MuTH: Konzeption und Implementierung einer webbasierten interaktiven Schnitzeljagd für Kinder innerhalb eines Museums

Name: Yaël Myriam Richter-Symanek
Matrikelnummer: 4236584

Erstgutachterin: Dr. Nadine Dittert
Zweitgutachterin: Prof. Dr. Ute Bormann

22. August 2018
Zusammenfassung

Zu Grunde gelegt werden dafür Ansätze der klassischen Museumspädagogik, bisherige Erfahrungen beim Einsatz von digitalen Medien in Museen sowie die Fähigkeiten, die innerhalb der Zielgruppe vorausgesetzt werden können, und die daraus abgeleiteten Konsequenzen für die Gestaltung einer solchen Software.

Die Arbeit setzt dabei den Grundstein für eine Evaluation der Software sowie eine Weiterentwicklung dieser hin zu einer eigenständigen Verwaltung von deren Inhalten durch pädagogisch geschultes Museumspersonal.
Inhaltsverzeichnis

Zusammenfassung.. 2
Inhaltsverzeichnis.. 3
1. Einleitung.. 5
 1.1. Motivation... 5
 1.2. Zielsetzung... 6
 1.3. Aufbau der Arbeit... 7
2. Anwendungsgebiet Museum.. 9
 2.1. Klassische Museen... 9
 2.2. Kinder im Museum.. 11
 2.3. Einsatz digitaler Medien in Museen... 13
 2.4. Deutsches Schifffahrtsmuseum... 18
3. Benutzer_innengruppe Kinder... 20
 3.1. Handybesitz von Kindern... 20
 3.2. Fähigkeiten von Kindern im Zusammenhang mit der Nutzung digitaler Medien...... 21
 3.3. Bestimmung der Zielgruppe.. 22
 3.4. Gestaltungsrichtlinien für kindgerechte Software.. 23
 3.5. Beispiel: Dom Museum Wien.. 27
4. Konzeption der Software... 35
 4.1. Vorgehen.. 35
 4.2. Aufbau der Anwendung.. 36
 4.2.1. Seitenstruktur und Funktionen... 37
 4.2.2. Stationsarten.. 45
 4.2.3. Verwaltung der Inhalte.. 49
 4.3. Grundlagen und verwendete Technologien... 50
 4.3.1. Motivation für eine webbasierte Anwendung... 50
 4.3.2. PHP / MySQL... 52
 4.3.3. Model View Controller Modell.. 53
 4.4. Modellierung der Datenbank... 54
 4.5. Gestaltung der Anwendungsoberfläche... 59
5. Implementierung... 64
6. Fazit.. 69
1. Einleitung

1.1. Motivation

Was können wir also tun, um diesen Kindern Museen näher zu bringen und nicht nur die Kluft zwischen fehlender Digitalisierung und dem digital aufwachsenden Publikum zu überbrücken, sondern auch die zwischen Kind und Museum im Generellen? Die Antwort besteht darin, sie von Seiten der Museen langsam aufzuarbeiten. Denn Fakt ist – Kinder werden nicht aufhören, Kinder zu sein, oder sich durch Zwang für bestimmte Inhalte interessieren. Genauso wenig wie die Technik aus unserem Leben verschwinden wird. Im

1 S. 97
Gegenteil – die Digitalisierung wird in den kommenden Jahren und Jahrzehnten weiter voranschreiten in einem Ausmaß, das für uns bisher nur vage vorhersehbar ist. Dass es hier bei den Museen liegt, die Kluft zwischen jungen Besucherinnen und Besuchern und ihren Ausstellungen wieder zu überbrücken, ist also offenkundig.

Wichtig ist es hierbei, die Digitalisierung pädagogischer Einrichtungen als die Chance zu begreifen, die sie darstellt, und nicht als Ringen um Besucher_innen in einem Zeitalter, in dem die meisten Informationen online frei verfügbar sind und Suchende weit weniger angewiesen sind auf Museen oder Archive, um mehr über ein Thema zu erfahren. Stattdessen können Museen nun eine Rolle füllen, die über die schiere Informationsdarbietung hinausgeht und durch einen Erlebnischarakter wirbt, der über dem eines Wikipedia-Artikels liegt.

Das größte Potenzial einer solchen Chance liegt gerade bei den jüngsten Besucher_innen, die weitaus selbstverständlicher mit digitalen Technologien interagieren als viele Erwachsene und das mit großer Neugierde und Offenheit für Neues. In diesem Alter das Interesse für Museen zu wecken, kann der Grundstein sein für viele weitere Besuche.

Im Folgenden soll von dieser Möglichkeit Gebrauch gemacht werden.

1.2. Zielsetzung

Ziel der Arbeit ist die Entwicklung einer Webanwendung für Kinder am Beispiel des Deutschen Schiffahrtsmuseums⁵ in Bremerhaven mit dem Namen MuTH (kurz für Museum

² www.universum-bremen.de/
³ www.focke-museum.de/
⁴ www.dah-bremerhaven.de/
⁵ www.dsm.museum/
Treasure Hunt) im Stile einer “Schnitzeljagd”, die den Benutzer_innen auf spielerische Art Inhalte der Museumsexhibition näher bringt. Dies soll auf Grundlage von Erkenntnissen erfolgen, die die Arbeit aus der Betrachtung eines bestehenden Systems und der Analyse theoretischer Grundlagen der Museumspädagogik und Anwendungsentwicklung für Kinder gewinnt, um eine optimale Anpassung auf deren Fähigkeiten und den Grad ihres Verständnisses für digitale Technologien zu erreichen.

1.3. Aufbau der Arbeit

In der Arbeit soll zunächst ein Überblick über das Anwendungsgebiet der klassischen Museen gegeben werden, um den Leser_innen das Einsatzfeld der Software zu verdeutlichen. Danach folgt eine Zusammenfassung verschiedener Ansätze, die bisher genutzt wurden, um digitale Medien und Systeme im Bereich Museum zu integrieren. Hier wird auch ein Überblick über bestehende Literatur zum Thema gegeben. Darauffolgend wird das Deutsche Schifffahrtsmuseum in Bremerhaven als Beispielanwendungsgebiet für diese Arbeit kurz vorgestellt und erläutert, wieso sich dieses als Einsatzort für ein entsprechendes interaktives System eignet.

Im Folgenden wird die Zielgruppe für ein zu entwickelndes System auf der Grundlage des ermittelten Anwendungsgebietes näher eingegrenzt und die Auswahl durch Statistiken zum Handybesitz von Kindern der entsprechenden Altersgruppe sowie deren Fähigkeitslevel begründet. Auf Grundlage der ermittelten Fähigkeiten und Nutzungsgewohnheiten sowie Literatur zu dem Thema werden dann grundsätzliche Anforderungen für die Gestaltung kindgerechter Software in diesem Kontext formuliert, die sich an gängigen Usability-Standards orientieren. Mithilfe dieser Richtlinien wird dann eine bestehende Anwendung dieses Feldes mit der Zielgruppe Kinder beschrieben und bewertet, um dabei gewonnene Erkenntnisse im Konzept und der Entwicklung einer eigenen Software zu berücksichtigen.

Danach wird das allgemeine systematische Vorgehen bei der Konzeption und Implementierung der Anwendung beschrieben und die Struktur dieser, wie sie geplant ist und sich an den formulierten Richtlinien orientiert, vorgestellt sowie erläutert, welche Teile im Zuge der Arbeit implementiert werden sollen. Für diese wird zunächst die Entscheidung für eine webbasierte Anwendung gegenüber einer App und dann der Einsatz der Programmiersprache PHP in Verbindung mit einem MySQL-Datenbanksystem begründet. Weiterhin wird das Model-View-Controller Modell kurz in seiner Art und seinen Vorteilen vorgestellt, nach dem die Anwendung gestaltet werden soll. Darauf folgt eine schematische Modellierung der zur Anwendung gehörenden Datenbankarchitektur auf Grundlage gängiger Modellierungsstandards und ein gestalterischer Entwurf, der wieder auf die vorher
festgelegten Gestaltungsrichtlinien für kindgerechte Software Bezug nimmt.

2. Anwendungsgebiet Museum

2.1. Klassische Museen

Um das Einsatzgebiet der Software und deren Aufgabe dort zu verstehen, ist es wichtig, diese genau zu definieren. Dafür kann im Fall von Museen bei deren selbstgewählten Grundsätzen begonnen werden. Der Internationale Museumsrat ICOM\(^6\) definiert ein Museum in seinen ethischen Richtlinien wie folgt:

"Ein Museum ist eine gemeinnützige, auf Dauer angelegte, der Öffentlichkeit zugängliche Einrichtung im Dienste der Gesellschaft und ihrer Entwicklung, die zum Zwecke des Studiums, der Bildung und des Erlebens materielle und immaterielle Zeugnisse von Menschen und ihrer Umwelt beschafft, bewahrt, erforscht, bekannt macht und ausstellt." [11]\(^7\)

Dabei können sich selbige Zeugnisse inhaltlich und thematisch von der klassischen Kulturanthropologie bis zur Tiefseeforschung erstrecken [9], so dass viele Museen sich in dem Wissen, das sie vermitteln wollen, stark voneinander unterscheiden. Was sie verbindet, sind hingegen allgemeine Ziele, die sich aus der oben gegebenen Definition ableiten lassen. Im Mittelpunkt steht dabei die Wissensvermittlung und das Näherbringen von Inhalten. Nicht selten fungiert dabei die Museumspädagogik und das Museumspersonal als Vermittler_innen zwischen Ausstellung und Besucher_innen. In einer Abhandlung zur

\(^6\) www.icom.museum/en/
\(^7\) S. 29
Museumspädagogik als Teil der Freizeitpädagogik nennt Heiligenmann (1990) darüber hinaus die Anregung zum kreativen Tun als zentralen Aspekt dieser Pädagogik und die Adressatinnen und Adressaten als Ausgangspunkt für deren genaue Ziele. Die adressierten Personen können dabei alle Altersstufen, Gruppenformen und Besuchsarten umfassen [9]. Heiligenmann stellt dafür eine weit gefasste Definition der Museumspädagogik auf, die sich explizit nicht nur auf das Feld Schule und pädagogische Praxis erstrecken soll und mit der von ICOM formulierten Definition des Museums und den musealen Zielen im Einklang steht:

Das als kurze Ausführung zu den Problematiken des Forschungsfeldes Museumspädagogik

8 S. 14

Zu Heiligenmanns Definition der Museumspädagogik bleibt zuletzt noch anzumerken, dass ihre Eingrenzung der Vermittlung auf eine, die sich zum Ziel macht, dass Besucher_innen dieser immer weniger bedürfen [9], für die Zielgruppe Kinder von besonderer Bedeutung ist, damit diese lernen, eigenständig mit den angebotenen Informationen und Lernmitteln umzugehen und sich in einer Bildungsstätte wie einem Museum zurechtzufinden.

