)

= nmerge(nmerge(lD, !=), !=)
= nmerge(nmerge(lD, lD), !=)
= nmerge(nmerge(!=, lD), lD)

(B.38)

{!=, rD}
!= = nmerge(nmerge(!=, !=), rD)

= nmerge(nmerge(rD, !=), !=)
= nmerge(nmerge(rD, rD), !=)
= nmerge(nmerge(!=, rD), rD)

(B.39)

Appendix B. Formal proof: Arbitrary operands order for comparison results
merging

107

{==, >=}
== = nmerge(nmerge(==, ==), >=)

= nmerge(nmerge(>=, ==), ==)
= nmerge(nmerge(>=, >=), ==)
= nmerge(nmerge(==, >=), >=)

(B.40)

{==, <=}
== = nmerge(nmerge(==, ==), <=)

= nmerge(nmerge(<=, ==), ==)
= nmerge(nmerge(<=, <=), ==)
= nmerge(nmerge(==, <=), <=)

(B.41)

{==, lO}
!= = nmerge(nmerge(==, ==), lO)

= nmerge(nmerge(lO, ==), ==)
= nmerge(nmerge(lO, lO), ==)
= nmerge(nmerge(==, lO), lO)

(B.42)

{==, rO}
!= = nmerge(nmerge(==, ==), rO)

= nmerge(nmerge(rO, ==), ==)
= nmerge(nmerge(rO, rO), ==)
= nmerge(nmerge(==, rO), rO)

(B.43)

{==, lD}
!= = nmerge(nmerge(==, ==), lD)

= nmerge(nmerge(lD, ==), ==)
= nmerge(nmerge(lD, lD), ==)
= nmerge(nmerge(==, lD), lD)

(B.44)

{==, rD}
!= = nmerge(nmerge(==, ==), rD)

= nmerge(nmerge(rD, ==), ==)
= nmerge(nmerge(rD, rD), ==)
= nmerge(nmerge(==, rD), rD)

(B.45)

{>=, <=}
!= = nmerge(nmerge(>=, >=), <=)

= nmerge(nmerge(<=, >=), >=)
= nmerge(nmerge(<=, <=), >=)
= nmerge(nmerge(>=, <=), <=)

(B.46)

{>=, lO}
!= = nmerge(nmerge(>=, >=), lO)

= nmerge(nmerge(lO, >=), >=)
= nmerge(nmerge(lO, lO), >=)
= nmerge(nmerge(>=, lO), lO)

(B.47)

108
Appendix B. Formal proof: Arbitrary operands order for comparison results

merging

{>=, rO}
!= = nmerge(nmerge(>=, >=), rO)

= nmerge(nmerge(rO, >=), >=)
= nmerge(nmerge(rO, rO), >=)
= nmerge(nmerge(>=, rO), rO)

(B.48)

{>=, lD}
!= = nmerge(nmerge(>=, >=), lD)

= nmerge(nmerge(lD, >=), >=)
= nmerge(nmerge(lD, lD), >=)
= nmerge(nmerge(>=, lD), lD)

(B.49)

{>=, rD}
!= = nmerge(nmerge(>=, >=), rD)

= nmerge(nmerge(rD, >=), >=)
= nmerge(nmerge(rD, rD), >=)
= nmerge(nmerge(>=, rD), rD)

(B.50)

{<=, lO}
!= = nmerge(nmerge(<=, <=), lO)

= nmerge(nmerge(lO, <=), <=)
= nmerge(nmerge(lO, lO), <=)
= nmerge(nmerge(<=, lO), lO)

(B.51)

{<=, rO}
!= = nmerge(nmerge(<=, <=), rO)

= nmerge(nmerge(rO, <=), <=)
= nmerge(nmerge(rO, rO), <=)
= nmerge(nmerge(<=, rO), rO)

(B.52)

{<=, lD}
!= = nmerge(nmerge(<=, <=), lD)

= nmerge(nmerge(lD, <=), <=)
= nmerge(nmerge(lD, lD), <=)
= nmerge(nmerge(<=, lD), lD)

(B.53)

{<=, rD}
!= = nmerge(nmerge(<=, <=), rD)

