
Supporting Program Comprehension
by Automatic Bookmarks
Automatische Lesezeichen zur

Unterstützung des Programmverstehens

—Master Thesis —

Moritz Weinig

University of Bremen
Computer Science

December 2020

Supervised by

Martin Schröer

Examined by

1. Prof. Dr. Rainer Koschke
University of Bremen

2. Prof. Dr. Oliver Keszöcze
FAU Erlangen-Nürnberg

Abstract

In order to fix or extend a program, software developers spend considerable amounts of their
working time on just reading existing source code, attempting to find out what changes have to be
made, at which locations. Researchers and the software engineering community presented many
tools addressing this issue. A function most modern Integrated Development Environments (IDEs)
offer is bookmarks. Such bookmarks can be toggled for individual lines in the source code. Often,
they do not carry any contextual information apart from their location. Prior research showed
that most software developers do not use bookmarks at all. This thesis proposes an automatic
bookmark approach which has been implemented in a prototypic plug-in for the popular Eclipse
IDE. It continuously monitors the developer’s interaction with the IDE and dynamically marks
possibly interesting locations in the source code. The plug-in uses a line-based degree-of-interest
(DOI) model to decide which locations might be relevant to the developer. It has been evaluated in
a remote study with eight participants. The study suggests that automatic bookmarks can support
developers’ program understanding, which encourages further research efforts on this topic.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Structure . 2
1.3 Research Questions . 3

Implementation . 3
Evaluation . 3

2 Background 5
2.1 Bookmarks . 5
2.2 Bookmark Usage . 6
2.3 Program Comprehension . 8
2.4 Mylar/Mylyn (Kersten and Murphy 2005) . 11
2.5 Mimesis . 12

3 Automatic Bookmarks 15
3.1 Requirements . 15

Reference Use Case . 15
Meaningful Interaction . 16

3.2 Detecting Regions of Possible Interest . 18
Data . 18
Analysis . 19
Aggregating Regions . 24

3.3 Specification . 25
3.4 Checking the Automatic Bookmark Model . 26
3.5 User Interface . 29

Bookmarks . 29
Tracks . 30
DOI . 30

4 Evaluation 33
4.1 Method . 33

Environment . 33
Task . 34

4.2 Results . 37
Demographic Characteristics and Experience . 38
Bookmark Usage . 39
Posttest Results . 40

5 Conclusion 43
5.1 Discussion . 43

Creation and Presentation . 43
Acceptance . 44
Benefit . 45

5.2 Threats to Validity . 46

5.3 Future Research . 47

A Instructions 51

B Questionnaire 55

C Coding 65
Categories . 65
Answers . 65

D CD-ROM 67

List of Figures

1.1 Bookmark in Eclipse . 2
1.2 Bookmark in IntelliJ IDEA . 2
2.1 Dialog “Add Bookmark” in the Eclipse IDE . 5

2.2 Model of program understanding proposed by Ko et al. 9
2.3 The four categories defined by Sillito et al. 9
2.4 The Mylar interface (Kersten and Murphy 2005) . 13
2.5 Visualization of interaction data collected by Mimesis . 13

3.1 UML use case diagram depicting the reference use case 16
3.2 Different states of the Weather Wizard’s UI . 19
3.4 Exemplary development of line visit durations . 20
3.3 ViewportEvent added to Mimesis . 21
3.5 Visit durations per line in WeatherWizard.java . 22
3.6 Bookmarking with the masking approach . 24
3.7 The outputs of the bookmark simulations translated into listings 26
3.8 Different markers in Eclipse . 29
3.10 Audio tracks in the free audio editor Audacity . 30
3.11 The plug-in’s user interface . 31

4.1 The vocabulary trainer . 34
4.2 Requested change in the user interface . 34
4.3 State of the plug-in user interface in the experiment . 37
4.4 Age distribution of the developers who participated in the study 38
4.5 Programming experience of the participants . 38
4.6 The participants’ self-assessed experience in areas related to the task 39
4.7 Reasons why the participants nerver or rarely use boomarks 39
4.8 The participants statements concering their own plug-in usage and its support 40
4.9 The participants’ assessment of the plug-in’s components 41
4.10 Number of plug-in event nodes in the recordings . 41

List of Tables

2.1 Events recorded by Mimesis . 14

3.1 Ignorable event types . 17
3.2 Time each participant spent on the Weather Wizard task 19
3.3 Numbers of insertions (+) and deletions (-) in the Weather Wizard class file 26
3.4 Numbers of generated bookmarks . 27
3.5 Generated bookmarks for two randomly chosen participants 28
4.1 Limits of the Linux server according to ulimit -a . 33

Introduction 1
1.1 Motivation 1
1.2 Thesis Structure 2
1.3 Research Questions 3

Implementation 3
Evaluation 3

This document contains a master thesis in Computer Science with
a focus on safety and software quality. The project has been super-
vised by the Software Engineering Group at the University of Bremen,
which researches, among other topics, program comprehension.

This introductive chapter motivates the performed research project,
outlines the thesis’s structure, and defines the underlying research
questions.

1.1 Motivation

Due to a publication by Fjeldstad and Hamlen in 1979, the software
engineering community assumes maintenance developers spend
approximately half of their effective working time understanding
existing source code. A more recent study by Ko et al. (2006) found
that developers spend 35% of their time on navigation within and
between source files. Robert C. Martin, the initiator of the Agile
Manifesto and author of Clean Code, claims it is even worse (Martin
2009):

“Indeed, the ratio of time spent reading vs. writing is
well over 10:1. We are constantly reading old code as
part of the effort to write new code.”

Assumptions like these have been, and still are the reason for
various efforts in improving program comprehension.

In addition to proactive efforts performed by the code’s original
authors, such as documentation and compliance with existing cod-
ing conventions, numerous tools developed to help maintenance
programmers exist. To avoid discontinuity, it makes sense to embed
such tools into the environment where the developer also wants
to edit the program’s source code. Nowadays, for many software
developers this is an Integrated Development Environment (IDE), in-
cluding a powerful editor, build-automation and debugging tools,
as well as tools for version control, and other recurrent tasks.

A function that most modern IDEs offer is bookmarks. These book-
marks are tuples of a source file, a line number in that file, and
optionally other information such as a title. Bookmarks can be
added, edited, and removed by the user. Usually, bookmarks are
displayed by a symbol in the editor’s margin. Some IDEs offer to

2 1 Introduction

Figure 1.1: Bookmark in Eclipse

Figure 1.2: Bookmark in IntelliJ IDEA

view bookmark details such as a title in a table that summarizes
all bookmarks in the opened project.

Prior research showed that most developers do not use those
bookmarks at all (Guzzi et al. 2011; Murphy et al. 2006; Storey,
Ryall et al. 2008)—even if they commonly estimated the use of
bookmarks to be useful in an interview prior to the trial (Guzzi
et al. 2011). Some developers consider bookmarks being not useful
or cumbersome to create (ibid.).

This thesis aims to improve the elementary bookmark concept by
automating the creation of bookmarks in order to support program
comprehension. To pursue this goal, a tool has been implemented,
which automatically adds bookmarks to code lines that might be
interesting for the developer. Ideally, these automatic bookmarks
should always offer the required information at the right time. The
prototype developed for this thesis implements the following core
features:

I Automatically bookmarking locations of potential import-
ance or interest.

I Traceability of the developer’s journey through the code.
I A configurable filter allowing the user to hide bookmarks of

specific categories.

1.2 Thesis Structure

The definition of the research questions is followed by a chapter
(Chapter 2) that sums up the project’s background, including a
literature review. Chapter 3 describes the design of the developed
automatic bookmark tool, which is evaluated in Chapter 4. Finally,
Chapter 5 discusses the findings and suggests future research
topics.