2.2. Kinder im Museum

Vermittlens stattdessen diese zentrale Rolle einnimmt. Entscheidend bei der Unterscheidung zwischen traditionellen Museen und Kinder- und Jugendmuseen sei dabei der Fokus weg vom Objekt und auf die Zielgruppe [13].

Im Folgenden soll nun beleuchtet werden, wie digitale Medien bisher innerhalb von Museen eingesetzt wurden, um einen Überblick über ihre vielfältigen Einsatzmöglichkeiten und bisherige Umsetzungen des Hands on!-Prinzips zu geben.

2.3. Einsatz digitaler Medien in Museen

Unter den digitalen Medien, wie sie im Museum gängigerweise zum Einsatz kommen, lassen sich verschiedene Typen herausarbeiten. Im Folgenden werden lediglich Bildschirmmedien – das heißt Medien, die über einen Display bedienbar sind oder über dieses Informationen darstellen – behandelt, da diese die für diese Arbeit und die zu entwickelnde Anwendung Relevanten sind und das Feld der digital basierten Exponate und Ergänzungen, die innerhalb

9 S. 17
von Museen inzwischen zum Einsatz kommen, ohne diese Eingrenzung deutlich zu groß wäre, um dieses hier ausreichend darzustellen.

Im Allgemeinen lassen sich fest-installierte und durch mobile Geräte genutzte Systeme untercheiden, wobei dies üblicherweise mit der Unterscheidung gleichzusetzen ist, ob diese Geräte jeweils einer einzigen Nutzerin oder einem einzigen Nutzer zur Verfügung stehen (ein_e Nutzer_in oder Nutzer_innengruppe hat Zugriff auf ein Gerät) oder allen Besucher_innen (alle Nutzer_innen teilen sich nach Belieben und Verfügbarkeit ein Gerät).

Solche Individualgeräte werden im Allgemeinen von den Nutzer_innen durch die Ausstellung hinweg mitgenommen und sind daher mobil. Mediengeräte, die allen Besucher_innen gleichsam zur Verfügung gestellt werden, sind dagegen im Regelfall fest installiert oder zumindest standortgebunden, also dafür vorgesehen, nur innerhalb eines bestimmten Ausstellungsbereiches verwendet zu werden.

Eine andere in den letzten Jahren in den Fokus getretene Kategorie sind Anwendungen, die sich speziell auf das Sammeln von Inhalten fokussieren, wie es Grundsatz und Ursprung vieler Museen und Ausstellungen ist. Übertragen wird dieser Ansatz auf digitale Kopien von Ausstellungsstücken. Besonders beliebt sind solche digitalen Sammlungen daher im Bereich der Kunstmuseen. Prominente Beispiele dafür finden sich in Google Arts and Culture10 – einer von Google initiierten Online-Sammlung, die Objekte aus verschiedenen großen Museen aus der ganzen Welt online verfügbar macht, aber auch in Applikationen wie dem Rijksstudio11 des Rijksmuseum12 in Amsterdam, welches sich eines ganz ähnlichen Konzeptes bedient.

10http://www.artsandculture.google.com/
11http://www.rijksstudio.nl/en/rijksstudio
12www.rijksmuseum.nl/
Für die Kategorie der mobilen digitalen Medien sind im Museum Audioguides das klassische Einsatzmittel. In ihrer Ursprungsform analog, sind sie als digitales Medium fester Bestandteil unseres Museumsbildes und erstrecken sich inzwischen nicht mehr allein auf an der Museumskasse ausleihbare Geräte, die über Nummerneingaben funktionieren. Neben Handy-Apps, die auch außerhalb klassischer Bildungstätten zum Einsatz kommen und Touristen durch Attraktionen wie eine Altstadt führen, haben Audioguides ebenfalls das positionsgebundene Abspielen von Informationen für sich erschlossen, bei dem das genutzte Gerät innerhalb der Ausstellung lokalisiert und die bereitgestellten Informationen vom Standort abhängig gemacht werden.

Ardito et al. (2008) konstruierten das Spiel Explore! für den Einsatz in einem archäologischen Park. Schulkindern sollte damit die Möglichkeit gegeben werden, die antike Ruinenstadt anhand von kleinen Aufgaben und audio-unterlegten 3D-Modellen zu erkunden. Die abgespielten Audioaufnahmen orientierten sich dabei am Standort der Kinder innerhalb des Parks und reflektierten die Nähe zu markanten Orten wie einem Marktplatz

13 www.focke-museum.de/besuch/mediaguide/
oder Amphitheater. Untersucht wurde die Effektivität der Anwendung und die Meinung der Schüler_innen in zwei Gruppen – eine davon Nutzer_innen ausgestattet mit den mobilen Geräten, die andere mit vergleichbaren papierbasierten Aufgaben. Es zeigte sich dabei, dass die Gruppen, die die Anwendung nutzten, konzentrierter arbeiteten als ihre Mitschüler_innen, die Papier und Stift verwendeten. Weiterhin konnten zu Ende des Versuchs keine Unterschiede im Lernerfolg der beiden Gruppen festgestellt werden, woraus Ardito et al. schlossen, dass sich die Nutzung von Technologie nicht negativ auf die Lerneffektivität auswirke [2].

interagiert, aber nicht umgekehrt, und den Museumsbesuch durch die Interaktion zwischen den Kindern zur sozialen Aktivität zu machen [3].

Insgesamt zeigt sich eine weite Breite an Einsatzformen und -möglichkeiten durch die vorhandene Literatur aber auch den Blick auf regionale Museen und Kultureinrichtungen. Viele der vorhandenen Artikel zu Versuchen mit solchen digitalen Medien sind bereits älter und schöpfen daher noch nicht die volle Bandbreite aus, die inzwischen durch aktuelle Technologien geboten wird. Es bleibt abzuwarten, ob in den nächsten Jahren mehr in diese Richtung geforscht und dafür Gebrauch von den sich immer weiter entwickelnden technologischen Möglichkeiten gemacht wird, die uns bereits jetzt als privaten Nutzerinnen und Nutzern zur Verfügung stehen.

2.4. **Deutsches Schifffahrtsmuseum**

Beim Deutschen Schifffahrtsmuseum, das innerhalb dieser Arbeit mit seinen Ausstellungsinhalten als Beispiel Einsatzort für die Anwendung dienen soll, handelt es sich um eine Institution, die in dieser Form bereits 1975 eröffnet wurde und bis heute in Bremerhaven fortbesteht. Die Ausstellungen des Museums befassen sich mit der Rolle der Schifffahrt sowie ihrer Geschichte, Schifffahrtstechnologien und der Beziehung zwischen den Menschen und dem Meer, sowohl im Hinblick auf soziale, als auch politische und ökonomische Faktoren. Gründungsanstoß war dabei der Fund einer mittelalterlichen Kogge im Bremer Hafen im Jahr 1962, die noch heute im Museum ein zentrales Ausstellungsstück

Abbildung 1: Bremer Kogge im Deutschen Schifffahrtsmuseum
3. Benutzer_innengruppe Kinder

Um eine mögliche Zielgruppe unter den Kindern zu ermitteln, die vom Einsatz mobiler interaktiver Systeme innerhalb eines Museums profitieren könnte, muss zunächst beleuchtet werden, welche Voraussetzungen innerhalb der Zielgruppe dafür gegeben sein sollten und komplementär dazu, was für Voraussetzungen eine solche Anwendung mitbringen muss, um den Anforderungen der entsprechenden Zielgruppe gerecht zu werden. Dazu wird im Folgenden die Zielgruppe für ein zu entwickelndes System auf der Grundlage des ermittelten Anwendungsgebietes näher eingegrenzt, motiviert und durch Statistiken zum Handybesitz von Kindern der für diesen Kontext interessanten Altersgruppe sowie deren Fähigkeitslevel begründet. Auf Grundlage der ermittelten Fähigkeiten und Nutzungsgewohnheiten werden dann grundsätzliche Anforderungen für die Gestaltung kindgerechter Software in diesem Kontext formuliert, um die Grundlage für ein zu entwickelndes System zu schaffen.

3.1. Handybesitz von Kindern

In den letzten Jahren ist das Interesse an der Mediennutzung von Kindern im Zuge der zunehmenden Digitalisierung stark angestiegen. Das hängt auch damit zusammen, dass Kinder im Alltag immer mehr Berührungspunkte mit digitalen Technologien und Mediengeräten erfahren. Wenn nicht durch Eltern und andere Angehörige, die in der Regel über ein Mobiltelefon, einen Computer oder ein Tablet verfügen, dann weil ihnen diese Geräte bereits selbst zur eigenen Nutzung zur Verfügung gestellt werden.

3.2. Fähigkeiten von Kindern im Zusammenhang mit der Nutzung digitaler Medien

Damit Kinder überwiegend unabhängig eine Software wie die zu entwickelnde Anwendung an einem mobilen Telefon verwenden können, müssen sie über verschiedene Kompetenzen nicht nur im Umgang mit digitalen Medien verfügen, sondern auch über Fertigkeiten im Bereich Feinmotorik und ein ausreichendes Leseverständnis von kurzen, informativen und dem Alter angemessenen Texten und Aufschriften, die innerhalb der Anwendung verwendet werden. Im Folgenden wird dargelegt, inwieweit davon ausgegangen werden kann, dass diese Fähigkeiten in verschiedenen Altersgruppen ausreichend ausgeprägt sind.