= nmerge(nmerge(rD, <=), <=)
= nmerge(nmerge(rD, rD), <=)
= nmerge(nmerge(<=, rD), rD)

(B.54)

{lO, rO}
!= = nmerge(nmerge(lO, lO), rO)

= nmerge(nmerge(rO, lO), lO)
= nmerge(nmerge(rO, rO), lO)
= nmerge(nmerge(lO, rO), rO)

(B.55)

Appendix B. Formal proof: Arbitrary operands order for comparison results
merging

109

{lO, lD}
!= = nmerge(nmerge(lO, lO), lD)

= nmerge(nmerge(lD, lO), lO)
= nmerge(nmerge(lD, lD), lO)
= nmerge(nmerge(lO, lD), lD)

(B.56)

{lO, rD}
!= = nmerge(nmerge(lO, lO), rD)

= nmerge(nmerge(rD, lO), lO)
= nmerge(nmerge(rD, rD), lO)
= nmerge(nmerge(lO, rD), rD)

(B.57)

{rO, lD}
!= = nmerge(nmerge(rO, rO), lD)

= nmerge(nmerge(lD, rO), rO)
= nmerge(nmerge(lD, lD), rO)
= nmerge(nmerge(rO, lD), lD)

(B.58)

{rO, rD}
!= = nmerge(nmerge(rO, rO), rD)

= nmerge(nmerge(rD, rO), rO)
= nmerge(nmerge(rD, rD), rO)
= nmerge(nmerge(rO, rD), rD)

(B.59)

{lD, rD}
!= = nmerge(nmerge(lD, lD), rD)

= nmerge(nmerge(rD, lD), lD)
= nmerge(nmerge(rD, rD), lD)
= nmerge(nmerge(lD, rD), rD)

(B.60)

When all three operands are different (all remaining cases) it is also not obvious
that the result is independent of the operands order. However, this can be
shown by case distinction for all o1, o2, o3 ∈ O, where o1 6= o2, o1 6= o3 and
o2 6= o3. It must hold ∀{o1, o2, o3} ⊂ O :

nmerge(o1, o2, o3) = nmerge(nmerge(o1, o2), o3)

= nmerge(nmerge(o1, o3), o2)

= nmerge(nmerge(o2, o3), o1)

(B.61)

{!?, !!, ..}
!? = nmerge(nmerge(!?, !!), ..)

= nmerge(nmerge(!?, ..), !!)
= nmerge(nmerge(!!, ..), !?)

(B.62)

{!?, !!, !=}
!? = nmerge(nmerge(!?, !!), !=)

= nmerge(nmerge(!?, !=), !!)
= nmerge(nmerge(!!, !=), !?)

(B.63)

110
Appendix B. Formal proof: Arbitrary operands order for comparison results

merging

{!?, !!, ==}
!? = nmerge(nmerge(!?, !!), ==)

= nmerge(nmerge(!?, ==), !!)
= nmerge(nmerge(!!, ==), !?)

(B.64)

{!?, !!, >=}
!? = nmerge(nmerge(!?, !!), >=)

= nmerge(nmerge(!?, >=), !!)
= nmerge(nmerge(!!, >=), !?)

(B.65)

{!?, !!, <=}
!? = nmerge(nmerge(!?, !!), <=)

= nmerge(nmerge(!?, <=), !!)
= nmerge(nmerge(!!, <=), !?)

(B.66)

{!?, !!, lO}
!? = nmerge(nmerge(!?, !!), lO)

= nmerge(nmerge(!?, lO), !!)
= nmerge(nmerge(!!, lO), !?)

(B.67)

{!?, !!, rO}
!? = nmerge(nmerge(!?, !!), rO)

= nmerge(nmerge(!?, rO), !!)
= nmerge(nmerge(!!, rO), !?)

(B.68)

{!?, !!, lD}
!? = nmerge(nmerge(!?, !!), lD)

= nmerge(nmerge(!?, lD), !!)
= nmerge(nmerge(!!, lD), !?)

(B.69)

{!?, .., !=}
!? = nmerge(nmerge(!?, ..), !=)

= nmerge(nmerge(!?, !=), ..)
= nmerge(nmerge(.., !=), !?)