1.3 Research Questions 3

1.3 Research Questions

The following specific research questions structure the project. The
first two questions address the conceptual aspects of the above-
mentioned bookmark approach. Two further questions aim to
assess the tool’s value for software developers who are in charge
of maintenance tasks.

Implementation

The answer to the first question will sort out what user interaction
events could be used to create automatic bookmarks in general. This
will be derived from prior studies and literature to IDE bookmarks
and program comprehension.

Research Question RQ1

Which interaction events are eligible for the creation of auto-
matic bookmarks, and how is this influenced by the features of
the corresponding code lines?

An implementation of the bookmark functionality resulting from
RQ1 might lead to an entire pool of possible bookmarks. Prior
research found that developers take different steps to understand
a program, each step with different information needs (Maalej
et al. 2014; Roehm et al. 2012; Sillito et al. 2008). The answer to the
second research question will include in what context individual
bookmarks have to be actually displayed to the developer in order
to support the code analysis.

Research Question RQ2

How can be decidedwhich particular automatic bookmarkswill
be created and how should they be displayed to the developer
with regard to a specific comprehension task?

Evaluation

A prior survey by Guzzi et al. (2011) found most developers do
not use bookmarks at all. Half of the surveyed did not know
bookmarks even exist. For this reason, one of the key challenges
will be to motivate developers to integrate the new tool into their
settled workflows. Question RQ3 will investigate the developers’
acceptance of automatic bookmarks.

4 1 Introduction

Research Question RQ3

Do software developers show a greater acceptance towards the
use of automatic bookmarks compared to classic bookmark
approaches?

The last research question will validate whether the developed
tool really supports the daily work of software developers.

Research Question RQ4

Can automatic bookmarks support program comprehension,
and if so, to what extent?

Figure 2.1: Dialog “Add Bookmark”
in the Eclipse IDE

Background 2
2.1 Bookmarks 5
2.2 Bookmark Usage 6
2.3 Program Comprehension . 8
2.4 Mylar/Mylyn (Kersten and
Murphy 2005) 11
2.5 Mimesis 12

To propose an improved version of the rather neglected, clas-
sic bookmarks, it is crucial to understand today’s bookmark ap-
proaches and relatedprevious research. For this reason, this chapter
gives an introduction to the state of the practice concerning book-
marks in popular IDEs aswell as research on developers’ bookmark
usage and code comprehension in general. Moreover, the Mimesis
framework by the University of Bremen’s Software Engineering
Group is introduced. It was developed as an Eclipse plug-in for
recording developer interaction in studies on code comprehen-
sion and provided a basis for the developed automatic bookmark
plug-in.

2.1 Bookmarks

Primitive bookmarks are offered by almost every modern IDE. For
this thesis, a prototypical tool offering experimental automatic
bookmarkswill be implemented as a plug-in for the popular Eclipse
IDE. For this reason, this section analyzes the built-in bookmarks
of Eclipse.

In Eclipse, the item Add Bookmark . . . in the context menu of the
editor’s left margin can be used to add a bookmark to the line at the
mouse cursor’s position. If the user wants to add a bookmark, an
input dialog opens, asking the user to insert a bookmark name—by
default the code line’s content is used as the name (Figure 2.1).

A bookmark is displayed by a stylized ribbon bookmark in the
editor’s margin, left of the line numbers (see Figure 1.1 on page 2),
where they can be removed by Remove Bookmark . . . in the context
menu.

A hideable bookmarks view contains a sortable table displaying a
description (name), the resource (file), class path, as well as the location
in the file (line) for every bookmark. It is possible to change the
bookmark’s description in the table. Go to in the context menu of
the bookmark view’s table allows navigating to the bookmark in
the editor, where the relevant file will be opened.

Bookmarks are associated with a line number. Eclipse recognizes
line changes inside the IDE but not if lines were added or removed
outside.

6 2 Background

Some researchers and third-party developers searching for im-
provements to Eclipse’s bookmark concept havedevelopedplug-ins
allowing to use or assess their approaches in Eclipse. All these
approaches have in common that they solely extend the classic,
manual bookmarking and do not include automatic bookmarks as
proposed by this thesis.

Quick Bookmarks Marian Schedenig developed a third-party
plug-in for Eclipse called Quick Bookmarks (Schedenig n.d.). It
extends the Eclipse bookmarks by adding shortcuts to easily toggle
bookmarks and to navigate between bookmarked lines.

Mesfavoris Anotherplug-inhasbeendevelopedbyCédircChaba-
nois (2018). Mesfavoris enables users to organize bookmarks in
folders and share them via Google Drive among different com-
puters. Moreover, it uses the bitap algorithm for a “fuzzy string
search”, helping the tool to match bookmarks with changed source
files.

Pollicino Researchers from the Delft University of Technology
and the University of Lugano have developed a plug-in offering
“collective” bookmarks. As this plug-in has been developed and
assessed specifically to support program comprehension, it will be
described in detail in Section 2.2.

2.2 Bookmark Usage

Previous studies have focused on developer’s usage of bookmarks
and the improvement of the bookmark concept.

Bookmarks View in Eclipse

During a study on how Java developers are using Eclipse, Murphy
et al. (2006) found only five out of 41 developers using the book-
marks view.

Task Annotations (Storey, Ryall et al. 2008)

In an empirical study exploring the role of task annotations in
the management of (team) tasks, Storey, Ryall et al. (2008) found
that 84% of the surveyed programmers never or rarely use book-
marks. One of the surveyed prefers // TODO annotations rather
than bookmarks because of the better synchronization of textual
comments.

2.2 Bookmark Usage 7

Collective Code Bookmarks (Guzzi et al. 2011)

Guzzi et al. (2011) asked developers in an online survey why they
do not make use of bookmarks. 88% of the respondents reported
that they never or rarely use bookmarks. 50% of those developers
did not even know bookmarks existed, 25% did not find them
useful and 9% stated that creating bookmarks is cumbersome.

The authors also collected qualitative information. One developer
who actually uses bookmarks explained, that he needs bookmarks
when “digging into code.” He also stated: “I must have a way to
track all the jumps that I’m doing.”

Based on the results of their survey, Guzzi et al. developed a tool
called Pollicino which enables developers to share their insights
with other team members. The Eclipse plug-in enables the user
to “micro-document” findings as bookmarks that can be made
accessible to others. The bookmarks are saved in an XML file.

According to Guzzi et al. bookmarks are a form of code document-
ation outside the code which leads to cleaner code. This approach
is contrary to annotations like // TODO and the TagSEA system
presented by Storey, Cheng et al. (2007) which enables the user to
add tags to program elements, helping to navigate through the
project. It is also contrary to literate programming, mainly propag-
ated by Donald Knuth, where source code and documentation in
natural language fuse together to one “work of literature” (Knuth
1984).

The Pollicino bookmarks are characterized by the following fea-
tures:

I Amarker in the editor’s left margin, similar to the bookmarks
deployed with Eclipse.

I A bookmark view displaying for all bookmarks in the work-
space

• a comment that may contain tags,
• the respective resource,
• the position in the resource, as line number,
• the line’s content,
• the author of the bookmark,
• as well as the date and the time of the bookmark’s

creation.

I Moreover, the bookmarks can be grouped and sorted.

To assess their tool, the authors performed a “pre-experimental”
study consisting of a pretest questionnaire, an assignment (coding
in Eclipse with the tool installed), and a posttest questionnaire
followed by debriefing talks. In the pretest part, they asked the

8 2 Background

participants questions about their habits in relation to code com-
prehension tasks. They learned that developers, in order to mark
code locations, insert visually outstanding comments, or introduce
lots of consecutive new lines and even compilation errors—even
though the IDE offers bookmarks which were designed for this
purpose.