Die im vorangegangenen Abschnitt aufgezeigten Statistiken zum Handybesitz von Kindern lassen bereits darauf schließen, dass die ein solches besitzenden Kinder zu einem bestimmten Grad über das technische und motorische Können verfügen müssen, damit umzugehen – vorausgesetzt sie sind nicht nur im Besitz der Geräte, sondern verwenden diese auch in regelmäßigen Abständen und für Zwecke, die die Nutzung von Applikationen einschließt; die also über das Benutzen der Anruffunktion und festgelegter, eingeprägter Abläufe für zum Beispiel Notfallsituationen hinausgehen. Dabei erfordert die Nutzung eines Smartphones gegenüber eines klassischen Tastenmobiltelefons, die es auch in speziellen kindgerechten Ausführungen zu kaufen gibt, mehr technische und motorische Kompetenz.

Apps wie Facebook erfordern zudem feinere motorische Aktionen, um Aktionen durchzuführen. Dabei muss auch ein grundlegendes Verständnis für das nicht speziell auf Kinder ausgelegte System erworben werden. Es zeigte sich, dass Facebook von den Kindern primär zum Austausch von Nachrichten über dessen privaten Chat und die öffentlichen
Pinnwände und Status Feeds genutzt wird und weniger um zu spielen [8].

Es kann aus diesen Befragungen und Statistiken die Annahme abgeleitet werden, dass Kinder der entsprechenden Altersstufen in der Lage sind, weitere Applikationen, die ihnen ähnliche Kompetenzen abverlangen und Inhalte in ähnlicher Weise darstellen, ausreichend unabhängig zu verwenden.

3.3. Bestimmung der Zielgruppe

Im Hinblick auf die Zielgruppe der zu entwickelnden Anwendung muss nun erwogen werden, welche Altersgruppe über die ausreichenden Fähigkeiten verfügt, diese zu verwenden, über Interesse an der Lernart sowie in genügenden Anteilen über eigene Mobiltelefone verfügt und so davon profitieren könnte. Eine Zielgruppe im Alter von etwa neun bis zwölf Jahren scheint hier angemessen. Da Kinder in Deutschland im Allgemeinen mit sechs Jahren eingeschult werden, besteht gegen Ende der Grundschulzeit bereits eine grundlegende Lesekompetenz. Diese kann zusätzlich durch die kooperative Zusammenarbeit und das gemeinsame Spiel mit der Anwendung unterstützt und einzelne Defizite ausgeglichen werden. Der MIKE-Studie nach beläuft sich im Alter zwischen neun bis zehn Jahren die Anzahl der Kinder die ein Mobiltelefon besitzen auf über 71% [8]. Dies ist eine ausreichende Menge für eine kooperative Nutzung. Weiterhin ordnet sich diese Altersgruppe
in das Zeitfenster ein, bevor die Weiterentwicklung der Kinder in Richtung Pubertät eine
spielerische Herangehensweise für viele uninteressant macht. Unterschiede in Fähigkeiten
und Interesse innerhalb dieser Zielgruppe können durch das Angebot verschiedener Spiele
beziehungsweise Routen in Abhängigkeit zu Faktoren wie persönlichen Interessen und dem
Alter ausgeglichen werden. Zudem handelt es sich um eine ausreichend kleine Altersspanne,
so dass keine zu großen Differenzen zwischen den einzelnen Vorlieben hinsichtlich Inhalt
und Gestaltung der verschiedenen Altersgruppen auftreten sollten.

3.4. Gestaltungsrichtlinien für kindgerechte Software

Für die Gestaltung von kindgerechter Software kann zunächst von den Grundlagen
ausgegangen werden, die im Allgemeinen für erwachsene Benutzer_innen gelten. Dazu
gehört der wichtige Begriff der *Usability*, die über verschiedene Kriterien die Nutzbarkeit
eines Interface beschreibt [16]. Diese Kriterien sind je nach Art der Anwendung von
unterschiedlicher Wichtigkeit – Anwendungen für Kinder im speziellen Kontext eines
Museums stellen dabei einen solchen Spezialfall dar, auf den diese Kriterien in ihrer
Gewichtung angepasst werden sollten. Im Folgenden soll dies anhand praktischer Punkte,
die unter die jeweiligen Schlagworte fallen, für den zu entwickelnden Anwendungstyp
versucht werden.

Nach Jakob Nielsen, der den Begriff in den 1990er Jahren mitprägte, kann Usability auf fünf
grundlegende Kriterien eingegrenzt werden [16]. Dazu gehören die Zufriedenheit der
Nutzer_innen (*Satisfaction*) und die Erlernbarkeit (*Learnability*) – also wie schnell
Benutzer_innen das System verstehen und entsprechend verwenden können. Darüber
hinaus nennt er die Effizient (*Efficiency*), welche beschreibt, wie schnell Nutzer_innen in der
Anwendung Aufgaben, für die deren Lösung diese gedacht ist, durchführen können. Ein
weiteres Kriterium ist die Sicherheit (von Nielsen auch *Errors* genannt), die bewertet, wie
viele Fehler Nutzer_innen bei der Benutzung des Interfaces machen und wie gut diese davon
abgefangen beziehungsweise nach ihrem Auftreten gelöst werden. Zuletzt folgt noch die
Einprägsamkeit (*Memorability*) als Kriterium, welches feststellt, wie leicht sich
Nutzer_innen nach einer längeren Zeit der Nichtbenutzung wieder im System zurechtfinden
[16] [10]. Diesen Kriterien kommt beim Design von kindgerechter Software unterschiedliche
Wichtigkeit bei. Weitere Richtlinien sind in den Grundsätzen der Dialoggestaltung zu finden,
wie sie Exner und Liebal [15] beschreiben und durch Hinweise auf deren Umsetzung bei
Kindersoftware ergänzen. Diese stellen weiter aufgeteilte Kategorien zu denen der
dklassischen Usability-Kriterien dar, können aber im Allgemeinen in diese eingeordnet
werden.

Praktische Kriterien, die dabei eine Rolle spielen und Spaß bei der Nutzung erzeugen, können unter anderem eine fröhliche, für die Kinder ansprechende Farb- und Motivwahl sein, die das Lernerlebnis dadurch auflockern. Mehr noch als bei Anwendungen für Erwachsene sollte auch auf eine ausreichende Bebilderung von Inhalten geachtet oder diese sogar durch andere Medientypen wie Videos, Animationen oder Audioinhalte ergänzt werden, um für Abwechslung zu sorgen und längere Textpassagen zu vermeiden [15]. Dennoch ist es wichtig, die Lesbarkeit oder klare Übersicht nicht durch übermäßig bunte Farbwahl oder Medieneinsatz zu gefährden. Ein weiterer Faktor, der dabei eine Rolle spielt, liegt darin, dass Kinder ab einem gewissen Alter sich klar von “kindischen” Inhalten abgrenzen wollen und so übermäßig bunte oder bebilderte Inhalte auch ablehnen können [15]. Dies kann insbesondere im Übergang zur Sekundarstufe der Fall sein, welcher in die Altersstufe der Zielgruppe fällt.

Damit Kinder die Anwendung ohne Probleme nutzen können, sollten sie einen schnellen Überblick über deren Funktionen erhalten, der es ihnen ermöglicht, sich ohne weitere Komplikationen oder das Lesen längerer Anleitungen zurechtzufinden. Dafür ist in den meisten Fällen das Leseverständnis und auch die Geduld noch nicht weit genug ausgeprägt – auch um über die darin investierte Zeit das Interesse an der Anwendung aufrechtzuerhalten.

14 “Edutainment setzt sich aus den englischen Wörtern Education (Bildung) und Entertainment (Unterhaltung) zusammen und bezeichnet ein Konzept der elektronischen Wissensvermittlung, bei dem die Inhalte spielerisch und gleichzeitig auch unterhaltsam vermittelt werden.” [15] (S. 221)

Der Faktor Effizienz geht für diesen Spezialfall einer Anwendung mit dem der Erlernbarkeit Hand in Hand. Umständliche Aktionen, die die Geschwindigkeit bei der Durchführung von Aufgaben zwar erhöhen, aber eine lange Einarbeitung und Übung erfordern (beispielsweise Tastatur-Shortcuts wie sie in Programmen wie Adobe Photoshop Verwendung finden), sind

Eingabefelder, Buttons, Links und ähnliche Aktionsmöglichkeiten möglichst groß und flächig gehalten sein, damit diese auch mit unpräziseren Bewegungen ausgewählt werden können [15].

Mithilfe der im vorangegangenen formulierten Richtlinien und allgemeiner Nutzungsanforderungen an Software im musealen und kindgerechten Kontext soll nun eine bestehende Anwendung aus diesem Bereich beschrieben und bewertet werden, um die Anwendung dieser Richtlinien zu veranschaulichen und die dabei gewonnenen Erkenntnisse für das Konzept einer eigenen Software zu berücksichtigen.

3.5. Beispiel: Dom Museum Wien

15 www.dommuseum.at/de/

Um die Umsetzung der digitalen Tour des Dom Museums Wien darzustellen und zu bewerten, wird im Folgenden auf die im vorangegangenen Kapitel formulierten Richtlinien zurückgegriffen werden. Explizit zum Tragen kommen dabei typische Usability-Kriterien. Zudem soll die Zielgruppe des Parts der Anwendung, der speziell auf die Nutzung durch Kinder ausgelegt ist, beleuchtet werden.

