TEAMOD Test and Model Checking

Bachelor and Master Project Bachelor Project: Winter Semester 2018/19 – Summer Semester 2019 Master Project: Winter Semester 2019/20 – Summer Semester 2020 Jan Peleska and Wen-ling Huang {jp,huang}@cs.uni-bremen.de

Background

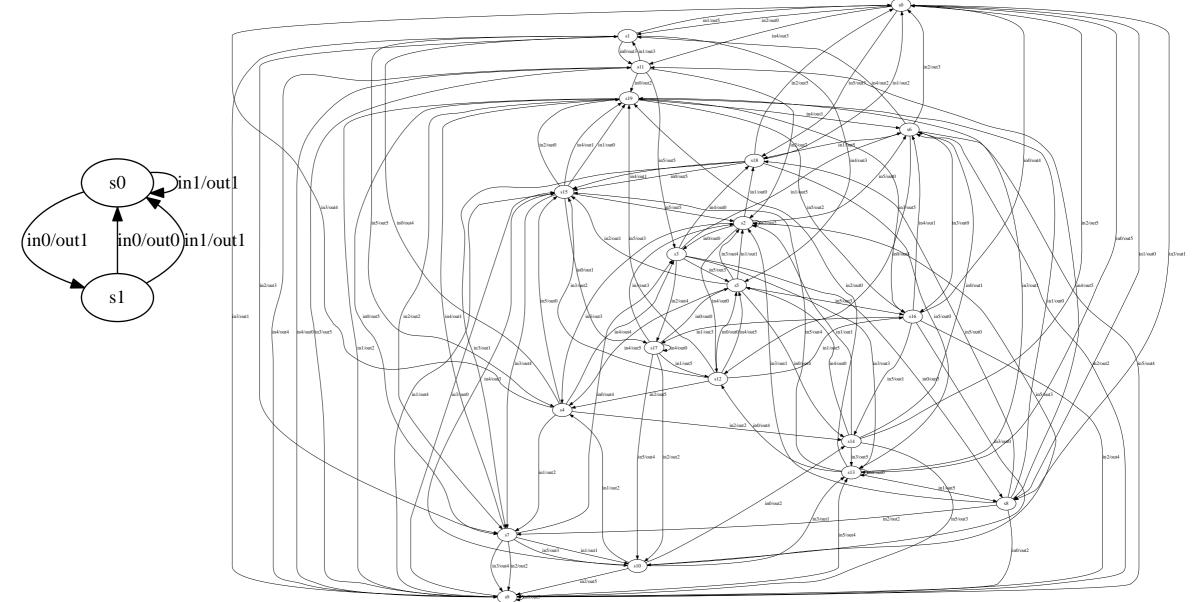
 Embedded control systems are omnipresent in our daily life

Background

- The growing complexity of embedded applications leads to an dramatic increase of verification costs
- These costs will further increase with autonomous systems deployment
 - Robots
 - Vehicles
 - Cars
 - Ships
 - Trains

We can efficiently handle low complexity . . .