Guzzi et al. finally conclude that Pollicino “can be effectively used
to (micro-)document a developer’s findings and that those can be
used by others in her team.” But they also admit that the new tool
has not been effectively used during their study.

2.3 Program Comprehension

Below, a selection of research papers on program comprehension
is presented to reflect the current state of research.

Seeking, Relating, and Collecting Information (Ko et al. 2006)

Ko et al. (2006) asked 31 developers to perform maintenance tasks
in a Java system. Each experiment lasted 70 minutes. Every few
minutes, the participants were interrupted by a program asking
to solve a multiplication problem. By this means, the researchers
wanted to simulate the interruptions commonly occurring in soft-
ware engineering workplaces. The experiments were evaluated by
analyzing screen-captured videos taken from the sessions.

Based on their findings, Ko et al. developed a model, which shall
describe developers’ program understanding. The model is sum-
marized in Figure 2.2. It “describes program understanding as a
process of searching, relating, and collecting relevant information, all
by forming perceptions of relevance from cues in the programming
environment” (ibid.). The researchers explain that developers start
by picking any node, which can be any fragment of information
related to the task. Possibly relevant nodes are related to depend-
ing nodes. If a node turns out to be irrelevant to the task or if
more information is required, the developer visits more related
nodes or even searches for entirely different nodes. All information
necessary to the task is collected, for example, by memorizing or
making a note.

Questions During a Program Change Task (Sillito et al. 2008)

In 2008 Sillito et al. published an article reporting on two qualitative
studies they performed to find out what information programmers
require and how developers find that information. Today, their

2.3 Program Comprehension 9

Search Relate Collect

choose node

no relevant
cues

node is relevant

more infor-
mation needed

enough information
for implementation

navigate to
dependency

return to
visited node

Figure 2.2:Model of program understanding proposed by Ko et al. (drawing inspired by Ko et al. (2006))

(a) Finding focus point

(b) Expanding focus point

(c) Understanding a subgraph

(d) Groups of subgraphs

Figure 2.3: The four categories
defined by Sillito et al. in graphs con-
sisting of linked software entities (in-
spired by Sillito et al. (2008))

model belongs to the most widely accepted models on software
developer’s program comprehension.

During a laboratory-based investigation, the researchers asked
nine participants to make code changes in an open-source project
which was new to them. The participants had to work together
in pairs because the discussion between the so-called “driver,”
editing the source code and the more experienced “observer,” in
each session, was used to learn about the participants’ approaches.
Each session ended with an informal interview.

In an industry-based investigation, 16 developers working for
the same company were observed while working on a real-life,
non-trivial task chosen by themselves. During the session, the
participants were supposed to think aloud. Like in the laboratory-
based investigation, the participants were interviewed informally
afterward.

To identify questions asked by developers, based on audio records
from the sessions, first, a list of specific questions was made. The
researchers then abstracted from the specific versions and determ-
ined 44 types of questions the participants asked during their
observations. These questions were grouped into four categories
which classify the questions by considering the code base as a
graph:

1. Finding focus points: Questions in this category ask for
single elements in the graph (e.g. one method).

2. Expanding focus points: The second category contains ques-
tions asking for other entities directly linked to a given “focus
point” (e.g. where a specific type is used).

3. Understanding a subgraph: This category contains ques-
tions asking for the behavior of entire subgraphs, i.e. how
related entities in the graph work together.

4. Questions over groups of subgraphs: Finally, questions of
the fourth category ask for the relations of subgraphs.

10 2 Background

In their paper, Sillito et al. do not claim these categories constitute
a step-by-step instruction all developers follow in a strict gradual
manner. Instead, the categories are based on the questions’ scopes.
Nevertheless, there might be scenarios where a developer starts by
searching for any focus point, which is then expanded more and
more in order to end up with a broad mental image of the code in
question—especially if the programmer knew little about the code
in advance.

The researchers also investigated the tool support for answering
each of the 44 questions. They found that questions from the first
two categories are fully covered by various tools, while most of
the questions dealing with subgraphs are only partially covered
by existing tools.

Foraging Diets (Piorkowski et al. 2013)

By analyzing nine screencasts collected in a previous study, Pi-
orkowski et al. (2013) investigatedwhat programmers are searching
for during a debug task (“diets”) and how they try to get this inform-
ation (“foraging”). Their work is based on the Information Foraging
Theory (IFT) (Pirolli and S. Card 1999) which uses a biologically
inspired wording (Piorkowski et al. 2013):

“In IFT, a predator (person seeking information) pur-
sues prey (valuable sources of information) through
a topology (collection of navigable paths through an
information environment)”.

Piorkowski et al. found that developers search for highly diverse
information, even if they share the same goal (like fixing the same
bug). Moreover, their participants spent only 24% of their time
navigating between different locations and sources of information
(“between-patch foraging”). Lastly, they found that developers do
not necessarily consider the costs and benefits of their foraging
(ibid.):

“The participants’ sometimes stubborn pursuit of par-
ticular information goals—tolerating very high costs
even when their efforts showed only meager promise
of delivering the needed dietary goal.”

Comprehension of Professional Developers (Roehm et al. 2012)

Roehm et al. (2012) conducted a qualitative study with 28 parti-
cipantswhoworked for softwaredevelopment companies. Students
and researchers were explicitly excluded from the study to ensure
the results reflect industry practice. Roehm et al. wanted to know

2.4 Mylar/Mylyn (Kersten and Murphy 2005) 11

which comprehension strategies developers follow, which sources
of information they use, and which information they miss. They
also wanted to investigate developers’ tool usage with regard to
comprehension tasks.

As the researchers wanted to gain realistic results, they allowed the
participants to choose a task from their real work instead of giving
a predefined and constructed assignment to them. The developers
were observed for 45 minutes while they were working on their
tasks and commented on what they were doing (“think-aloud
method”). The observations were followed by semi-structured
interviews.

Inmany sessions, the authors observed recurring strategies, though
these strategies varied among the developers. Roehm et al. also
found that none of the observed developers used tools dedicated
to program comprehension (such as visualization or metric tools).
In their paper, the researchers speculate about possible reasons
for this “gap” between academic research and industry practice
(ibid.):

“a) research results and their benefits being too abstract
for industry,

b) lack of knowledge about available tools among prac-
titioners,

c) fear of familiarization effort and lack of trust in new
tools, or

d) that using new tools requires too much training for
practitioners”

Like Guzzi et al. in 2011, Roehm et al. also found that some
developers do not know standard functions in their IDEs (like the
Reference feature in Eclipse). The researchers suggest educating
software developers to use their tools efficiently and to use research
results for developing tools that provide filtered information based
on the user’s current activity. Subsection 2.4 will introduce an
example for such a task-oriented Eclipse extension.

2.4 Mylar/Mylyn (Kersten and Murphy 2005)

Kersten and Murphy (2005) have presented an approach related to
the automatic bookmark concept. They integrated their model into
a task-focused Eclipse plug-in calledMylar, which is now known
asMylyn (Eclipse Foundation 2020).

The plug-in contains a degree-of-interest (DOI) model inspired by
the work of S. K. Card and Nation (2002). Kersten and Murphy
describe their DOI model as follows:

12 2 Background

“The Mylar model associates an interest value with
each Java or AspectJ program element. When a pro-
gram element is selected or edited, its DOI value in-
creases. Over time, if the element is not selected or
edited, its interest value decays.”

Each selection of an element not just causes an increase of the
associated DOI value but also a decrease of all other elements,
which is meant by “interest value decay.” Elements with a negative
DOI are considered uninteresting, elements with a value ≤ −10
are removed from the model to save memory.