Beim Aufrufen der Anwendung erscheint zunächst eine Wahlmöglichkeit zwischen den zwei Optionen “ERWACHSENE” und “KINDER”. Das Auswählen letzterer Option führt zu einer Seite, die durch zwei skizzierte Figuren willkommen heißt, ergänzt durch einen großen Button darunter mit der Aufschrift “RUNDGANG STARTEN”. Dessen Klick löst das

Abbildung 3: DMW Begrüßungssequenz

Das Starten der Aufgabe führt auf eine neue titellose Seite, auf welcher gefragt wird, was es an diesem Punkt der Ausstellung zu sehen gibt und die mit dem Hinweis versehen ist, dass mehrere Antworten richtig sein können. Darunter finden sich drei Antwortmöglichkeiten. Es besteht erneut die Option, über den Pfeil oben die Tour zu verlassen. Das Auswählen einer
Antwort selektiert diese zunächst (gekennzeichnet durch einen gelben Rahmen), dabei können mehrere Antworten gleichzeitig ausgewählt werden. Erst das Klicken auf einen am Seitenende erscheinenden Button sendet diese ab. Richtige und falsche Antworten werden im Folgenden durch rote und grüne Rahmen markiert. Anstelle des Senden-Buttons wird die Anzahl der gesammelten Sterne unterlegt durch entsprechende Icons und ein “WEITER”-Button angezeigt. Dahinter verbirgt sich eine weitere Audiosequenz, in der sich eine zweite Figur vorstellt und ein Button “AUF ZUM NÄCHSTEN STOP”.

Abbildung 4: DMW Anwortauswertung

Dieser leitet auf eine Art von Übersichtsseite weiter, die mit Bildern, Objektnummern und Titeln mehrere, sich an der aktuellen Position innerhalb des Museums befindliche Ausstellungsstücke zur Auswahl stellt. Das Selektieren eines Solchen bringt eine kurze Audiosequenz, eine weitere Aufgabe und einen Audioerklärtext im Stile der Einführung mit sich, nachdem man wieder auf die Übersichtsseite gelangt.

Abbildung 5: DMW Übersichtsseite
Insgesamt zeigen sich einige Punkte in der Anwendung hinsichtlich verschiedener Usability-Kriterien problematisch. So ist es bezüglich der Sicherheit als positiv zu vermerken, dass vor dem Abgeben einer Antwort immer die Möglichkeit zur Korrektur und Prüfung dieser gegeben wird, jedoch findet sich insgesamt durch die gesamte Anwendung keine Erklärung für deren Funktionalität, Hilfeseite oder unterstützende Hinweise. Weiterhin ist die Eingabe von Wörtern als Antworten, die automatisch erkannt werden sollen, problematisch, da Kinder anfällig für Rechtschreibfehler sind, mit denen das System mitunter nicht umgehen kann. Wenn vermeintlich richtige, aber falsch geschriebene Antworten dann nicht als solche gewertet werden, kann dies zu Frustration und Unlust führen, die Tour fortzusetzen. Positiv ist dennoch die ausreichende Größe von Buttons und Links innerhalb des gesamten Interfaces und die im Allgemeinen treffende Beschriftung dieser. Weiterhin dazu zählen tun auch die (bis auf die vorangegangenen beschriebenen textuellen Eingaben) eindeutigen und durch fest vorgegebene Optionen fehlerresistenten Antwortmöglichkeiten. Mängel tut es dennoch an einigen Stellen an einem ausreichenden Hinweis auf die Seitenstruktur und aktuelle Position innerhalb dieser sowie einem
kohärenten, berechenbaren Verhalten des genutzten “zurück”-Buttons im Header-Bereich der Seiten. Hinsichtlich des Menüs kann es zudem zu Komplikationen kommen, wenn eine andere Sprache für die Inhalte ausgewählt werden soll. Dies ist nur über das Menü auf der Übersichtsseite möglich, zu der man in der Kindertour erst nach der Einführung oder dem Abbrechen dieser gelangt, wobei das Auswählen einer neuen Sprache die Tour zurücksetzt und die Nutzer_innen zum Start der Anwendung zurückbringt.

Die **Erlernbarkeit** wird durch eine konstant gleiche Darstellung von Inhalten nach einem bestimmten Thema beziehungsweise einer festgelegten Template-Struktur unterstützt. Die Übersichtsseite ist hingegen für sich sprechend schwierig zu verstehen und kann verwirren, da man zunächst nach der Einführung, die als geleitete Tour präsentiert wird, sehr unvermittelt auf die Seite gelangt, ohne Hinweis darauf, was an dieser Stelle zutun ist. Gerade ein Kind kann dies leicht überfordern.

Besser ist dies innerhalb des “SCHULMODUS” umgesetzt, der allerdings nur über das Menü auf der Übersichtsseite erreichbar ist und nicht als weitere Option zum Start der Anwendung ausgewiesen wird. Bei diesem kann zu Beginn ein Teamname angegeben werden, der in die bereits erwähnte Geheimschrift übersetzt wird. Danach arbeitet sich die Anwendung stringent von einer Aufgabe zur nächsten (wobei die Aufgaben zu Teilen denen aus der Kindertour entsprechen, zu Teilen aber auch spezifisch für diesen Modus sind und wie zum
Beispiel beim Erdenken von passenden Hashtags mehr textuelle Eingaben und somit eine höhere Schreibkompetenz erfordern). Innerhalb dieser eigenen Tour werden im Header-Bereich die gesammelten Sterne und abgeschlossenen Aufgaben gezählt. Wenn alle Aufgaben abgeschlossen sind, gelangen die Schüler_innen auf eine Auszeichnungsseite, auf der ihnen ein Pokal, ihre gesammelte Sternenzahl sowie die Prozentzahl der richtig gelösten Aufgaben präsentiert werden. Durch die abschließende Belohnung und geringere Fehleranfälligkeit aufgrund der stringenten Durchführung durch die Tour zeigt sich dieser Schulmodus als bessere Alternative zur normalen Kindertour, allerdings hinsichtlich der Aufgaben auch als anspruchsvoller.

Die normale Kindertour ist vom Schwierigkeitslevel bereits für Kinder mit grundlegender Lesekompetenz geeignet, da längere Erklärungen komplett als Audio ausgegeben werden und die Aufgaben nur die gelegentliche Eingabe einzelner Wörter erfordern. Auch Kinder im Grundschulalter sollten damit arbeiten können. Der Schulmodus verlangt eine höhere Schreibkompetenz und eigenständiges kreatives Arbeiten und fördert so die Auseinandersetzung mit den Ausstellungsinhalten, ist dadurch aber auch erst für ältere Grundschulkinder und Schüler_innen zu Beginn der Sekundarstufe geeignet.

4. Konzeption der Software

Dieses Kapitel befasst sich mit dem allgemeinen systematischen Vorgehen bei der Konzeption und Implementierung der Anwendung. Es beschreibt deren Struktur, die auf den Erkenntnissen der vorangegangenen Kapiteln aufbaut und gibt Beispiele für deren Umsetzung. Danach wird erörtert, welche Technologien und Konzepte verwendet werden, und die Entscheidung, die Anwendung webbasiert umzusetzen, begründet. Es folgt eine schematische Modellierung der zur Anwendung gehörenden Datenbankarchitektur auf Grundlage gängiger Modellierungsstandards und ein gestalterischer Entwurf, der wieder auf die vorher festgelegten Gestaltungsrichtlinien für kindgerechte Software Bezug nimmt.

4.1. Vorgehen

Das in dieser Arbeit angewandte Vorgehen für die Entwicklung der Anwendung richtet sich nach den geläufigen Standardschritten der Softwareentwicklung, soweit diese im Hinblick auf inhaltliche und zeitliche Einschränkungen umsetzbar waren.

Im Folgenden soll ein erster Entwurf mit einer Beschreibung der konkreten Funktionen unter Berücksichtigung der Anforderungen ausgeführt und der Einsatz von PHP, eines MySQL-Datenbanksystems und des Model-View-Controller-Modells sowie die Konzeption
als Webanwendung begründet werden. Eine Beschreibung des zugrunde liegenden Datenmodells, das sich auch auf die zu implementierenden Klassen anwenden lässt, vervollständigt die technische Seite des Entwurfs. Ergänzt wird dieser durch die Planung der Anwendungsoberfläche, welche sich an den in der Anforderungsanalyse formulierten Gestaltungsrichtlinien orientiert.

4.2. Aufbau der Anwendung

Innerhalb dieses Kapitels soll nun dargelegt werden, wie die Anwendung aufzubauen ist. Dies umfasst die Seitenstruktur sowie deren Inhalte und Vernetzung und die Auflistung einzelner Komponenten mit ihren Funktionen und Aufgaben. Darüber hinaus eine Beschreibung der verwendeten und möglicher weiterer Aufgaben- und Aktionstypen
innerhalb der Touren sowie eine kurze Zusammenfassung der geplanten Verwaltungsoptionen für die Anwendung, deren Implementierung allerdings nicht Teil dieser Arbeit ist, da sie außerhalb des Themas der kindgerechten Softwaregestaltung liegt. Auf die Anordnung der hier genannten Inhalte und Funktionen wird in Kapitel 4.5 zur Gestaltung der Anwendungsoberfläche näher eingegangen.

4.2.1. Seitenstruktur und Funktionen

Für eine kindgerechte Anwendung ist es essentiell, eine möglichst flache Seitenstruktur zu schaffen, damit sich Kinder nicht in einer komplexen Navigationsstruktur verlieren, und gleichzeitig alle Funktionen erreichbar zu machen, ohne mit einer zu großen Anzahl an Optionen zu überfordern. Inwieweit das mit der Anwendung umgesetzt wird, sei im Folgenden dargelegt.

Beim ersten Aufruf der Anwendung oder nach einem Neustart befindet sich die Nutzerin oder der Nutzer auf der Startseite. Von dort können entweder über das Menü statische Seiten wie das Impressum oder die Datenschutzerklärung aufgerufen oder die Anwendung gestartet werden.

Die statischen Seiten sind von jedem Punkt der Anwendung aus aufrufbar, da gesetzliche Vorgaben wie die DSGVO16 festschreiben, dass dies für Impressum und Datenschutzerklärung der Fall sein muss. Die statischen Seiten beziehen ihren Inhalt aus der Datenbank und werden von der Anwendung ins Menü ausgelesen. So kann diese von einem späteren Admin Control Panel um weitere statische Inhalte wie eine Informationsseite für

16 Gemeinsame Datenschutz-Grundverordnung der Europäischen Union, die am 25. Mai 2018 in Kraft getreten ist.

\textit{Abbildung 7: Seitenstruktur von MuTH}
Eltern, wie sie der Implementierung beispielhaft beigefügt ist, erweitert werden. Eine weitere Idee könnte zum Beispiel eine Informationsseite zum Deutschen Schifffahrtsmuseum selbst sein oder zusätzlichen Angeboten des Museums für Kinder oder auch Familien.