(B.70)

{!?, .., ==}
!? = nmerge(nmerge(!?, ..), ==)

= nmerge(nmerge(!?, ==), ..)
= nmerge(nmerge(.., ==), !?)

(B.71)

{!?, .., >=}
!? = nmerge(nmerge(!?, ..), >=)

= nmerge(nmerge(!?, >=), ..)
= nmerge(nmerge(.., >=), !?)

(B.72)

{!?, .., <=}
!? = nmerge(nmerge(!?, ..), <=)

= nmerge(nmerge(!?, <=), ..)
= nmerge(nmerge(.., <=), !?)

(B.73)

Appendix B. Formal proof: Arbitrary operands order for comparison results
merging

111

{!?, .., lO}
!? = nmerge(nmerge(!?, ..), lO)

= nmerge(nmerge(!?, lO), ..)
= nmerge(nmerge(.., lO), !?)

(B.74)

{!?, .., rO}
!? = nmerge(nmerge(!?, ..), rO)

= nmerge(nmerge(!?, rO), ..)
= nmerge(nmerge(.., rO), !?)

(B.75)

{!?, .., lD}
!? = nmerge(nmerge(!?, ..), lD)

= nmerge(nmerge(!?, lD), ..)
= nmerge(nmerge(.., lD), !?)

(B.76)

{!?, !=, ==}
!? = nmerge(nmerge(!?, !=), ==)

= nmerge(nmerge(!?, ==), !=)
= nmerge(nmerge(!=, ==), !?)

(B.77)

{!?, !=, >=}
!? = nmerge(nmerge(!?, !=), >=)

= nmerge(nmerge(!?, >=), !=)
= nmerge(nmerge(!=, >=), !?)

(B.78)

{!?, !=, <=}
!? = nmerge(nmerge(!?, !=), <=)

= nmerge(nmerge(!?, <=), !=)
= nmerge(nmerge(!=, <=), !?)

(B.79)

{!?, !=, lO}
!? = nmerge(nmerge(!?, !=), lO)

= nmerge(nmerge(!?, lO), !=)
= nmerge(nmerge(!=, lO), !?)

(B.80)

{!?, !=, rO}
!? = nmerge(nmerge(!?, !=), rO)

= nmerge(nmerge(!?, rO), !=)
= nmerge(nmerge(!=, rO), !?)

(B.81)

{!?, !=, lD}
!? = nmerge(nmerge(!?, !=), lD)

= nmerge(nmerge(!?, lD), !=)
= nmerge(nmerge(!=, lD), !?)

(B.82)

{!?, ==, >=}
!? = nmerge(nmerge(!?, ==), >=)

= nmerge(nmerge(!?, >=), ==)
= nmerge(nmerge(==, >=), !?)

(B.83)

112
Appendix B. Formal proof: Arbitrary operands order for comparison results

merging

{!?, ==, <=}
!? = nmerge(nmerge(!?, ==), <=)

= nmerge(nmerge(!?, <=), ==)
= nmerge(nmerge(==, <=), !?)

(B.84)

{!?, ==, lO}
!? = nmerge(nmerge(!?, ==), lO)

= nmerge(nmerge(!?, lO), ==)
= nmerge(nmerge(==, lO), !?)

(B.85)

{!?, ==, rO}
!? = nmerge(nmerge(!?, ==), rO)

= nmerge(nmerge(!?, rO), ==)
= nmerge(nmerge(==, rO), !?)

(B.86)

{!?, ==, lD}
!? = nmerge(nmerge(!?, ==), lD)

= nmerge(nmerge(!?, lD), ==)
= nmerge(nmerge(==, lD), !?)

(B.87)

{!?, >=, <=}
!? = nmerge(nmerge(!?, >=), <=)

= nmerge(nmerge(!?, <=), >=)
= nmerge(nmerge(>=, <=), !?)

(B.88)

{!?, >=, lO}
!? = nmerge(nmerge(!?, >=), lO)

= nmerge(nmerge(!?, lO), >=)
= nmerge(nmerge(>=, lO), !?)

(B.89)

{!?, >=, rO}
!? = nmerge(nmerge(!?, >=), rO)

= nmerge(nmerge(!?, rO), >=)
= nmerge(nmerge(>=, rO), !?)