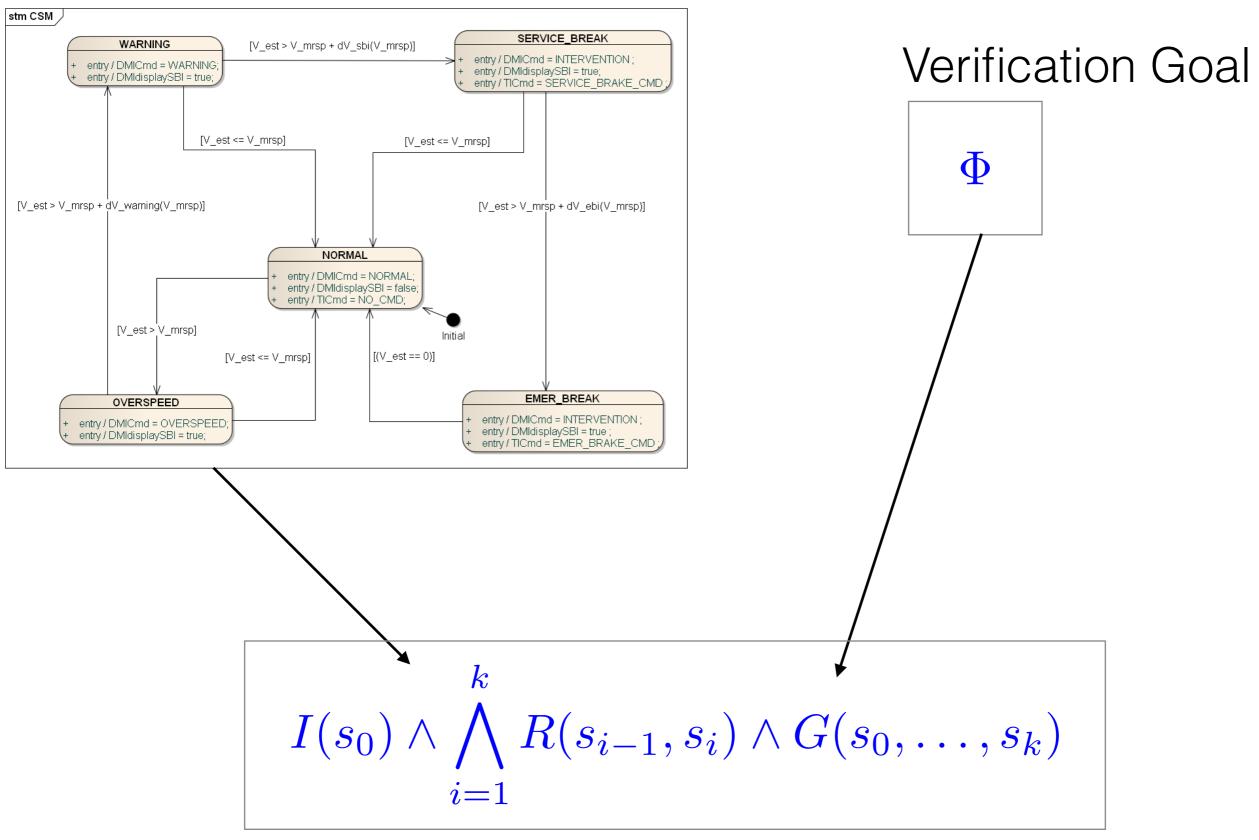
... but are not yet prepared for the complexity of future applications