Abbildung 8: MuTH Startseite
Der Name kann hier bei kooperativer Nutzung auch ein Teamname oder zwei Namen wie “Lisa und Max” sein oder nach Belieben auch ein Spitz- oder Phantasiename. Den Kindern wird dazu ein entsprechender Hinweis gegeben. Die Individualisierung der Anwendung insbesondere mit Blick auf Alter und Interessen erfolgt damit direkt am Anfang und in kurzer Form, um die mentale Belastung der Nutzer_innen möglichst gering zu halten und gleichzeitig auf individuelle Bedürfnisse, Interessen und Fähigkeitslevel besser einzugehen. Mit Abschluss der Einführung wird auf die Tourübersicht weitergeleitet, die zentraler Ausgangspunkt für die weiteren Funktionen der Anwendung ist (siehe Abbildung 10).

Beim ersten Aufruf der Tourübersicht, werden automatisch die Hilfeinhalte für diese Seite dargestellt, in denen ihre Funktion und die Position weiterer Hilfen erklärt werden. Auf der Tourübersicht selbst werden die Nutzer_innen begrüßt und können aus einer Reihe von Aktionen wählen. Die Zentrale ist dabei die Auswahl einer Tour aus der angebotenen Liste, die auf den vorher getätigten Alters- und Interessensangaben beruht, soweit für diese passendes Material vorhanden ist. Mit dem Titel sollte dabei bereits erstes Interesse geweckt und dieser daher passend und unter Berücksichtigung möglicher einbringbarer *lebensweltlicher Bezüge* (siehe Kapitel 2.2) gewählt werden.

Mit dem Link für das Bearbeiten der eigenen Personenangaben wird ein Formular angezeigt, in dem Änderungen an diesen vorgenommen werden können. Nach Absenden der veränderten Daten wird wieder auf die Tourübersicht weitergeleitet, von der die Bearbeitungsseite jederzeit erneut aufgerufen werden kann. Den Nutzer_innen soll so die Möglichkeit geboten werden, Fehler (z.B. Rechtschreibfehler) bei der ersten Eingabe (oder nachfolgenden Änderungen) an Name und Alter zu korrigieren oder diese an ihre Bedürfnisse anzupassen (z.B. wenn sich die Gruppe der Nutzenden geändert hat, indem ein Kind dazu gekommen ist oder die Gruppe verlassen hat). Genauso verhält es sich mit den Interessen, bei denen sich umentschieden werden darf. Ein Grund hier könnte sein, dass vergessen wurde, ein interessantes Thema auszuwählen, oder wenn die angezeigten Touren doch nicht den eigenen Interessen entsprechen.
Beim Aufrufen einer Tour aus der Liste, erscheint zunächst eine Startseite für diese, auf der optional ein kurzer einleitender beziehungsweise beschreibender Text sowie ein passendes Bild angezeigt werden können. Dies ist im Allgemeinen zu empfehlen, damit Kinder einen Eindruck davon erhalten, was Thema der Tour ist, über deren Titel hinaus. An dieser Stelle können auch neben dem Titel weitere *lebensweltliche Bezüge* eingesetzt werden, um das Interesse der Kinder zu wecken. Veranschaulicht werden kann unter anderem an der bereits vorangegangen genannten Beispieltour “Die Lieferdienste des Mittelalters” mit dem für diese formulierten Starttext (siehe Abbildung 12).

Abbildung 11: MuTH Daten ändern-Seite
Lebensweltliche Bezüge können aber genauso innerhalb eines zusätzlichen Bildes als weiteres Stilmittel genutzt werden. Bis zu diesem Punkt gilt eine Tour als unangefangen. Mit einem Klick auf deren Start-Button wird auf die erste Station weitergeleitet. Jede Station beinhaltet eine Frage oder Aufgabe, die es zu lösen gilt. Ziel dabei ist es, diese nicht nur durch zufälliges Wissen oder Raten zu beantworten, sondern dafür aktiv innerhalb der Ausstellung nach Informationen zu suchen, um wie von König (2002) nahegelegt, eine Interaktion mit der Ausstellung anzuregen, die sowohl mit dem Körper als auch mit dem Verstand stattfindet und die eigentlichen Inhalte nicht hinter der Interaktion (insbesondere hier mit der Anwendung) zurücktreten lässt [13], wie es Grundgedanke des Hands on!-Prinzipes (siehe Kapitel 2.2) ist. Darüberhinaus soll die aufgabenorientierte Herangehensweise das Verständnis für die grundlegenden Ausstellungsinhalte fördern (siehe Kapitel 2.3).

Nach jeder Lösung einer Aufgabe wird die Eingabe ausgewertet. Dabei wird direkt nach Absenden angezeigt, inwieweit die abgegebene Antwort richtig war und wie viele Punkte

Abbildung 13: MuTH Tourabschlussseite

Während der Tour kann diese jederzeit in Richtung der Tourübersicht oder einer der statischen Seiten verlassen werden. Beim erneuten Aufruf gelangt die Nutzerin oder der Nutzer dann direkt zur nächsten unbeantworteten Frage oder bei einer bereits abgeschlossenen Tour wieder auf deren Abschlussseite. Der Spielstand jeder Tour geht auch
beim zwischenzeitlichen Verlassen oder Anfangen bzw. Fortführen einer anderen Tour oder Änderungen an den Profildaten nicht verloren.

kannst du dir dann am Ausgang ausdrucken lassen.

Urkunde erstellen?

Wenn du auf *Keine Urkunde erstellen* klickst, werden einfach alle Daten, die wir über deine Touren auf deinem Gerät gespeichert haben, gelöscht.

Abbildung 14: MuTH Urkundengenerierungsseite

Abbildung 15: MuTH Urkundennummeranzeige

4.2.2. Stationsarten

Beim Aufrufen einer Tour werden nach und nach Aufgaben angezeigt, die es zu lösen gilt, um Punkte zu sammeln. Bei der Lösung steht vor allem das Erforschen der Ausstellung und ihrer Inhalte im Vordergrund (siehe Kapitel 2.1 und Kapitel 2.2). Die Kinder sollen angeregt werden, sich in dieser zu bewegen und nach den Informationen zu suchen, die sie für die Beantwortung einer Frage oder Bewältigung einer Aufgabe benötigen. Dabei lernen sie nicht nur, zielorientiert mit dargebotenen Informationen umzugehen (eine Fähigkeit die innerhalb ihrer Schulkarriere an Wichtigkeit gewinnen wird), sondern erhalten ebenfalls einen guten Überblick über die jeweiligen Teile der Ausstellung, was zu weiteren Erkundungen von spezifischen Themenfeldern anregen kann. Unterschiedliche Stationsarten variieren hierfür in einer Tour, um eine bessere Abstimmung auf die Anforderungen einzelner Inhalte zu erlauben.

Innerhalb der Anwendung sollen die verschiedenen, für Touren nutzbaren Stationstypen in modularisierter Form eingebunden und so von der Hauptimplementierung der Touren getrennt werden – sowohl im Blick auf ihre Aufgabenausgabe als auch der Auswertung der Nutzer_innenantworten. Dieses Vorgehen ermöglicht eine beliebige Einbindung weiterer Aufgaben- und Fragetypen und so auf Dauer eine größere Diversität an Inhalten und Aktivitäten, die dazu beiträgt, über längere Zeit das Interesse der Kinder zu halten.

Abbildung 16: MuTH Wahr-Falsch-Frage

Den letzten implementierten Typ bilden die so genannten Mehrfachantworten, bei der für die Beantwortung einer Frage aus einer Reihe von Antworten gewählt werden kann, von denen eine, mehrere, alle oder auch keine richtig sein kann. Diese Fragetypen sind vielfältig einsetzbar und erlauben Raum für kompliziertere Fragen, ohne dabei Kinder mit einer freien Antworteingabe zu überfordern. Wichtig ist hierbei, dass auch Teilpunkte für richtig markierte Antworten vergeben werden, anstatt nur Gesamtpunkte für eine komplett richtige Markierung aller angebotenen Fragen (siehe Kapitel 3.5). So können bei einer Frage mit drei

Abbildung 17: MuTH Schätzfrage
Antwortmöglichkeiten und 5 Punkten pro richtiger Antwort maximal 15 Punkte erreicht werden. Wird aber eine Antwort fälschlicherweise als richtig oder falsch markiert, die anderen aber korrekt eingeordnet, werden trotzdem noch 10 Punkte gewonnen. Dies fördert trotz der einen falschen Antwort ein Erfolgs- und ein positives Lernerlebnis bei der Nutzer_in.

4.2.3. Verwaltung der Inhalte

Grundsätzlich ist aufgrund ihres gängigen Ausbildungsweges davon auszugehen, dass es sich bei museumspädagogisch versiertem nicht auch gleichzeitig um technisch geschultes Personal handelt. Da die Inhalte der Anwendung allerdings pädagogischen Konzepten wie dem Hands on!-Prinzip oder dem der lebensweltlichen Bezüge folgen und auf bestimmte Zielgruppen ausgerichtet sein sollen, muss diesen Personen die einfache Verwaltung der Inhalte ohne technisches Vorwissen möglich gemacht werden.