(B.90)

{!?, >=, lD}
!? = nmerge(nmerge(!?, >=), lD)

= nmerge(nmerge(!?, lD), >=)
= nmerge(nmerge(>=, lD), !?)

(B.91)

{!?, <=, lO}
!? = nmerge(nmerge(!?, <=), lO)

= nmerge(nmerge(!?, lO), <=)
= nmerge(nmerge(<=, lO), !?)

(B.92)

{!?, <=, rO}
!? = nmerge(nmerge(!?, <=), rO)

= nmerge(nmerge(!?, rO), <=)
= nmerge(nmerge(<=, rO), !?)

(B.93)

Appendix B. Formal proof: Arbitrary operands order for comparison results
merging

113

{!?, <=, lD}
!? = nmerge(nmerge(!?, <=), lD)

= nmerge(nmerge(!?, lD), <=)
= nmerge(nmerge(<=, lD), !?)

(B.94)

{!?, lO, rO}
!? = nmerge(nmerge(!?, lO), rO)

= nmerge(nmerge(!?, rO), lO)
= nmerge(nmerge(lO, rO), !?)

(B.95)

{!?, lO, lD}
!? = nmerge(nmerge(!?, lO), lD)

= nmerge(nmerge(!?, lD), lO)
= nmerge(nmerge(lO, lD), !?)

(B.96)

{!?, rO, lD}
!? = nmerge(nmerge(!?, rO), lD)

= nmerge(nmerge(!?, lD), rO)
= nmerge(nmerge(rO, lD), !?)

(B.97)

{!!, .., !=}
!! = nmerge(nmerge(!!, ..), !=)

= nmerge(nmerge(!!, !=), ..)
= nmerge(nmerge(.., !=), !!)

(B.98)

{!!, .., ==}
!! = nmerge(nmerge(!!, ..), ==)

= nmerge(nmerge(!!, ==), ..)
= nmerge(nmerge(.., ==), !!)

(B.99)

{!!, .., >=}
!! = nmerge(nmerge(!!, ..), >=)

= nmerge(nmerge(!!, >=), ..)
= nmerge(nmerge(.., >=), !!)

(B.100)

{!!, .., <=}
!! = nmerge(nmerge(!!, ..), <=)

= nmerge(nmerge(!!, <=), ..)
= nmerge(nmerge(.., <=), !!)

(B.101)

{!!, .., lO}
!! = nmerge(nmerge(!!, ..), lO)

= nmerge(nmerge(!!, lO), ..)
= nmerge(nmerge(.., lO), !!)

(B.102)

{!!, .., rO}
!! = nmerge(nmerge(!!, ..), rO)

= nmerge(nmerge(!!, rO), ..)
= nmerge(nmerge(.., rO), !!)

(B.103)

114
Appendix B. Formal proof: Arbitrary operands order for comparison results

merging

{!!, .., lD}
!! = nmerge(nmerge(!!, ..), lD)

= nmerge(nmerge(!!, lD), ..)
= nmerge(nmerge(.., lD), !!)

(B.104)

{!!, !=, ==}
!! = nmerge(nmerge(!!, !=), ==)

= nmerge(nmerge(!!, ==), !=)
= nmerge(nmerge(!=, ==), !!)

(B.105)

{!!, !=, >=}
!! = nmerge(nmerge(!!, !=), >=)

= nmerge(nmerge(!!, >=), !=)
= nmerge(nmerge(!=, >=), !!)

(B.106)

{!!, !=, <=}
!! = nmerge(nmerge(!!, !=), <=)

= nmerge(nmerge(!!, <=), !=)
= nmerge(nmerge(!=, <=), !!)

(B.107)

{!!, !=, lO}
!! = nmerge(nmerge(!!, !=), lO)

= nmerge(nmerge(!!, lO), !=)
= nmerge(nmerge(!=, lO), !!)

(B.108)

{!!, !=, rO}
!! = nmerge(nmerge(!!, !=), rO)

= nmerge(nmerge(!!, rO), !=)
= nmerge(nmerge(!=, rO), !!)