The researchers developedmultiple viewswhich give Eclipse users
access to the DOI model. The views are shown in Figure 2.4. Most
of the views are advanced versions of existing Eclipse views:

1. A Package Explorer with interest-based filtering, showing
only the files that are relevant to the current task.

2. As the standard problem list usually shows a large number
of compiler warnings, Mylar’s Problems List uses the DOI
model to highlight the currently relevant problems.

3. In contrast to its counterpart in the standard Eclipse interface,
the Outline window in Mylar only shows the members
related to the task.

4. Moreover, Mylar contains an AspectJ-related view using the
DOI model, the Pointcut Navigator.

The authors evaluated their tool by asking developers to use
Mylar for their daily work and conclude that the plug-in can help
programmers reducing the time searching for locations. Chapter 3
will define a new DOI model inspired by the approach proposed
by Kersten and Murphy. Instead of rating program elements, the
automatic bookmarkmodel rates lines in the source files, leading to
a similar but alternative concept as the markings are not restricted
to the structure of the source code.

2.5 Mimesis

The Software Engineering Group at the University of Bremen
developed an Eclipse plug-in called Mimesis as part of a project
performing fundamental research on program comprehension,
funded by the German research foundation DFG. The tool allows
recording user interaction events occurring in Eclipse. When the
recording is stopped, the events are saved in an XML file. Table 2.1
lists the events recorded by Mimesis. The categories grouping the
table are loosely based on Proksch et al. (2018). Mimesis’ core logic
has been reused in the tool developed for this thesis, which will be
described in the next chapter.

2.5 Mimesis 13

Figure 2.4: The Mylar interface (Kersten and Murphy 2005)

Figure 2.5: Visualization of interaction data collected by Mimesis

14 2 Background

Table 2.1: Events recorded by
Mimesis. The grayed-out event types
do not denote events generated by Ec-
lipse itself but by the plug-in which
offers the recording of text and speech
comments for evaluation purposes.
These event types are definitely not
eligible for an automatic bookmarks
tool

Name Trigger

Event General event (base class)

Activity

Recording A recording has been started or stopped
Scroll The user scrolled inside the editor
TextSelection Text has been selected

Build

Launch Project is run or debugged
Debug Debugging related event, i.e. a breakpoint

set/hit, a manual break or a manual step
inside of a debugged program

Edit

CodeChange Code in the IDE has been changed
TextComment Developer added a comment
CodeCompletion Code completion was used
VoiceComment An audio comment has been added

Environment

Editor Event specific to an editor window
View View is opened/closed, or focus has

changed within the IDE
Perspective Perspective is changed or opened
Window Focus of the IDE has changed

Navigation

TreeViewer Elements in the navigation viewhave been
collapsed or expanded

TreeSelection Element in a tree view has been selected
EditorMouse Mouse actions, like clicking or moving
Search Search query has been conducted
EditorTextCursor Text cursor has been moved to another

position

Solution

File Event related to a single file
Project Project has been loaded or removed
Resource Afile has been created, deleted or changed
Save A file has been saved

Automatic Bookmarks 3
3.1 Requirements 15

Reference Use Case 15
Meaningful Interaction . 16

3.2 DetectingRegions of Possible
Interest 18

Data 18
Analysis 19
Aggregating Regions . . . 24

3.3 Specification 25
3.4 Checking the Automatic
Bookmark Model 26
3.5 User Interface 29

Bookmarks 29
Tracks 30
DOI 30

This chapter focuses on the development of the automatic book-
mark model and its implementation.

3.1 Requirements

A prototypical tool offering experimental automatic bookmark
functionality had to be implemented as a plug-in for the popular
Eclipse IDE. Eclipse was chosen because it allowed reusing parts
of the Mimesis system (see Section 2.5), developed by the Software
Engineering Group. Technically it would have been possible to
develop the plug-in also for other popular IDEs written in Java,
such as IntelliJ and NetBeans, but probably that would have gone
beyond the scope of this master thesis, regarding the required
expenditure of time.

A reference use case helped in answering the first research question
RQ1. It describes a generic comprehension task in an Eclipse envir-
onment the plug-in is intended to assist in. The use case diagram
in Figure 3.1 integrates all aspects of the outlined approach.

Reference Use Case

In an existing software system, a developer wants to change or
extend functionality, which may be part of fixing a bug. In the
beginning, the developer does not know the location or other
characteristics of the intended change. Maybe the developer is even
working on the software system for the first time.

As assumed by Sillito et al. (2008) the developer starts foraging
by more or less randomly picking a focus point. By expanding
this focus point the search for key code locations is pursued.
The developer browses the files and discontinuously reads code
sections. Depending on system complexity and target environment,
the program may also be executed. Maybe the developer also edits
the code between executions by changing values, deactivating
parts of the systems by commenting, or adding print statements
for debugging purposes. These activities will be carried out until
the entire task is completed.

16 3 Automatic Bookmarks

Eclipse IDE
Eclipse IDE

Software developer

Fix bug
(defect unknown)

Change or extend
functionality

Identify key
code location(s)

Browse code
Execute

Edit

Read

�extends�

�include�

�include�

�include� �include�

�include�

�include�

�include�

temporary edits to
analyze system be-
havior at runtime

temporary edits to
analyze system be-
havior at runtime

Figure 3.1: UML use case diagram depicting the reference use case the developed plug-in shall assist

One can assume that developers do not approach the key location
in a strict target-oriented manner. Possibly there will be multiple
visits to the same location during the comprehension process. At
least the following two cases are imaginable:

a) While browsing, the essential code area is visited, though
the developer does not recognize it yet. The developer will
move on but finally return.

b) The developer finds the essential code area but without
knowing exactly what changes have to be applied. The
comprehension taskwill continue, but now in reference to the
key location already identified. For example by descending
into the call hierarchy of methods. The developer will return
to the key location over and over again until the task is
completed.

Meaningful Interaction

Piorkowski et al. (2013) found that developers stubbornly pursue
very specific information goals. The reference use case assumes
a developer wants to return to locations that have been visited
before. For example, because a location combines multiple hints to
very different program parts that have to be examined one after
another in order to find the relevant information.

Such key locations should be emphasized by an automatic book-
mark tool, which is why it has to detect recurrent visits to the same
locations. Moreover, it has to find locations that stand out because
of accumulative code changes and execution events occurring in
the location context. A lot of interaction in the same area will
probably characterize a location with a special meaning to the
developer.

3.1 Requirements 17

Event Reason

Event Too general
Recording Mimesis event
TextComment Mimesis event
VoiceComment Mimesis event
Project Out of scope
Save Any changes have been recorded by other

events already

Table 3.1:Event types recorded by the
framework that can be ignored from
the outset as in all likelihood they do
not carry any information relevant to
the automatic bookmarks designed
in this thesis

Which of the events recorded by the Mimesis framework can be
used to gather the information outlined above?

The events listed in Table 3.1 do not have to be taken into account.
They have technical reasons or do not occur within the plug-in’s
scope. The table gives a reason for every ignorable event type.

From the remaining event pool, the following events have been
selected for being processed by the prototypic automatic bookmark
plug-in. They cover most aspects of the three core activities given
by the reference use case: browse and read, edit, and partially
execute (by analayzing debug events).

Viewport The code lines currently displayed to the Eclipse user
can be detected by Scroll events as well as by view or editor
specific event types. As Mimesis also offers access to the current
EventContext at any time, a periodical time-discrete recording of
the current viewport is possible as well. Such a recording would
not just register occurring events but—without further processing—
also detect periods without any interaction, which may indicate a
phase of intense reading.