Eine weitere wichtige Komponente der Anwendung bildet daher ein Admin Control Panel, auf das das Personal des Museums Zugriff hat, um die Anwendungs Inhalte zu verwalten. Dieses soll die Möglichkeit bieten, die Texte der (überwiegend) statischen Seiten wie des Impressums oder der Elterninformationen zu bearbeiten, die bestehenden Routen und ihre Inhalte zu verwalten (Erstellung neuer Fragen zusammen mit dem Hochladen des benötigten Medienmateri, Bearbeitung bestehender Datensätze, Löschen bestehender Datensätze, Neuanordnung der Reihenfolge der Fragen, etc.) und gegebenenfalls zu löschen und neue Routen hinzuzufügen. Die genannten Optionen sollen über ein einfaches Interface zur Verfügung gestellt werden, so dass sich die Benutzer_innen nicht mit direkt mit der Datenbank oder dem Anwendungscode auseinandersetzen müssen und die grundsätzliche Verwaltung auch ohne fachliche Kenntnisse dieser Gebiete möglich ist. Eine Ausnahme bildet hier das Hinzufügen von weiteren Stationstypen, deren Verhalten innerhalb des Programmcodes implementiert werden muss.

Diese Verwaltungskomponente der Anwendung wird zur Eingrenzung des Inhaltes dieser Arbeit im Zuge dieser nicht implementiert. Für die Demonstration der restlichen Funktionen
sowie die Befüllung der Anwendung mit Inhalten ist sie nicht zwingend erforderlich, da diese Funktionen auch über direktes Einfügen solcher in die Datenbank oder Hochladen von Medien auf den genutzten Webspace bewältigt werden können.

4.3. Grundlagen und verwendete Technologien

Im Folgenden soll nun näher auf die technische Umsetzung der Anwendung eingegangen werden und wie diese deren konzeptionellen Aufbau wie vorangegangen dargelegt unterstützt. Dazu gehört die Begründung dafür, diese als Webanwendung zu konzipieren, und für den Einsatz der Programmiersprache PHP in Verbindung mit einem MySQL-Datenbanksystem. Danach wird kurz das Model-View-Controller-Modell vorgestellt, das die Grundlage für die Aufteilung der Anwendung in verschiedene Komponenten bietet.

4.3.1. Motivation für eine webbasierte Anwendung

Die Wahl einer mobil einsetzbaren Anwendung begründet sich dabei aus der weiten Verbreitung von Handys innerhalb der Zielgruppe (wie bereits vorangegangen dargelegt) und der Handlichkeit dieser. Durch ihre Größe lassen sie sich leicht einstecken, ohne Probleme auch in der Bewegung nutzen und sind in diesem Faktor Tablets, die in der Zielgruppe weit weniger verbreitet sind [8], deutlich vorzuziehen. Ein klarer Vorteil gegenüber stationären Systemen wie PCs ist auch, dass diese durch das Museum bereitgestellt werden müssten, immer nur in begrenzter Anzahl verfügbar und zudem standortgebunden wären, während Mobiltelefone im Allgemeinen durch die Besucherinnen und Besucher selbst bereits im Alltag mitgeführt werden. Die aufgeführten Funktionen und zu absolvierenden Aufgaben könnten insofern mit einer mobilen Anwendung besser genutzt werden, da diese nicht die Rückkehr an einen bestimmten Ort nach jeder Informationssuche erfordert und so einen geordneten Rundgang erlaubt, der die Kinder sogar darin unterstützt.

Entsprechend dieser Punkte überwiegen die Vorteile einer mobilen Anwendung. Da eine
solche aber in unterschiedlicher Form umgesetzt werden kann, müssen hier anhand der oben genannten Personengruppen Abwägungen zwischen den verschiedenen Umsetzungsmöglichkeiten vorgenommen werden.

Ein entscheidender Faktor, was die Zielgruppe der Kinder angeht, aber ebenso im Allgemeinen von Bedeutung ist die Plattformunabhängigkeit. Um möglichst viele Nutzer_innen zu erreichen, ist es unabdingbar, eine Form von Softwareanwendung zu wählen, die technisch für diese zugänglich ist. Wie bereits vorangegangen beleuchtet, besitzen viele Kinder innerhalb der Zielgruppe bereits ein Mobiltelefon, mit dem sie sowohl Zugang zum Internet als auch zum Appstore ihres jeweiligen Betriebssystems haben. (Ausgenommen sind hier die Besitzer_innen von nicht-Smartphones). Hier verbirgt sich allerdings auch eine Schwierigkeit, denn Applikationen zur Ausführung auf Mobiltelefonen selbst sind im Regelfall nicht plattformübergreifend nutzbar, sondern müssen für das jeweilige Betriebssystem speziell entwickelt werden (zum Beispiel Android oder iOS). Die Wahl einer Smartphone-Applikation und die Entwicklung dieser für mehr als ein Betriebssystem birgt demnach nicht nur Mehrarbeit und mögliche Kosten, sondern entsprechend auch die Gefahr, manche Kinder von der Nutzung der Anwendung auszuschließen (zum Beispiel Nutzer_innen mit dem Betriebssystem Windows Phone). Nicht zuletzt sind Kinder im besonderen Maßen negativ davon betroffen, wenn sie durch solche Voraussetzungen von sozialen Aktivitäten und Unternehmungen ausgeschlossen werden. Diesem Punkt muss daher bei der Suche nach einer geeigneten Plattform großes Gewicht beigemessen werden.

Für Kinder ist zudem vorteilhaft, dass eine webbasierte Anwendung gegenüber einer App einfach durch einen bereitgestellten Link oder sogar QR-Code aufgerufen werden kann. Eine App hingegen müsste erst über den Appstore auf das Gerät heruntergeladen werden. Hierbei besteht eine deutlich höhere Fehleranfälligkeit durch Faktoren wie zum Beispiel mangelnden Speicherplatz, installierte Kindersicherungen oder Kompatibilitätsprobleme.

Im selben Zug muss bei jeder Anwendung, die durch Kinder genutzt werden soll, der Meinung der Eltern Beachtung geschenkt werden, die zwar nicht in jedem Fall bei der Nutzung anwesend sind (zum Beispiel ist ein Besuch innerhalb einer Schulexkursion oder mit Freunden oder Verwandten ebenso denkbar), die aber dennoch entsprechenden Anwendungen häufig kritisch gegenüberstehen. Dies erstreckt sich insbesondere auf das Herunterladen von Daten auf die mobilen Geräte ihrer Kinder. Dabei muss mit Ablehnung gerechnet und diese akzeptiert werden. Mitunter sind folglich auf einigen Geräten von Kindern sogar Sicherungen installiert, die diese davon abhalten, Apps aus dem Appstore herunterzuladen. Hier zeigt sich eine webbasierte Anwendung ohne den aktiven Download dieser auf das Gerät wiederum als vorteilhaft.

Im Allgemeinen lässt sich sagen, dass eine webbasierte Anwendung große Vorteile mit sich bringt. Unabhängig von den Nutzer_innengruppen ist einer dieser Vorteile die fehlende Speicherbelastung der mobilen Geräte durch webbasierte Anwendungen gegenüber Apps, die dazu neigen, besonders durch größere Dateien wie Bilder oder Videos viel Speicherplatz zu belegen, was für die einmalige Nutzung innerhalb eines Besuchs unvorteilhaft erscheint. Ein größerer Nachteil einer webbasierten Anwendung hingegen – und Vorteil einer Anwendung als App – wäre der mögliche Zugriff auf mobiltelefoneigene Funktionen wie die der Kamera oder eines QR-Code-Scanners. Dieses Fehlen spielt jedoch keine Rolle, soweit die genannten Funktionen keinen zentralen Teil der Anwendung ausmachen. Durch eine vorangegangene Auflistung der benötigten Funktionalitäten wurde bereits gezeigt, dass dies für die geplante Anwendung nicht der Fall sein wird.

4.3.2. PHP / MySQL

die sich den sich ändernden Bedürfnissen von Programmierer_innene und Nutzenden anpassen. So ermöglicht PHP bereits seit seinen frühen Versionen, sowohl prozedural als auch objektorientiert zu arbeiten sowie beides zu verbinden [27], was PHP noch flexibler und versatiler macht. Für den Einsatz bei Low-Budget-Projekten oder jenen, die im weiteren Support über keine großen finanziellen Mittel verfügen, ist vorteilhaft, dass PHP leicht lesbar und erlernbar ist, weshalb leichter und kostengünstiger Fachkräfte zur Wartung gefunden werden können als bei sehr speziellen Programmiersprachen und Technologien und auch Laien sich schneller damit vertraut machen können. Dabei hilft auch die umfangreiche Online-Dokumentation und eine aktive Community. Selbige stellt auf diversen Hilfeseiten viele frei nutzbare Tutorials, Anleitungen und Codeschnipsel zur Verfügung. Ein Beispiel dafür ist das in Kapitel 5 beschriebene Template-System. Für größere Projekte werden darüber hinaus diverse Frameworks für unterschiedliche Aufgaben angeboten. Ziel ist dennoch, eine möglichst einfach wartbare Anwendung zu entwickeln und so dem Kosten- und Betreuungsfaktor zuvorzukommen.

Innerhalb dieser Arbeit werden für die Implementierung der zugehörigen Anwendung die Versionen PHP 7.2 und MySQL 5.7.21 verwendet.

4.3.3. Model View Controller Modell

Innerhalb der Anwendung soll das Model View Controller Modell (kurz MVC) [14] als Grundlage für deren Architektur genutzt werden. Dabei handelt es sich um ein Designprinzip, das die Architektur einer Anwendung in die drei Kategorien unterteilt, die auch den Namen des Modells ausmachen. Der Model-Teil der Anwendung kümmert sich um die Daten und deren Repräsentation in der Anwendung (üblicherweise kann in einer objektorientierten Herangehensweise direkt eine Model-Klasse für jede in der Datenbank behandelte Entität genutzt werden). Die View bereitet die Daten für die Nutzer_innene auf, implementiert dabei aber keine Anwendungslogik. Der Controller bildet das Bindestück zwischen den beiden anderen Programmenteilen, in dem er die durch das Model gelieferten Daten in für die Anwendung gewünschter Weise verarbeitet und der View zur Verfügung stellt. Weiterhin empfängt er die von den User_innene durchgeführten Aktionen, die beispielsweise das Einholen und Aufbereiten neuer Daten nötig machen [14].
Dadurch dass nur das Model direkt mit der Datenbank kommuniziert, müssen Änderungen an deren Struktur oder an den genutzten Schnittstellen in der Regel nur dort durchgeführt werden und haben keinen Einfluss auf den Rest der Anwendung [14].