(B.109)

{!!, !=, lD}
!! = nmerge(nmerge(!!, !=), lD)

= nmerge(nmerge(!!, lD), !=)
= nmerge(nmerge(!=, lD), !!)

(B.110)

{!!, ==, >=}
!! = nmerge(nmerge(!!, ==), >=)

= nmerge(nmerge(!!, >=), ==)
= nmerge(nmerge(==, >=), !!)

(B.111)

{!!, ==, <=}
!! = nmerge(nmerge(!!, ==), <=)

= nmerge(nmerge(!!, <=), ==)
= nmerge(nmerge(==, <=), !!)

(B.112)

{!!, ==, lO}
!! = nmerge(nmerge(!!, ==), lO)

= nmerge(nmerge(!!, lO), ==)
= nmerge(nmerge(==, lO), !!)

(B.113)

Appendix B. Formal proof: Arbitrary operands order for comparison results
merging

115

{!!, ==, rO}
!! = nmerge(nmerge(!!, ==), rO)

= nmerge(nmerge(!!, rO), ==)
= nmerge(nmerge(==, rO), !!)

(B.114)

{!!, ==, lD}
!! = nmerge(nmerge(!!, ==), lD)

= nmerge(nmerge(!!, lD), ==)
= nmerge(nmerge(==, lD), !!)

(B.115)

{!!, >=, <=}
!! = nmerge(nmerge(!!, >=), <=)

= nmerge(nmerge(!!, <=), >=)
= nmerge(nmerge(>=, <=), !!)

(B.116)

{!!, >=, lO}
!! = nmerge(nmerge(!!, >=), lO)

= nmerge(nmerge(!!, lO), >=)
= nmerge(nmerge(>=, lO), !!)

(B.117)

{!!, >=, rO}
!! = nmerge(nmerge(!!, >=), rO)

= nmerge(nmerge(!!, rO), >=)
= nmerge(nmerge(>=, rO), !!)

(B.118)

{!!, >=, lD}
!! = nmerge(nmerge(!!, >=), lD)

= nmerge(nmerge(!!, lD), >=)
= nmerge(nmerge(>=, lD), !!)

(B.119)

{!!, <=, lO}
!! = nmerge(nmerge(!!, <=), lO)

= nmerge(nmerge(!!, lO), <=)
= nmerge(nmerge(<=, lO), !!)

(B.120)

{!!, <=, rO}
!! = nmerge(nmerge(!!, <=), rO)

= nmerge(nmerge(!!, rO), <=)
= nmerge(nmerge(<=, rO), !!)

(B.121)

{!!, <=, lD}
!! = nmerge(nmerge(!!, <=), lD)

= nmerge(nmerge(!!, lD), <=)
= nmerge(nmerge(<=, lD), !!)

(B.122)

{!!, lO, rO}
!! = nmerge(nmerge(!!, lO), rO)

= nmerge(nmerge(!!, rO), lO)
= nmerge(nmerge(lO, rO), !!)

(B.123)

116
Appendix B. Formal proof: Arbitrary operands order for comparison results

merging

{!!, lO, lD}
!! = nmerge(nmerge(!!, lO), lD)

= nmerge(nmerge(!!, lD), lO)
= nmerge(nmerge(lO, lD), !!)

(B.124)

{!!, rO, lD}
!! = nmerge(nmerge(!!, rO), lD)

= nmerge(nmerge(!!, lD), rO)
= nmerge(nmerge(rO, lD), !!)

(B.125)

{.., !=, ==}
!= = nmerge(nmerge(.., !=), ==)

= nmerge(nmerge(.., ==), !=)
= nmerge(nmerge(!=, ==), ..)

(B.126)

{.., !=, >=}
!= = nmerge(nmerge(.., !=), >=)

= nmerge(nmerge(.., >=), !=)
= nmerge(nmerge(!=, >=), ..)

(B.127)

{.., !=, <=}
!= = nmerge(nmerge(.., !=), <=)

= nmerge(nmerge(.., <=), !=)
= nmerge(nmerge(!=, <=), ..)

(B.128)

{.., !=, lO}
!= = nmerge(nmerge(.., !=), lO)

= nmerge(nmerge(.., lO), !=)
= nmerge(nmerge(!=, lO), ..)