TEAMOD Objectives

- Bounded model checking
- Model-based testing

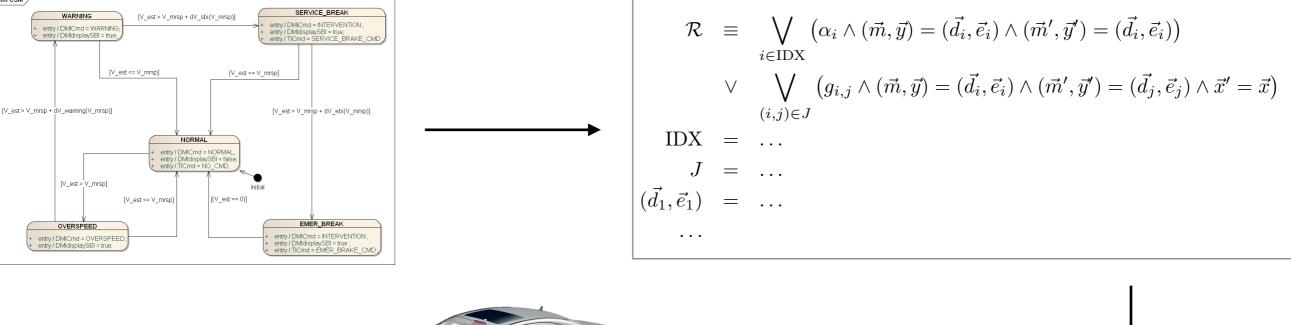
Model

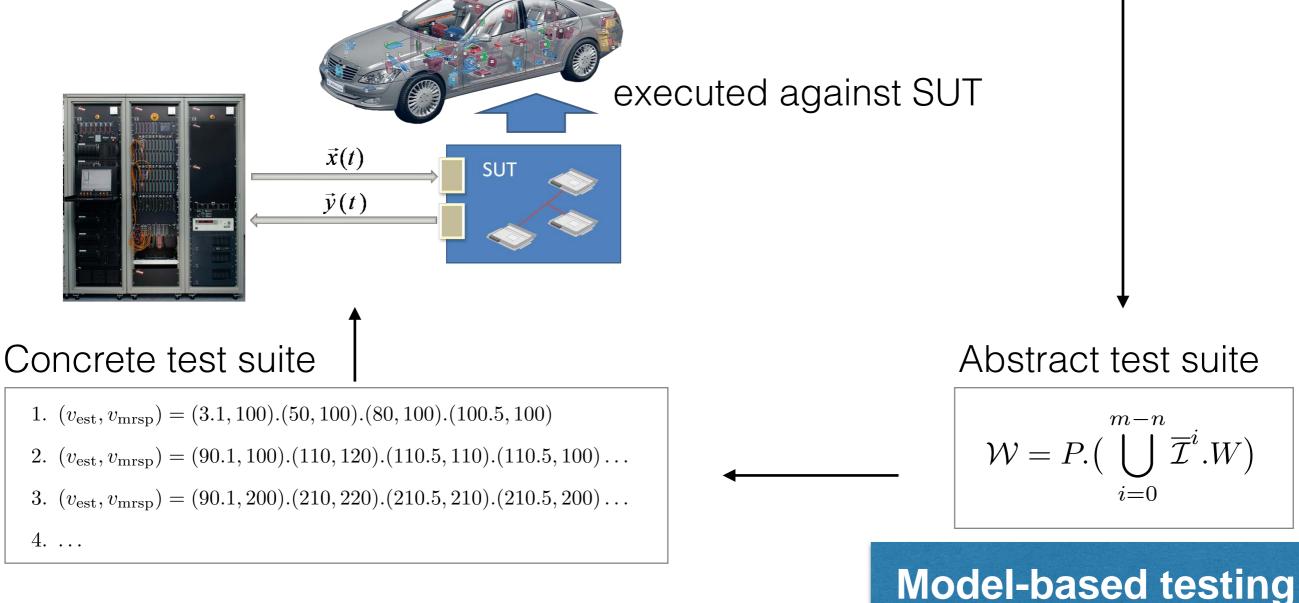


Bounded model checking

Test model (SysML)

Semantic representation





TEAMOD Objectives

- Bounded model checking and model-based testing should be integrated in a common tool platform
 - Model checking is needed to verify the test model
 - Model-in-the-loop testing is a light-weight version of model checking

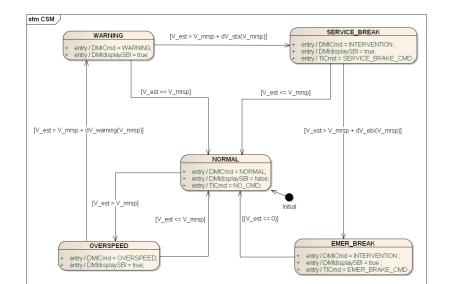
TEAMOD Bachelor Project

- Three sub-projects
 - Methods
 - System under test development
 - Modelling, bounded model checking, and model-based testing

Development

Märklin Modelleisenbahn

Märklin Central Station 6021!