Als weiterer Vorteil kann die klare Dateistruktur innerhalb einer Anwendung betrachtet werden, die mit der Anwendung des Designprinzipes einhergeht. Aufgrund der gelisteten positiven Aspekte sowie der Flexibilität des Modells, bietet es sich an, im Folgenden davon Gebrauch zu machen.

4.4. Modellierung der Datenbank

Wie in Kapitel 4.3.2 dargelegt, soll für die Anwendung eine MySQL-Datenbank zum Einsatz kommen. Um diese entsprechend nutzen zu können, muss zunächst deren Struktur so geplant werden, dass diese den Zielen und geplanten Funktionen der Anwendung entspricht und in möglichst effektiver Weise dafür Verwendung finden kann. Für diese Modellierung
soll das *Entity-Relationship*-Modell (kurz ER-Modell) genutzt werden.

Für die Erzeugung eines solchen ER-Modells kann im Allgemeinen von einem groben hin zu einem spezifischen, den Anforderungen genügenden Entwurf gearbeitet werden. Zunächst hilft eine Listung der Entitäten, die in der Anwendung Relevanz haben und ihrer ebenso relevanten Eigenschaften. Dazu zählen:

Touren
Diesen sollten über einen Namen verfügen und wie vorangegangen gefordert eine Altersgruppe eingrenzen, für die die jeweilige Tour geeignet ist. Außerdem ist jede Tour für verschiedene Interessen relevant, die auch als Schlagwörte betrachtet werden können. Zu Beginn einer Tour kann ein einleitender Text angezeigt werden.

Stationen

Urkunden
Bei Beenden der Anwendung soll die Option gegeben werden, eine Urkunde aus den Ergebnissen der absolvierten Touren zu generieren. Eine solche Urkunde soll ihre Besitzerin oder ihren Besitzer benennen sowie die bewältigten Touren und die jeweils dabei gesammelten Punkte auflisten.

Nutzer_innen
Die Touren werden von den Nutzer_innen absolviert und die Urkunden auf diese ausgestellt. Für die Funktionalität sollten Eigenschaften wie der Name, das Alter und die Interessen erfasst werden. (Da wir Nutzer_innendaten aber nur im Falle einer Urkundengenerierung in
der Datenbank speichern und auf für die restlichen Funktionen der Anwendung nur Daten auslesen wollen, werden wir diese als Entitätsklasse im Folgenden unberücksichtigt lassen und lediglich für die Implementierung des Programmcode auf die hier identifizierten Eigenschaften zurückgreifen.)

Statische Seiten

Zusätzlich zu unseren anderen Anwendungskomponenten, sollen auch statische Seiten erstellt werden können für Inhalte wie ein Impressum oder die Datenschutzerklärung. Um deren Inhalte in der Datenbank zu verwalten und so bequem nach Bedarf auszulesen, brauchen wir einen eindeutigen *Bezeichner*, müssen wissen, was ihr *Titel im Menü* und der auf der Seite selbst angezeigte *Titel* sein sollen und in welcher Reihenfolge, wir die Seiten im Menü listen sollen. Dafür ist eine *Ordnungsnummer* hilfreich.

Einen solchen ersten Entwurf können wir nun als so genanntes ER-Diagramm darstellen, indem wir die genannten Entitäten und Eigenschaften wie durch dessen Konventionen vorgegeben auflisten und insbesondere ihre Beziehungen untereinander passend beschreiben.

Dieser erste Entwurf kann dann normalisiert werden, um etwaige Redundanzen und Inkonsistenzen von und unter den Daten zu beseitigen und deren spätere Abfrage zu vereinfachen [17]. Dazu bringen wir diese zunächst in eine atomare Form – teilen also alle Eigenschaften, die mehrere Informationen enthalten auf eigene Spalten auf. So wird aus einer *Altersgruppe* (beispielsweise “10 - 12”) ein *minimales* (10) und ein *maximales empfohlenes Alter* (12) für eine Tour.

Im nächsten Schritt stärken wir unsere Primärschlüssel, in dem wir funktionale Abhängigkeiten von Teilschlüsseln beseitigen und teilen darauf noch einmal alle Spalten in separate Tabellen auf, unter denen transitive Abhängigkeiten existieren [17]. So wäre es zum Beispiel nicht empfehlenswert, neben der *TourID* in eine Beziehungstabelle, die die Beziehungen zwischen Touren und Stationen darstellt, auch den *Tourname* aufzunehmen, denn dieser wäre automatisch nur von der *TourID* als Teilschlüssel des Primärschlüssel aus der Kombination von *TourID* und *StationsID* abhängig und nicht von der Kombination als Ganzem. Die Eigenschaft *Ordnungsnummer* ist es in dieser Tabelle hingegen. Im Allgemeinen reicht es für unseren Zweck aus, die dritte Normalform eines Datenbankentwurfs zu bilden.

Die Normalisierung sowie das Kreieren von Beziehungstabellen für Beziehungen mit n-m-Kardinalitäten, bringt uns zu einem Entwurf, der aussehen kann wie im Folgenden dargestellt. (Zur besseren Übersichtlichkeit wurden Entitäten und ihnen zugehörige Eigenschaften farblich markiert.)
Die Schlagwörter für die Touren bilden nun eine eigene Entitätsklasse und verfügen über eine n-m-Beziehung mit den Touren, die über die SchlagwortIDs realisiert wird. Dies ist sinnvoll, da ein Schlagwort in der Praxis auch auf mehrere Touren zutreffen kann und bei einer großen Anzahl von Touren und Schlagwörtern so nur die IDs mehrfach aufgeführt werden, die weniger Speicher einnehmen als die Schlagwörter selbst als Strings. Eingefügt wurden weiterhin die drei Beispielstationstypen (Schätzfrage, Wahr-Falsch-Frage und Mehrfachantwortenfrage) und ihre benötigten Eigenschaften. Durch die genutzte

Abbildung 20: ER-Diagramm der Anwendung

Die Schlagwörter für die Touren bilden nun eine eigene Entitätsklasse und verfügen über eine n-m-Beziehung mit den Touren, die über die SchlagwortIDs realisiert wird. Dies ist sinnvoll, da ein Schlagwort in der Praxis auch auf mehrere Touren zutreffen kann und bei einer großen Anzahl von Touren und Schlagwörtern so nur die IDs mehrfach aufgeführt werden, die weniger Speicher einnehmen als die Schlagwörter selbst als Strings. Eingefügt wurden weiterhin die drei Beispielstationstypen (Schätzfrage, Wahr-Falsch-Frage und Mehrfachantwortenfrage) und ihre benötigten Eigenschaften. Durch die genutzte

Innerhalb der tatsächlichen Datenbankstruktur wurden die Attribute und Entitätsklassen jeweils mit leicht veränderten Namen umgesetzt. Diese wurden dafür kleingeschrieben und den Attributen der Tabellenname als Präfix vorgesetzt (wie bei den IDs bereits im Diagramm umgesetzt), um sie auch als Fremdschlüssel innerhalb einer anderen Tabelle eindeutig zu identifizieren und die generelle Lesbarkeit von Abfragen und Inhalten zu erleichtern. (So stammen beispielsweise die beiden Primärschlüssel `tour_id` und `station_id` der Tabelle `tour_station` den Tabellen `tour` und `station` und sind auch dort so benannt.) Beziehungstabellen wurden als Kombination der Namen der Tabellen, deren Beziehung sie darstellen, bezeichnet (`tour_station`) und die Arten von Stationen wie sie aus deren Spezialisierung hervorgehen in ihrem Tabellennamen um das Präfix `station_` ergänzt.

Die genutzte Speicher-Engine ist InnoDB. Diese erlaubt das Setzen von Fremdschlüsselbeziehungen, wie sie zum Beispiel zwischen den `station_ids` von Entitäten der Tabelle `station` und ihrer Spezialklassen bestehen oder auch zwischen den in den Beziehungstabellen verwendeten IDs und ihren Haupttabellen (beispielsweise `tour` und `schlagwort` in `tour_schlagwort`). Für die Fremdschlüssel kann festgelegt werden, was passiert, wenn der referenzierte Primärschlüssel gelöscht oder verändert wird. Als Einstellung dafür wird hier für alle Fremdschlüssel und sowohl `UPDATE`- als auch `DELETE`-

4.5. Gestaltung der Anwendungsoberfläche

Da die Anwendung für gängige Smartphone-Displaygrößen optimiert sein soll, muss ein Menü zwangsweise komprimiert und hinter einem Link verborgen werden. Das Burger-Icon ist zwar keine gängige Bildmetapher aus dem Alltag von Kindern, aber inzwischen über die meisten Applikationen soweit verbreitet, dass es trotzdem auch von Nutzer_innen jüngerer Altersstufen, die bereits mobile Geräte nutzen, verstanden wird. In der Anwendung sollen die Seitenelemente wie in Abbildung 22 angeordnet werden.
Für Einheitlichkeit sorgt ein so genannter Styleguide, in dem festgelegt ist, welche Schriften für Überschriften und den normalen Text Verwendung finden sowie welche Farben und wie andere wichtige Elemente wie zum Beispiel Buttons gestaltet werden. Da sich der gestalterische Entwurf zunächst auf den allgemeinen Teil der Anwendung erstreckt und jede neu hinzuzufügende Stationsart sich sehr unterschiedlich aufbauen kann, bezieht sich der entworfene Styleguide primär auf die klassischen Seitenelemente wie Überschriften oder den Haupttext. Er sollte aber dennoch als Orientierung für die Gestaltung der spezifischen Stationsteile wie Multiplechoice-Fragen oder Checkboxen dienen und diese sich der dort festgelegten Schrifttypen und Farben bedienen. Weiterhin können dafür auch bereits vorhandene Stationstypen einen Ausgangspunkt bieten.