(B.129)

{.., !=, rO}
!= = nmerge(nmerge(.., !=), rO)

= nmerge(nmerge(.., rO), !=)
= nmerge(nmerge(!=, rO), ..)

(B.130)

{.., !=, lD}
!= = nmerge(nmerge(.., !=), lD)

= nmerge(nmerge(.., lD), !=)
= nmerge(nmerge(!=, lD), ..)

(B.131)

{.., ==, >=}
>= = nmerge(nmerge(.., ==), >=)

= nmerge(nmerge(.., >=), ==)
= nmerge(nmerge(==, >=), ..)

(B.132)

{.., ==, <=}
<= = nmerge(nmerge(.., ==), <=)

= nmerge(nmerge(.., <=), ==)
= nmerge(nmerge(==, <=), ..)

(B.133)

Appendix B. Formal proof: Arbitrary operands order for comparison results
merging

117

{.., ==, lO}
!= = nmerge(nmerge(.., ==), lO)

= nmerge(nmerge(.., lO), ==)
= nmerge(nmerge(==, lO), ..)

(B.134)

{.., ==, rO}
!= = nmerge(nmerge(.., ==), rO)

= nmerge(nmerge(.., rO), ==)
= nmerge(nmerge(==, rO), ..)

(B.135)

{.., ==, lD}
!= = nmerge(nmerge(.., ==), lD)

= nmerge(nmerge(.., lD), ==)
= nmerge(nmerge(==, lD), ..)

(B.136)

{.., >=, <=}
!= = nmerge(nmerge(.., >=), <=)

= nmerge(nmerge(.., <=), >=)
= nmerge(nmerge(>=, <=), ..)

(B.137)

{.., >=, lO}
!= = nmerge(nmerge(.., >=), lO)

= nmerge(nmerge(.., lO), >=)
= nmerge(nmerge(>=, lO), ..)

(B.138)

{.., >=, rO}
!= = nmerge(nmerge(.., >=), rO)

= nmerge(nmerge(.., rO), >=)
= nmerge(nmerge(>=, rO), ..)

(B.139)

{.., >=, lD}
!= = nmerge(nmerge(.., >=), lD)

= nmerge(nmerge(.., lD), >=)
= nmerge(nmerge(>=, lD), ..)

(B.140)

{.., <=, lO}
!= = nmerge(nmerge(.., <=), lO)

= nmerge(nmerge(.., lO), <=)
= nmerge(nmerge(<=, lO), ..)

(B.141)

{.., <=, rO}
!= = nmerge(nmerge(.., <=), rO)

= nmerge(nmerge(.., rO), <=)
= nmerge(nmerge(<=, rO), ..)

(B.142)

{.., <=, lD}
!= = nmerge(nmerge(.., <=), lD)

= nmerge(nmerge(.., lD), <=)
= nmerge(nmerge(<=, lD), ..)

(B.143)

118
Appendix B. Formal proof: Arbitrary operands order for comparison results

merging

{.., lO, rO}
!= = nmerge(nmerge(.., lO), rO)

= nmerge(nmerge(.., rO), lO)
= nmerge(nmerge(lO, rO), ..)

(B.144)

{.., lO, lD}
!= = nmerge(nmerge(.., lO), lD)

= nmerge(nmerge(.., lD), lO)
= nmerge(nmerge(lO, lD), ..)

(B.145)

{.., rO, lD}
!= = nmerge(nmerge(.., rO), lD)

= nmerge(nmerge(.., lD), rO)
= nmerge(nmerge(rO, lD), ..)

(B.146)

{!=, ==, >=}
!= = nmerge(nmerge(!=, ==), >=)

= nmerge(nmerge(!=, >=), ==)
= nmerge(nmerge(==, >=), !=)

(B.147)

{!=, ==, <=}
!= = nmerge(nmerge(!=, ==), <=)

= nmerge(nmerge(!=, <=), ==)
= nmerge(nmerge(==, <=), !=)

(B.148)

{!=, ==, lO}
!= = nmerge(nmerge(!=, ==), lO)

= nmerge(nmerge(!=, lO), ==)
= nmerge(nmerge(==, lO), !=)

(B.149)