In addition to a line-based recording rather than an evaluation of
program elements like entire methods, this approach would be
another advantage over the one suggested by Kersten and Murphy
(2005). As already mentioned in Subsection 2.4, Mylar increases
its degree-of-interest values whenever the developer interacts
with any program element. In Mylar, an interaction event is also
necessary to trigger the “periodic” decay, which downgrades the
DOI value of all other program elements. If the developer just
looks at the currently displayed code lines for a while, DOI values
are neither increased nor decreased.

Text selection TextSelection events can refine the viewport
information providing the plug-in’s model with information on
interesting lines or even only parts of them.

18 3 Automatic Bookmarks

Code changes Changes in files will be recorded by CodeChange

events. Typing will lead to a single change event for every character.
Whereas pasting copied text is represented by only one event
instance.

Debug Debug events such as the creation of breakpoints.

Plug-in Interaction with the plug-in itself should be recorded as
well to detect breaks in the actual comprehension task.

Conclusion The following list contains the events that will be
processed by the plug-in. It answers RQ1 which asks for the events
eligible for the creation of automatic bookmarks.

I Permanent monitoring of the viewport,
I combined with the recording of TextSelection events.
I Evaluation of CodeChange events to detect changes, including

automated changes like code completion or code generation.
I Debug events.
I Recording of the user’s interaction time with the plug-in.

3.2 Detecting Regions of Possible Interest

Approaching RQ2, an automatic-bookmark model had to be de-
veloped. This model had to define rules for detecting those regions
in the browsed source code that might be relevant to the developer
and therefore shall be bookmarked.

Data

The analysis leading to the automatic bookmark model was based
on a set of Mimesis recordings collected by the Software Engineer-
ing Group prior to the work related to this thesis. Not all available
datasets could be used as the recording tool still was subject to
heavy changes during those early recordings, which resulted in
some erroneous or incomplete recordings. The author of this thesis
also participated in the outlined study. As this happened before
the work at this thesis officially started, without much research on
automatic bookmarks or code comprehension done, this dataset
became part of the bookmark analysis.

For the recordings, academic software developers, students and
university staff members, were asked to edit the source code of an
example originally published by Oracle. The code implements a

3.2 Detecting Regions of Possible Interest 19

Figure 3.2: Different states of the
Weather Wizard’s UI

Table 3.2: Time each participant
spent on the Weather Wizard task.
The gray row contains the participant
with the median time

Participant Time [h:m:s]

e 0:15:30
f 0:16:42
b 0:16:46
d 0:18:26
c 0:36:50
a 0:38:28
g 2:16:39

tiny Java Swing application calledWeather Wizard. The code defines
a window with a slider allowing the user to select a temperature.
Changing the slider updates a text label and some images. Figure
3.2 shows some states of the Weather Wizard’s frame. The entire
source code is part of the same class file.

The participants’ task was to change the slider’s unit from degree
Fahrenheit to degree Celcius. Table 3.2 contains for each participant
the time spent on this task.

Analysis

Assuming that the user is interested in those code sections, where
many events occurred or that the developer viewed often or for
long periods, a new ‘degree of interest’ (DOI) has been defined.
This DOI is inspired by the DOI by Kersten and Murphy (2005),
but uses a line-based approach. In contrast to the Mylar approach
it is not limited to program elements.

Moreover, the DOI does not only respond to actual events resulting
from the developer’s interaction with the IDE, but also integrates
the editor’s viewport—even when it is not changing. Therefor,
the Mimesis framework has been extended by a ViewportEvent,
which the automatic bookmarks logic generates in steps of 250
millisecond for the currently visible lines in the editor.

20 3 Automatic Bookmarks

Figure 3.4: Exemplary development of line visit durations. The diagrams show the data from the “d” recording in two
minute steps, starting two minutes after WeatherWizard.java has been opened for the first time

3.2 Detecting Regions of Possible Interest 21

Event

ViewportEvent

+ begin : int
+ end : int

Figure 3.3: A ViewportEvent has
been added to Mimesis allowing to
record the currently displayed lines
and process these information in the
DOI model just like the events actu-
ally caused by the user

The software system developed for this thesis includes a simulator
allowing to use XML recordings generated by Mimesis to simulate
the behavior of the plug-in logic, or just parts of it. Instead of
expecting events generated by a running Eclipse instance it feeds
the events from the record file to the DOI model. This simulator
helped assessing the final model prior to the experiments with
developers (see Section 3.4). But it was already utilized in earlier
steps of the development. Using the simulator, the DOI model was
used to generate data for different visualizations of the Weather
Wizard sessions that helped to define the plug-in’s logic based on
real developer behavior. The plots were created by Python scripts,
based on the simulator’s outputs.

Time Lapse

First, the DOI’s development over time generated from Viewport-

Events and TextSelectionEvents has been explored to gain in-
formation on the developers’ approaches. Figure 3.4 on page 20f.
shows some frames of one recording.1 Analyzing the visualizations,
the following observations have been made:

Developers tend to first scroll down the entire document for
getting an overview, without spending too much time at one
certain position. Similar to the assumptions made by Sillito et al.
(2008), this first inspection is followed by picking a ‘focus point.’
In the DOI plots, this is characterized by a rising ‘peak’ exceeding
the gauge of the initial inspection. The developer might change the
focus, which leads to other peaks in the diagram. Developers also
alternately switch between major peaks, which indicates that the
developer is working on different sections that are in some way
linked to each other.

This is a pattern that, in fact, could be assisted by automatic
bookmarks, providing easy access to the relevant sections.

Visits

To gather more information on how the peaks come about, another
plot type was developed. It visualizes the visit durations for each
line by giving the visits in each bar different colors. A visit is a
series of DOI increases caused by a series of consecutive events.
Between two visits lies a time gap during which the respective
line was not visible in the editor. The gap must be larger than 250
milliseconds, the interval between the viewport captures.

1 The recording of participant d has been chosen as an example for this document
as it is the one with the median recording time.

22 3 Automatic Bookmarks

Figure 3.5: Visit durations per line in WeatherWizard.java. Different colors in one bar indicate independent visits of the
respective line. In the diagrams in the right columns (“. . . -_exclusive”), visits during which the test person edited the line
have been removed to reveal peaks that resulted from viewing only

3.2 Detecting Regions of Possible Interest 23

24 3 Automatic Bookmarks

(a) Each bar represents the DOI of a line in an example
file. ‘Peaks’ are considered interesting

(b) The line with the maximum DOI is identified. An
automatic bookmark is created for that line

(c) During further iterations, areas around bookmarked
maxima are not considered again

(d) If two lines have the same DOI, the one with the lower
line number will be considered, first2

Figure 3.6: Bookmarking with the masking approach

An alternative version of this plot only contains the visits that did
not include any edits. This allows finding peaks that did not just
result from code changes (which, in most cases, require visiting
the respective lines). Figure 3.5 on page 22f. contains the plots.

The plots show that developers do visit multiple locations multiple
times—especially those they ended up editing. Moreover, as the
largest peaks do not appear in the ‘exclusive’ plots in an identical
form, they always contained visits used to edit.

Aggregating Regions

The analysis showed that bookmarking peaks in the DOI model
might lead to a serviceable automatic bookmark tool. Hence, a
method had to be found for aggregating regions with high DOI
values. Two alternative methods were considered: masking and
damping.

Masking

The first method searches for a file’s maximum DOI and adds a
bookmark for the respective line. Then, a region including A lines
above the bookmark and A line below the bookmark’s position is
banned from the search of the following iterations.

2 This is a design decision with no specific reasons. Further versions might
analyze the contents of the code lines and choose a line based on its features.