Für die Anwendung des Deutschen Schiffahrtsmuseums wurde an dieser Stelle die serifenlose Schriftart Roboto gewählt, die Standardschriftart vieler Versionen des Betriebssystems Android ist und somit bereits auf vielen mobilen Geräten vorinstalliert ist. Sie verfügt über viele Dicken und wird auch in verschiedenen kleinen oder großen Größen sauber dargestellt. Serifenlose Schriftarten haben den Vorteil, dass sie auf einem Bildschirm

Schrift

- **h1 Erste Überschrift**
- **h2 Zweite Überschrift**
- **h3 Dritte Überschrift**
- **p Textkörper und Hauptschrift**
- **a Links**

Buttons

[Tour starten](#)

Farben

![Farbpalette](#)

Abbildung 23: Styleguide der Anwendung
Einen zusätzlichen Hinweis auf aktuelle Status wie etwa, ob eine Tour schon bearbeitet oder wie weit der Willkommensdialog bereits durchlaufen wurde, werden durch zusätzliche Elemente geliefert. Drei verschiedene Symbole in der Tourliste zeigen an, ob eine Tour unbearbeitet, angefangen oder abgeschlossen ist. Im Willkommensdialog hingegen verdeutlicht eine Liste von Punkten am Fuß der Seite, in welchem Schritt sich ein_e Nutzer_in befindet und wie viele noch auszufüllen sind (siehe Abbildung 9).

Ein Beispiel für den Einsatz von visuellem Feedback, um das Verständnis der Kinder zu erhöhen, bieten die Stationen vom Typ Mehrfachantworten. Um dort zu zeigen, welche Antworten richtig markiert wurden und welche falsch, werden die getätigten Markierungen in der Auswertung übernommen und die einzelnen Antworten entweder grün, rot oder grau markiert (siehe Abbildung 18). Auch die anderen Stationstypen markieren ihr Feedback wie beispielsweise die Wörter “Richtig” und “Falsch” farblich und greifen so auf die gebräuchliche Konnotation der Farben zurück.

Da die Anwendung zwar für Smartphone-Auflösungen optimiert, aber auch die Nutzung mit zum Beispiel Tablets denkbar ist, ergibt es Sinn, die Seitenelemente durch Displaygrößenabhängiges CSS responsiv zu gestalten. So wird das Menü auf größeren Bildschirmen nicht mehr komprimiert sondern direkt in Textform und unversteckt in der Kopfleiste angezeigt.
(siehe Abbildung 24). Tablets können daher als Ausweichmöglichkeit verwendet werden, wenn kein Smartphone zur Verfügung steht oder ein Kind aufgrund schlechterer Feinmotorik oder Seheinschränkungen Schwierigkeiten mit dem kleinen Display eines Smartphones hat.

Abbildung 24: Tourübersicht auf Tabletdisplaygröße
5. Implementierung

Im Folgenden wird die Implementierung der vorher festgelegten Komponenten beschrieben und durch die Erläuterung verschiedener ausgewählter ausgewählter Codeabschnitte näher dargestellt.

![Abbildung 25: Ordnerstruktur der Anwendung](image-url)
Nicht klassenspezifische wiederkehrende Skriptteile wurden als Funktionen in die functions.inc.php ausgelagert, die ebenfalls in der global.inc.php inkludiert ist.

Durch die Einbindung einer Template-Engine, welche die Übergabe von PHP-Variablen an HTML-Templates verwaltet, in Form einer eigenen Template-Klasse konnte die View von der Anwendungslogik getrennt und darüber hinaus sich wiederholende Elemente wie der Header mit dem Menü oder der Footer in eigene Templates ausgelagert und so Redundanzen vermieden werden.

Ein weiteres Beispiel dafür ist die Umsetzung der Aufgabenbeantwortung und deren Auswertung. Die Auswertung wird direkt nach Absenden der Antwort vorgenommen und die
Punktzahl für die Tour entsprechend erhöht, bevor die Daten dazu, ob die Antwort richtig gewählt war beziehungsweise auf welche Antworten das zutraf und wie viele Punkte gesammelt wurden, mit einer Weiterleitung an das Darstellungsskript der Auswertungsseite weitergegeben werden. Nutzer_innen können so zwar die Anzeige durch Änderung der Parameter in der URL manipulieren, allerdings nicht das tatsächliche Ergebnis, soweit sie nicht den Inhalt der gespeicherten Cookies verändern.


```
include("./stationen/".$station_typ.".aufgabe.php");
```

/tour.php Zeile 129

Diese Cookies werden dann an verschiedenen Stellen der Anwendung ausgelesen und bearbeitet. Zum Beispiel verfügt jede angefangene Tour über ein Cookie, welches die aktuelle Punktzahl angibt und eines für die aktuelle Ordnungsnummer innerhalb der der Tour zugehörigen Stationen. Eine abgeschlossene Tour speichert nur noch die errungene Punktzahl mit einem eigenen Marker, der sie als abgeschlossen kennzeichnet. Für die Änderung der Nutzer_innendaten werden die zu Beginn festgesetzten Profildaten entsprechend überschrieben. Speziell werden diese neben der Durchführung der Touren auch durch die Übersichtsseite genutzt, auf der nicht nur der Status und in der Tablet-Version auch der Punktestand jeder Tour angezeigt wird, sondern für die Alter und Interessen im Speziellen die Auswahl der angezeigten Touren bestimmen.

So wird die Abfrage über die Tourenliste zunächst mit dem Alter und den Interessen des Kindes als Parametern ausgeführt. Wenn auf Grundlage der beiden Eingaben keine Tour ausgegeben werden kann, wird zunächst nur nach passenden Touren für das Alter gesucht, da die Machbarkeit hier den Interessen vorzuziehen ist. Im Fall dass dies wieder kein Ergebnis liefert, wird nur nach den Interessen gefiltert und ansonsten werden alle vorhandenen Touren zurückgegeben. Wenn nicht der erste Fall eintritt, wird zusätzlich ein entsprechender Hinweis in der Übersicht angezeigt.

```php
public static function getTouren(int $alter = 0, array $interessen = array()) {
    global $db;
    if($alter > 0 & & !empty($interessen)) {
        $clause = implode(",", array_fill(0, count($interessen), "?")
        $types = str_repeat("s", count($interessen));
        $statement=$db->prepare("SELECT tour.tour_id AS id, tour_name AS name, tour_min_alter AS min_alter, tour_max_alter as max_alter
            FROM `tour`
            LEFT JOIN `tour_schlagwort` USING(tour_id)
            LEFT JOIN `schlagwort` USING(schlagwort_id)
            WHERE tour_max_alter >= ? AND tour_min_alter <= ?
            AND schlagwort IN (".$clause.")
            GROUP BY tour_id
            ORDER BY tour_name ASC
        ");
        $statement->bind_param("ii".$types, $alter, $alter, ...$interessen);
    }
    
/model/tour.model.php Zeile 189-205
```
6. Fazit

Die großen Schwierigkeiten in diesem Schritt zeigen, dass es sehr umständlich sein kann, eine solche Anwendung und ihre Inhalte für eine bestehende, nicht darauf ausgelegte

Insgesamt hat sich die Anwendung dennoch in informellen Tests mit erwachsenen Benutzer_innen mit unterschiedlicher Vertrautheit mit mobilen Anwendungen und Geräten als nutzbar erwiesen und jene dazu beigetragen, Fehlkonstruktionen in der Seitenstruktur zu beseitigen.

Anhang

Literaturverzeichnis

Abbildungsverzeichnis

Abbildung 1: Bremer Kogge im Deutschen Schifffahrtsmuseum

Abbildung 2: DMW Rundgang starten

Abbildung 3: DMW Begrüßungssequenz

Abbildung 4: DMW Antwortauswertung

Abbildung 5: DMW Übersichtsseite

Abbildung 6: DMW Menü

Abbildung 7: Seitenstruktur von MuTH

Abbildung 8: MuTH Startseite

Abbildung 9: MuTH Willkommensdialog

Abbildung 10: MuTH Tourübersicht

Abbildung 11: MuTH Daten ändern-Seite

Abbildung 12: MuTH Tourstartseite der Tour „Die Lieferdienste des Mittelalters“

Abbildung 13: MuTH Tourabschlussseite

Abbildung 14: MuTH Urkundengenerierungsseite
Abbildung 15: MuTH Urkundennummeranzeige...44
Abbildung 16: MuTH Wahr-Falsch-Frage..46
Abbildung 17: MuTH Schätzfrage..47
Abbildung 18: Mehrfachantwortfrage...48
Abbildung 19: Model-View-Controller-Modell
Abbildung 20: ER-Diagramm der Anwendung...57
Abbildung 21: Tabellenbenennung..58
Abbildung 22: Anordnung der Seitenelemente...60
Abbildung 23: Styleguide der Anwendung...61
Abbildung 24: Tourübersicht auf Tabletdisplaygröße...63
Abbildung 25: Ordnerstruktur der Anwendung...64
Inhalt des beigefügten Datenträgers

Der Arbeit ist eine CD mit folgendem Inhalt beigefügt:

- Die Arbeit als PDF-Datei.
- Das als Abbildung 20 gezeigte ER-Diagramm als PNG-Datei.
- Die Implementierung der diskutierten Software als zip-Datei. Diese kann entpackt werden und enthält dann:
 - Ein Verzeichnis `MuTH`, das die Dateien und Ordnerstruktur der Software sowie die Bilder für die Beispielinhalte enthält.
 - Eine Datei `muth.sql` mit der Struktur und den Beispielinhalten der modellierten Datenbank.
 - Eine Textdatei `installation.txt`, die die Schritte zur Installation der Anwendung erklärt.
 - Eine Textdatei `quellen.txt`, die die nicht in der Dokumentation der Software ausgewiesenen Quellen für verwendeten Code und Bibliotheken nennt.
- Die Verknüpfung zu einer Live-Version der Software zur Ansicht.
Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig angefertigt, nicht anderweitig zu Prüfungszwecken vorgelegt und keine anderen als die angegebenen Hilfsmittel verwendet habe. Sämtliche wissentlich verwendete Textausschnitte, Zitate oder Inhalte anderer Verfasser wurden ausdrücklich als solche gekennzeichnet.

Bremen, 22. August 2018

Yaël M. Richter-Symanek