Hardware-in-the-loop test

Test engine

System under test

TEAMOD Master Project

- Four sub-projects
 - Algorithms
 - Autonomous train control
 - Safety monitor development
 - Graphical interfaces for scenario-based testing

Algorithms

1. Theory

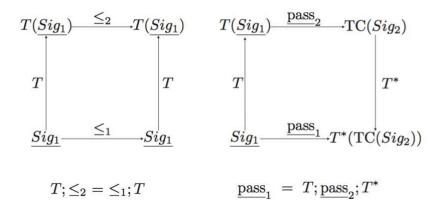


Fig. 1. Commuting diagrams reflecting the satisfaction condition

Given a pair (T, T^*) fulfilling the satisfaction condition, this allows to translate complete testing theories existing in Sig_2 to likewise complete testing theories in (sub-domains of) Sig_1 .

Theorem 2.1 Suppose that $TS_2 : F_2 \to \mathbb{P}(TC(Sig_2))$ with $F_2 \subseteq F(Sig_2, \leq)$ is a sound (respectively exhaustive, complete) testing theory. Define

 $F_1 = \{ (\mathcal{S}, \leq_1, Dom_1) \in F(\underline{Sig_1}, \leq_1) \mid \exists Dom_2 \subseteq Sig_2 : T(Dom_1) \subseteq Dom_2 \land (T(\mathcal{S}), \leq_2, Dom_2) \in F_2 \}.$

Then $TS_1: F_1 \to \mathbb{P}(TC(Sig_1))$ defined by²

 $\mathsf{TS}_1(\mathcal{S}, \leq_1, Dom_1) = T^*(\mathsf{TS}_2(T(\mathcal{S}), \leq_2, Dom_2)),$

such that $T(Dom_1) \subseteq Dom_2$, is a sound (respectively exhaustive, complete) testing theory.

Proof Suppose TS_2 is sound (exhaustive). Let $\mathcal{F}_1 = (S, \leq_1, Dom_1) \in F_1$ and $\mathcal{F}_2 = (T(S), \leq_2, Dom_2) \in F_2$ be any fault models in F_1 and F_2 respectively, satisfying $TS_1(\mathcal{F}_1) = T^*(TS_2(\mathcal{F}_2))$. Let $S' \in Dom_1$. Then $T(S') \in Dom_2$, and

 $\begin{array}{ll} \mathcal{S}' \leq_1 \mathcal{S} \iff T(\mathcal{S}') \leq_2 T(\mathcal{S}) & \text{[satisfaction condition SC1]} \\ \Rightarrow \forall U \in \mathrm{TS}_2(\mathcal{F}_2) : T(\mathcal{S}') \underline{\mathrm{pass}}_2 U & [\mathrm{TS}_2 \text{ is sound}; (" \Leftarrow " : \mathrm{TS}_2 \text{ is exhaustive})] \\ (\Leftarrow) \\ \Leftrightarrow \forall U \in \mathrm{TS}_2(\mathcal{F}_2) : \mathcal{S}' \underline{\mathrm{pass}}_1 T^*(U) & \text{[satisfaction condition SC2]} \\ \Leftrightarrow \mathcal{S}' \underline{\mathrm{pass}}_1 T^*(\mathrm{TS}_2(\mathcal{F}_2)) & \\ \Leftrightarrow \mathcal{S}' \underline{\mathrm{pass}}_1 \mathrm{TS}_1(\mathcal{F}_1) & [\mathrm{TS}_1(\mathcal{F}_1) = T^*(\mathrm{TS}_2(\mathcal{F}_2))] \end{array}$

Hence $TS_1(\mathcal{F}_1)$ is a sound (exhaustive) test suite for any fault model $\mathcal{F}_1 \in F_1$. Consequently, TS_1 is sound (exhaustive). Since completeness is the combination of soundness and exhaustiveness, this proves the theorem.