{!=, ==, rO}
!= = nmerge(nmerge(!=, ==), rO)

= nmerge(nmerge(!=, rO), ==)
= nmerge(nmerge(==, rO), !=)

(B.150)

{!=, ==, lD}
!= = nmerge(nmerge(!=, ==), lD)

= nmerge(nmerge(!=, lD), ==)
= nmerge(nmerge(==, lD), !=)

(B.151)

{!=, >=, <=}
!= = nmerge(nmerge(!=, >=), <=)

= nmerge(nmerge(!=, <=), >=)
= nmerge(nmerge(>=, <=), !=)

(B.152)

{!=, >=, lO}
!= = nmerge(nmerge(!=, >=), lO)

= nmerge(nmerge(!=, lO), >=)
= nmerge(nmerge(>=, lO), !=)

(B.153)

Appendix B. Formal proof: Arbitrary operands order for comparison results
merging

119

{!=, >=, rO}
!= = nmerge(nmerge(!=, >=), rO)

= nmerge(nmerge(!=, rO), >=)
= nmerge(nmerge(>=, rO), !=)

(B.154)

{!=, >=, lD}
!= = nmerge(nmerge(!=, >=), lD)

= nmerge(nmerge(!=, lD), >=)
= nmerge(nmerge(>=, lD), !=)

(B.155)

{!=, <=, lO}
!= = nmerge(nmerge(!=, <=), lO)

= nmerge(nmerge(!=, lO), <=)
= nmerge(nmerge(<=, lO), !=)

(B.156)

{!=, <=, rO}
!= = nmerge(nmerge(!=, <=), rO)

= nmerge(nmerge(!=, rO), <=)
= nmerge(nmerge(<=, rO), !=)

(B.157)

{!=, <=, lD}
!= = nmerge(nmerge(!=, <=), lD)

= nmerge(nmerge(!=, lD), <=)
= nmerge(nmerge(<=, lD), !=)

(B.158)

{!=, lO, rO}
!= = nmerge(nmerge(!=, lO), rO)

= nmerge(nmerge(!=, rO), lO)
= nmerge(nmerge(lO, rO), !=)

(B.159)

{!=, lO, lD}
!= = nmerge(nmerge(!=, lO), lD)

= nmerge(nmerge(!=, lD), lO)
= nmerge(nmerge(lO, lD), !=)

(B.160)

{!=, rO, lD}
!= = nmerge(nmerge(!=, rO), lD)

= nmerge(nmerge(!=, lD), rO)
= nmerge(nmerge(rO, lD), !=)

(B.161)

{==, >=, <=}
!= = nmerge(nmerge(==, >=), <=)

= nmerge(nmerge(==, <=), >=)
= nmerge(nmerge(>=, <=), ==)

(B.162)

{==, >=, lO}
!= = nmerge(nmerge(==, >=), lO)

= nmerge(nmerge(==, lO), >=)
= nmerge(nmerge(>=, lO), ==)

(B.163)

120
Appendix B. Formal proof: Arbitrary operands order for comparison results

merging

{==, >=, rO}
!= = nmerge(nmerge(==, >=), rO)

= nmerge(nmerge(==, rO), >=)
= nmerge(nmerge(>=, rO), ==)

(B.164)

{==, >=, lD}
!= = nmerge(nmerge(==, >=), lD)

= nmerge(nmerge(==, lD), >=)
= nmerge(nmerge(>=, lD), ==)

(B.165)

{==, <=, lO}
!= = nmerge(nmerge(==, <=), lO)

= nmerge(nmerge(==, lO), <=)
= nmerge(nmerge(<=, lO), ==)

(B.166)

{==, <=, rO}
!= = nmerge(nmerge(==, <=), rO)

= nmerge(nmerge(==, rO), <=)
= nmerge(nmerge(<=, rO), ==)

(B.167)

{==, <=, lD}
!= = nmerge(nmerge(==, <=), lD)

= nmerge(nmerge(==, lD), <=)
= nmerge(nmerge(<=, lD), ==)

(B.168)

{==, lO, rO}
!= = nmerge(nmerge(==, lO), rO)

= nmerge(nmerge(==, rO), lO)
= nmerge(nmerge(lO, rO), ==)