3.3 Specification 25

The ‘radius’ A is given by the number of currently visible lines in the
editor divided by two. This procedure is applied = times or until
the entire file is masked by the algorithm, meaning that no more
bookmarks, of the particular type, can be created. Algorithm 1
shows the pseudocode of this approach. Figure 3.6 gives a detailed
example of this method.

Algorithm 1: Aggregation of DOI maxima with masking
foreach DOI-rated file do

for 8 ← 1 to = by 1 do
identify line with maximum DOI;
create bookmark for the identified line;
block region of radius A around bookmark position
for maximum searches in further iterations;

Damping

The second approach works quite similar to the masking method.
But instead of banning the bookmarked region from the maximum
search of further iterations, the DOI values of the lines in the
area will just be decreased by the region’s median. Thus, already
bookmarked regions might be considered for further bookmarks if
they still exceed the remaining peaks. Actually, peaks with very
large values will not be marked multiple times, but the fact that
less than = bookmark were created will indicate towering peaks in
the model. Algorithm 2 shows this method in pseudocode.

Algorithm 2: Aggregation of DOI maxima with damping
foreach DOI-rated file do

for 8 ← 1 to = by 1 do
identify line with maximum DOI;
create bookmark for the identified line;
decrease all values in region of radius A around
bookmark position by the region’s median;

3.3 Specification

Summing up the thoughts and assumptions from the previous
sections, this list contains specifications for the automatic bookmark
model implemented in the Eclipse plug-in:

I A DOI will be continuously computed for each line in the
source code. The value is increased by 1 whenever a relevant
event occurs.

26 3 Automatic Bookmarks

1 /*
2 * Copyright (c) 1995, 2008, Oracle and/or its affiliates. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification , are permitted provided that the following conditions
6 * are met:
7 *
8 * - Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.

10 *
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * - Neither the name of Oracle or the names of its
16 * contributors may be used to endorse or promote products derived
17 * from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO,
21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT , INCIDENTAL , SPECIAL,
24 * EXEMPLARY , OR CONSEQUENTIAL DAMAGES (INCLUDING , BUT NOT LIMITED TO,
25 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 * LIABILITY , WHETHER IN CONTRACT , STRICT LIABILITY , OR TORT (INCLUDING
28 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 * SOFTWARE , EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32
33 import java.awt.*;
34 import java.awt.font.FontRenderContext;
35 import java.awt.geom.Rectangle2D;
36 import java.awt.image.*;
37 import java.net.URL;
38 import javax.imageio.ImageIO;
39 import javax.swing.*;
40 import javax.swing.event.*;
41
42 public class WeatherWizard extends Panel implements ChangeListener {
43
44 private static final long serialVersionUID = 1L;
45 WeatherPainter painter;
46
47 Temperature.Unit unit;
48
49 public WeatherWizard(Temperature.Unit unit)
50 {
51 this.unit = unit;
52 }
53
54 public void init() {
55 /* Turn off metal's use of bold fonts */
56 UIManager.put(“swing.boldMetal“, Boolean.FALSE);
57 }
58
59 public void start() {
60 initComponents();
61 }

1

62
63 public static void main(String[] args) {
64 JFrame f = new JFrame(“Weather Wizard“);
65 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
66
67 boolean fahrenheit = false;
68 WeatherWizard ap = new WeatherWizard(fahrenheit ? Temperature.Unit.IsFahrenheit : Temperatu

re.Unit.IsCelsius);
69 ap.init();
70 ap.start();
71 f.add(“Center“, ap);
72 f.pack();
73 f.setVisible(true);
74 }
75
76 private BufferedImage loadImage(String name) {
77 String imgFileName = “images/weather-“+name+“.png“;
78 URL url = WeatherWizard.class.getResource(imgFileName);
79 BufferedImage img = null;
80 try {
81 img = ImageIO.read(url);
82 } catch (Exception e) {
83 }
84 return img;
85 }
86
87 public void initComponents() {
88
89 setLayout(new BorderLayout());
90
91 int initialValue = toValue(65);
92 int min = toValue(20);
93 int max = toValue(100);
94 int minorTicks = 5;
95
96 Temperature initialTemperature = unit == Temperature.Unit.IsFahrenheit ?
97 new Fahrenheit(initialValue)
98 : new Celsius(initialValue);
99

100 JPanel p = new JPanel();
101 p.add(new JLabel(“Temperature:“));
102 JSlider tempSlider = new JSlider(min, max, initialValue);
103 tempSlider.setMinorTickSpacing(minorTicks);
104 tempSlider.setMajorTickSpacing(minorTicks * 4);
105 tempSlider.setPaintTicks(true);
106 tempSlider.setPaintLabels(true);
107 tempSlider.addChangeListener(this);
108 p.add(tempSlider);
109 add(“North“, p);
110
111 painter = new WeatherPainter(initialTemperature);
112 painter.sun = loadImage(“sun“);
113 painter.cloud = loadImage(“cloud“);
114 painter.rain = loadImage(“rain“);
115 painter.snow = loadImage(“snow“);
116 painter.setTemperature(initialTemperature);
117 p.add(“Center“, painter);
118 }
119
120 private int toValue(int fahrenheitValue) {
121 return unit == Temperature.Unit.IsFahrenheit ?

2

122 fahrenheitValue
123 : Temperature.fahrenheitToCelsius(fahrenheitValue);
124 }
125
126 public void stateChanged(ChangeEvent e) {
127 JSlider slider = (JSlider)e.getSource();
128 painter.setTemperature(toTemperature(slider.getValue()));
129 }
130
131 private Temperature toTemperature(int value) {
132 switch (unit)
133 {
134 case IsFahrenheit:
135 return new Fahrenheit(value);
136 case IsCelsius:
137 return new Celsius(value);
138 default:
139 throw new RuntimeException(“Unhandled unit: + unit);
140 }
141 }
142 }
143
144 abstract class Temperature {
145
146 enum Unit {
147 IsFahrenheit,
148 IsCelsius
149 }
150
151 // measure in Fahrenheit
152 protected int value;
153
154 protected Temperature(int value)
155 {
156 this.value = value;
157 }
158
159 public int inCelsius()
160 {
161 return fahrenheitToCelsius(value);
162 }
163
164 public static int fahrenheitToCelsius(int value) {
165 return (int)Math.round(((float)value - 32.0) * 5.0/9.0);
166 }
167
168 public static int celsiusToFahrenheit(int value) {
169 return (int)Math.round(value * 1.8 + 32);
170 }
171
172 public int inFahrenheit()
173 {
174 return value;
175 }
176
177 public boolean LessOrEqual(Temperature temperature) {
178 return value <= temperature.value;
179 }
180
181 public float Minus(Temperature temperature) {
182 return value - temperature.value;

3

183 }
184
185 public static Temperature freezing = new Fahrenheit(32);
186 public static Temperature freezingToCold = new Fahrenheit(40);
187 public static Temperature cold = new Fahrenheit(50);
188 public static Temperature coldToCool = new Fahrenheit(58);
189 public static Temperature cool = new Fahrenheit(65);
190 public static Temperature warm = new Fahrenheit(75);
191 }
192
193 class Fahrenheit extends Temperature {
194
195 public Fahrenheit (int value)
196 {
197 super(value);
198 }
199
200 Override
201 public String toString()
202 {
203 return value + “F“;
204 }
205 }
206
207 class Celsius extends Temperature {
208
209 public Celsius(int value)
210 {
211 // canonical representation is Fahrenheit; must convert
212 super(celsiusToFahrenheit(value));
213 }
214
215 Override
216 public String toString()
217 {
218 // canonical representation is Fahrenheit; must convert
219 return fahrenheitToCelsius(value) + “C“;
220 }
221 }
222
223 class WeatherPainter extends Component {
224
225 private static final long serialVersionUID = 1L;
226
227 public WeatherPainter(Temperature initialValue)
228 {
229 temperature = initialValue;
230 }
231
232 Temperature temperature;
233
234 String[] conditions = { “Snow“, “Rain“, “Cloud“, “Sun“};
235 BufferedImage snow = null;
236 BufferedImage rain = null;
237 BufferedImage cloud = null;
238 BufferedImage sun = null;
239 Color textColor = Color.yellow;
240 String condStr = ““;
241 String feels = ““;
242
243 Composite alpha0 = null, alpha1 = null;