2. Algorithm design

8. For each $(i, j) \in J$, collect all disjuncts

$$g_{i'.i'_1...i'_{n'}} \wedge (\mathbf{m}, \mathbf{y}) = (\mathbf{d}_{i'}, \mathbf{e}_{i'}) \wedge (\mathbf{m}', \mathbf{y}') = (\mathbf{d}_{i'_{n'}}, \mathbf{e}_{i'_{n'}}) \wedge (\mathbf{x}' = \mathbf{x})$$

satisfying $i'.i'_1...i'_{n'} \in \text{RTR}_{i,j}$ and consequently i' = i, $i'_{n'} = j$ and merge them into a single disjunct

$$g_{i,j} \wedge (\mathbf{m}, \mathbf{y}) = (\mathbf{d}_i, \mathbf{e}_i) \wedge (\mathbf{m}', \mathbf{y}') = (\mathbf{d}_j, \mathbf{e}_j) \wedge (\mathbf{x}' = \mathbf{x})$$

where

$$g_{i,j} \equiv \bigvee_{i' \cdot i'_1 \cdots i'_{n'} \in \operatorname{RTR}_{i,j}} g_{i' \cdot i'_1 \cdots i'_{n'}}$$

9. Terminate by returning \mathcal{R} .

3. Programming

void RttTgenGenerator::generateTestCases() {

```
// The root of the test procedure tree carries the memory state before
tprocRoot = [&] {
    auto mSys = static_cast< RttTgenConcreteLatticeMemory* >(system->get
    mSys->setParentSystem(system);
    return new RttTgenTestProcTree(mSys, 0, true, 0);
}();
currentTprocNode = tprocRoot;
remainingSimulationSteps = parms->getSimSteps();
// Initialise interpreters
sim = new simlib::Simulator(*system);
```

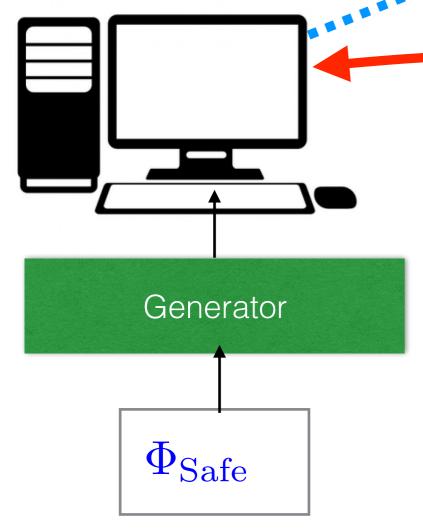
```
sim = new simlib::Simulator(*system);
sim->setAddGoalsUnordered(additionalGoals->getUnordered());
sim->setAddGoalsOrdered(additionalGoals->getOrdered());
sim->setTestCaseDb(tcDb);
sim->setParms(parms);
nextTimeTickFromSimulator = 0;
```

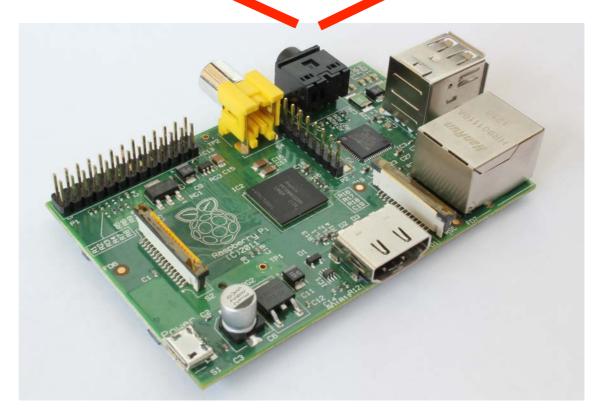
Autonomous train control & Safety monitor Märklin Modelleisenbahn