(B.169)

{==, lO, lD}
!= = nmerge(nmerge(==, lO), lD)

= nmerge(nmerge(==, lD), lO)
= nmerge(nmerge(lO, lD), ==)

(B.170)

{==, rO, lD}
!= = nmerge(nmerge(==, rO), lD)

= nmerge(nmerge(==, lD), rO)
= nmerge(nmerge(rO, lD), ==)

(B.171)

{>=, <=, lO}
!= = nmerge(nmerge(>=, <=), lO)

= nmerge(nmerge(>=, lO), <=)
= nmerge(nmerge(<=, lO), >=)

(B.172)

{>=, <=, rO}
!= = nmerge(nmerge(>=, <=), rO)

= nmerge(nmerge(>=, rO), <=)
= nmerge(nmerge(<=, rO), >=)

(B.173)

Appendix B. Formal proof: Arbitrary operands order for comparison results
merging

121

{>=, <=, lD}
!= = nmerge(nmerge(>=, <=), lD)

= nmerge(nmerge(>=, lD), <=)
= nmerge(nmerge(<=, lD), >=)

(B.174)

{>=, lO, rO}
!= = nmerge(nmerge(>=, lO), rO)

= nmerge(nmerge(>=, rO), lO)
= nmerge(nmerge(lO, rO), >=)

(B.175)

{>=, lO, lD}
!= = nmerge(nmerge(>=, lO), lD)

= nmerge(nmerge(>=, lD), lO)
= nmerge(nmerge(lO, lD), >=)

(B.176)

{>=, rO, lD}
!= = nmerge(nmerge(>=, rO), lD)

= nmerge(nmerge(>=, lD), rO)
= nmerge(nmerge(rO, lD), >=)

(B.177)

{<=, lO, rO}
!= = nmerge(nmerge(<=, lO), rO)

= nmerge(nmerge(<=, rO), lO)
= nmerge(nmerge(lO, rO), <=)

(B.178)

{<=, lO, lD}
!= = nmerge(nmerge(<=, lO), lD)

= nmerge(nmerge(<=, lD), lO)
= nmerge(nmerge(lO, lD), <=)

(B.179)

{<=, rO, lD}
!= = nmerge(nmerge(<=, rO), lD)

= nmerge(nmerge(<=, lD), rO)
= nmerge(nmerge(rO, lD), <=)

(B.180)

{lO, rO, lD}
!= = nmerge(nmerge(lO, rO), lD)

= nmerge(nmerge(lO, lD), rO)
= nmerge(nmerge(rO, lD), lO)

(B.181)

The statement to be proofed is valid for n = 3.

The function definition implies that there is an finite nested formulation for every
merge with n operands. For the innermost nesting step the order of operands is
arbitrary as shown in the base step. This means that the super ordinate nesting level
also has this property. With the result for the underlying nesting level, the proof is
also already available through the base step. This is transferable to any nesting level
and thus also for any function with n operands.
It has been proofed, that the result of the n-ary merge is independent of the order of
the selected operands for the application of the underlying binary merge.

	Cover Page
	Declaration of Authorship
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Listings
	Introduction and motivation
	Scientific context and related work
	Models
	Unified Modeling Language class diagrams
	Object Constraint Language invariants
	Unified Modeling Language object diagrams

	Model-driven software engineering
	Model validation and verification
	Bounded model checking
	USE Tool
	Model instance finding with bounded model checking
	Instance finder configurations

	Constraint satisfaction problems

	Extension of USE
	Configuration comparison
	Stage wise comparison
	Classification for partial comparison results
	Configuration attribute specific comparisons
	Relationship analysis
	Command-line interface integration
	Graphical user interface integration

	Constraint satisfaction problems applied for generation of configurations
	Bounds tightening for configurations with derived model specific attributes
	Command-line interface integration
	Graphical user interface integration

	Validation of configurations
	Constraint satisfaction problems applied for validation of instance finder configurations
	Validity rules
	Proposed applicable fixes
	Command-line interface integration
	Graphical user interface integration

	Evaluation
	Conclusion and outlook
	Bibliography
	Example output for comparing configurations
	Formal proof: Arbitrary operands order for comparison results merging