4

Figure 3.7: The outputs of the book-
mark simulations have been trans-
lated into source code listings with
colored text marks for the bookmark
regions

Table 3.3: Numbers of insertions (+)
and deletions (-) in the Weather Wiz-
ard class file for each participant

Part. + - Sum

1 f 11 3 14
2 a 15 5 20
3 d 17 17 34
4 e 25 17 42
5 b 27 19 46
6 c 54 16 70
7 g 157 49 206

I The DOI will be computed separatley in the following four
categories:

• Viewport, based on occurrences of ViewportEvent and
TextSelectionEvent

• Edit, based on occurrences of CodeChangeEvent
• Debug, based on DebugEvent occurrences
• Default, based on all events of the other categories

together (ViewportEvent, TextSelectionEvent, Code-
ChangeEvent and DebugEvent)

I Automatic bookmarks will be created for the regions around
the current DOI maxima in the source files. The regions will
be selected by the two alternative methods described above,
masking and damping. New maxima will cause the creation
of new bookmarks and the destruction of obsolete ones to
comply with the number of maximum bookmarks per file
and type =.

3.4 Checking the Automatic Bookmark Model

Using the simulator already mentioned in Subsection 3.2, the
implemented model has been pre-evaluated prior to the final
study described in Chapter 4. Again, the existing recordings a to
g were used. The simulation was performed with the maximum
number of bookmarks for each file and category set to one, five,
and ten bookmarks (= = {1, 5, 10}). Also, for each participant and
each =-parametrization, both the mask and the damp mode were
simulated.

Only the bookmarks existing at the end of the simulated session
were reviewed—with regard to the final code version. Of course,
the simulator can retrace the bookmark history. However, even
though the recordings contain all code change events, by the time
the simulation was done, no tool existed in the Mimesis framework
allowing to restore a source code version from the event history.
Without the source code version of the time a bookmark was
created, it is difficult to decide whether the bookmark makes sense
or not.

First, the numbers of generated bookmarks in each simulation
were examined and checked for plausibility. Table 3.4 shows the
data for all simulations. For all recordings, the = = 1 configuration
led to one bookmark—except in the Debug category as only the
work of participant c resulted in a Debug bookmark. As he only
toggled one holding point, in all configurations an equal bookmark
was created. The damp mode always created fewer or as many
bookmarks as the mask mode with the same record and =, but

3.4 Checking the Automatic Bookmark Model 27

Table 3.4: Numbers of generated bookmarks in the final states of the simulations for each participant and configuration

(a) Default

= = 1 = = 5 = = 10
mask damp mask damp mask damp

a 1 1 5 5 10 6
b 1 1 5 5 10 5
c 1 1 5 5 10 7
d 1 1 5 2 10 2
e 1 1 5 5 10 8
f 1 1 5 2 10 2
g 1 1 5 5 10 5

(b) Viewport

= = 1 = = 5 = = 10
mask damp mask damp mask damp

a 1 1 5 4 10 4
b 1 1 5 4 10 4
c 1 1 5 5 10 7
d 1 1 5 5 10 5
e 1 1 5 5 10 10
f 1 1 5 2 10 2
g 1 1 5 5 10 10

(c) Edit

= = 1 = = 5 = = 10
mask damp mask damp mask damp

a 1 1 5 1 6 1
b 1 1 5 1 10 1
c 1 1 5 1 10 1
d 1 1 5 1 6 1
e 1 1 5 1 10 1
f 1 1 5 1 3 1
g 1 1 5 2 10 2

(d) Debug

= = 1 = = 5 = = 10
mask damp mask damp mask damp

a 0 0 0 0 0 0
b 0 0 0 0 0 0
c 1 1 1 1 1 1
d 0 0 0 0 0 0
e 0 0 0 0 0 0
f 0 0 0 0 0 0
g 0 0 0 0 0 0

never more. As expected, checking random samples indicated
that the = = 1 sets were subsets of the = = 5 sets, which were
again subsets of the = = 10 sets (Table 3.5). Moreover, the damp
sets were subsets of the mask sets. The implementation does not
allow multiple bookmarks of the same type in the same line. This
explains why the damp mode often created fewer bookmarks than
the mask mode.

The Edit simulations for = = 10 and mask mode, for example,
showed another irregularity. Three of the simulations created far
less than ten bookmarks. To investigate such abnormal behavior,
a Python script was written to transform the simulator’s output
into LATEX-based source code listings, with each bookmark region
colored differently (see Figure 3.7). This process resulted in 132
PDF files, each containing the bookmarks for a single configuration
(recording/participant, =, type, mask/damp mode). In connection
with the outputs of the Unix tools diff and diffstat, it turns out,
that those participants a, d, and f only introduced a few changes
actually, which is the reason why the algorithm was not able to
generate 10 bookmarks. For example, participant f only changed
three existing lines and just added two methods. Table 3.3 contains
a sorted list of the change sums in ascending order.Not surprisingly,
a, d and f cover the first three ranks.

28 3 Automatic Bookmarks

Table 3.5: Generated bookmarks for two randomly chosen participants. Each entry denotes the line number associated with
the respective bookmark

(a) Participant a

Default Viewport Edit Debug
= mask damp mask damp mask damp mask damp

1 92 92 95 95 92 92

81 81 81 81 112
112 112 105 105 149
123 123 119 119 189

5 189 189 187 202

171 171 69 123
69 129
135 149
149 171

10 199 197

(b) Participant c

Default Viewport Edit Debug
= mask damp mask damp mask damp mask damp

1 261 261 258 258 263 263 187 187

97 97 174 174 45
114 114 193 193 97
179 179 240 240 123

5 242 242 275 275 179

200 200 96 96 159
278 278 114 114 140
65 65 197
131 131 245

10 160 148 288

In the same way, the created toolset could be used to check the
bookmarks generated by the damping method. Eventually, the
analysis led to the assumption that the implementation of the
automatic bookmark model works according to its specification.
Section 3.5 will present the user interface of the plug-in giving
Eclipse users access to the automatic bookmark model. The devel-
opment of the plug-in allowed to finally assess the model not just
in a simulation but in experiments with real developers.

3.5 User Interface 29

Figure 3.8: Different markers in Ec-
lipse. From top to bottom: Error,warn-
ing, breakpoint and (built-in) book-
mark

Figure 3.9: An automatic bookmark

3.5 User Interface

Even a perfect automatic bookmark model would be useless
without an interface enabling developers to make use of the collec-
ted data. This section gives a brief introduction to the graphical
user interface of the developed plug-in. The plug-in not just adds
automatic bookmarks as markers and highlights to the code ed-
itor but also offers a view with different tabs containing detailed
information. Figure 3.11 provides an overview of the plug-in’s
components visible to the user.

Regarding the implementation of the user interface, this thesis
does not go into specifics. For technical details, please consult
the source code on the attached CD-ROM. Most elements contain
Javadoc comments.

Bookmarks

Editor

In the Editor, automatic bookmarks are displayed by a marker
next to the line numbers, just as built-in markers, like ‘classic’
bookmarks.3 Besides, the entire region belonging to the bookmark
is highlighted by a colored text marker, which is applied to the
source code in the respective lines. This marker type also adds
colored bars next to the scroll bar allowing to find all bookmarked
regions at one glance, without scrolling through the document.