<image>

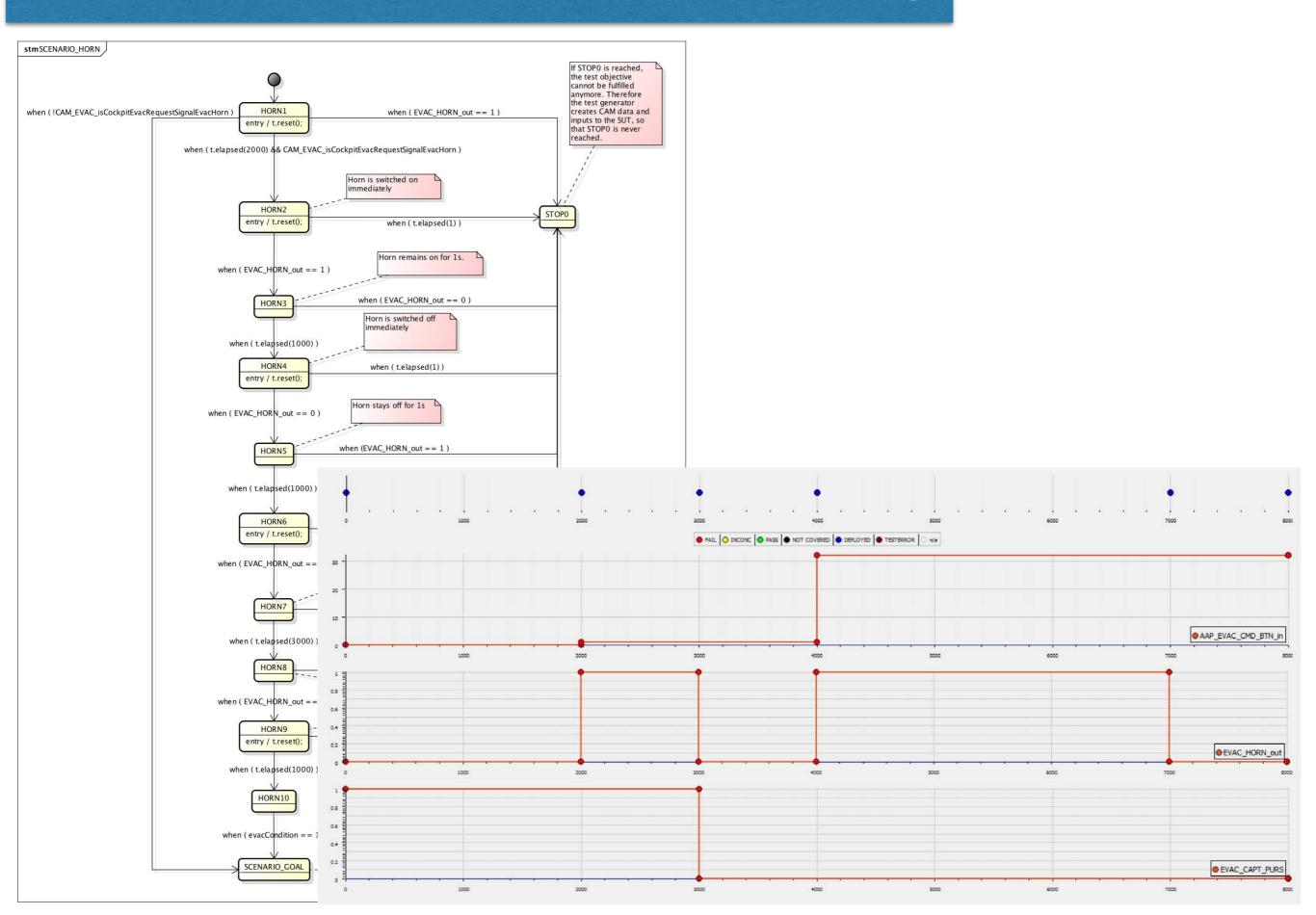
Märklin Central Station 6021!

Safety monitor





Graphical interfaces for scenario-based testing



Accompanying Lectures

- **Test automation** [highly recommended]
- Theory of reactive systems
- Systems of high quality, safety, and security
- Specification of embedded systems
- Operating systems
- Real-time operating systems development