View

A table in the plug-in’s view lists all automatic bookmarks.4 It can
be sorted with respect to each of the columns. The table is made
up of the following columns:

I Rank:5 The rank based on the DOI for the respective file and
the bookmark type (1 · · · =).

I DOI: The DOI at the time, the bookmark was created.
I Type: The bookmark’s type (Viewport, Edit, etc.).
I Ressource: The (source) file containing the bookmark.
I Line: The line the bookmark is associated with.

3 Flatt and Maison (2011) wrote a short but helpful introduction to the imple-
mentation of custom Eclipse markers.

4 The view can be opened by navigating to Window Show View Other. . .
Automatic Bookmarks and selecting the Automatic Bookmarks view.

5 This column has been introduced to replace the DOI column in the experiments.
Thus, the participants were able to sort the bookmarks by significance without
having told what ‘DOI’ means. See for details.

30 3 Automatic Bookmarks

Figure 3.10: Audio tracks in the free audio editor Audacity. The visualization of the user’s navigation in the automatic
bookmark plug-in has been inspired by the typical track visualization of audio editing software

I Element: The program element containing the bookmark
(for example, a class, method, or constant).

I Content: The line’s content.

A configuration panel at the view’s bottom allows the user to
configure the plug-in. By unchecking checkboxes, entire bookmark
categories can be hidden. Also, the number of bookmarks per file
(=) can be increased or decreased, and the user can decide whether
the plug-in shall apply the mask or the damp method. The panel
is not part of the tabbed view, and hence it is visible and editable
whenever the view is visible, regardless of the selected tab.

Tracks

The ‘tracks’ visualization is inspired by the interface commonly
found in audio editing software, featuring a stack of audio tracks
that can be composed (see Figure 3.10 for an example). In terms of
automatic bookmarks, each ‘track’ represents a source file. Instead
of a sound signal, the track shows the visible code range over
time. Thus, users can retrace their journeys through the project.
Hovering on the tracks will load the excerpt visible at the selected
time to a preview window next to the track panel.

DOI

The user interface also allows inspecting the raw DOI data in a bar
chart with the line numbers on the x-axis and the corresponding
DOI on the y-axis.

3.5 User Interface 31

(a) Automatic bookmarks appear as green markers in the editor’s left margin. A reddish shadow in the source code marks
the region belonging to the bookmark. A sortable table in the Automatic Bookmark view lists all automatic bookmarks
currently visible in the project

(b) The ‘Tracks’ tab shows the user’s scroll behavior. The gray areas represent the source code excerpt visible in the editor at
the respective time. Green dots indicate the creation of an automatic bookmark (only the current bookmarks are shown)

(c) Another tab shows the DOI raw data

Figure 3.11: The plug-in’s user interface: Automatic bookmarks are displayed in the editor; a view provides more detailed
information in three tabs, with a configuration panel offering controls for filtering, etc., visible no matter what tab is selected

Table 4.1: Limits of the Linux server
according to ulimit -a

Parameter Value

core file size (blocks) 0
data seg size ∞
scheduling priority 0
file size (blocks) ∞
pending signals 1 545 097
max locked memory 16 384 kB
max memory size ∞
open files 1024
pipe size (512 bytes) 8
POSIX message queues 819 200 B
real-time priority 0
stack size 8 192 kB
cpu time ∞
max user processes 62 987
virtual memory ∞
file locks ∞

Evaluation 4
4.1 Method 33

Environment 33
Task 34

4.2 Results 37
Demographic Characteristics

and Experience 38
Bookmark Usage 39
Posttest Results 40

In an attempt to finally answer the research questions, a series
of controlled experiments with software developers have been
conducted. This chapter explains the method and discusses the
results.

4.1 Method

Environment

To spare the participants an error-prone installation of the plug-in
but to still allow remote participation, a terminal server was set
up. The terminal server ran on a Linux VServer providing an 8
vCore CPU and 32 GB RAM guaranteed with Ubuntu 18.04.5 LTS
installed. The server was hosted in Germany.

Each participant was given access to an individual user account on
the terminal server via Xrdp (Neutrinolabs 2020), an open-source
Linux implementation of Microsoft’s Remote Desktop Protocol (RDP).
Windows users did not have to install a client as the application
Remote Desktop Connection is already included in standardWindows
installations. Mac users could, for example, install the official
Microsoft Remote Desktop app from the Apple App Store. RDP
applications for Linux are also available. Actually, at least one of
the participants used rdesktop on Linux. After he corrected the
initially poor resolutionmanually, it worked as fine as theMicrosoft
client.

For security reasons, the server only accepted local RDP connec-
tions, which is why the participants were required to establish an
SSH tunnel before they were able to start the RDP session. Win-
dows 10 users can easily do this via Windows’ cmd command-line
interpreter, using the very same syntax like on Unix-like systems.

To ease the connection process, Windows 10 users were provided
with two files: A batch file helping the user to establish the SSH
connection to the Linux server, and an RDP file. Opening the latter
starts the Windows application Remote Desktop Connection with
the hostname and user name already configured. Thus, both in the
command-line interpreter and the RDP tool, the participants only
had to enter the bare minimum of data and commands manually

34 4 Evaluation

Figure 4.1: The vocabulary trainer

Figure 4.2: Requested change in the
user interface: The participants were
asked to add a column displaying
the improvement (in percent) to the
dialog displayed after training a set
of vocables (fifth column)

(such as the password and some confirmations). See Chapter A for
the instructions sent to the participants.

The RDP tool adapts to the screen size of the host device and
presented theparticipantswith awell-formattedUbuntudesktop in
a suitable resolution. For a graphical user interface the lightweight
Xfce desktop environment was installed on the Ubuntu server.

Once logged into the terminal server, the participants were asked
to click on a symbolic link on the desktop, which started a survey
in the web browser.1 The survey was provided by the free web app
LimeSurvey (LimeSurvey 2020) locally installed on the machine.
During the survey, the participants were invited to start the Eclipse
IDE for Java Developers version 2020-09 (4.17.0) with the automatic
bookmark plug-in already installed and its view opened. Java was
provided by Oracle’s Java SE Development Kit 11.0.8 (JDK 11.0.8).

Task

Source code

The participants were confronted with the source code of an
unfamiliar software system written in Java. The code implements
a simple vocabulary trainer. It was written by the author and
fellow students during a class on technical documentation in the
computer science master program several years ago. The program
served as an example system for discussing different aspects of
documentation.2

The complexity and seriousness of the software can be located
somewhere between very simple single-class examples on the one
hand and professionally developed software systems on the other
hand. Asking the participants to edit this system forced them to
assess the bookmark plug-in in a realistic environment without
overstraining them.

The source code was entirely documented with Javadoc and format-
ted using checkstyle, thus meeting the vast majority of Sun’s coding
conventions. The repository initially also contained JUnit test
cases.3 All external documentation had been removed from the

1 Initially, Firefox was installed but due to memory issues it has been replaced by
the lightweight Falkon browser from the third session on. Section 4.2 discusses
the problems more detailed.

2 Later, the group had to swap projects with another group in order to extend an
unknown application using the given documentation of the original developers.

3 The third participant actually executed the tests and experienced failing test
cases. Apparently, the test caseswere designed to run in a continuous integration
environment, without a human editing the tool’s database as well. Hence, to
avoid further irritation, most test classes were removed for the remaining
sessions.

4.1 Method 35

repository. An architectural description for example would have
made the exercise too easy.

On the start of Eclipse, the class Main containing the program’s main
method was opened to offer an entry point to the participants.

Assignment

Theparticipantswere asked to extend the statistics dialogpresented
at the end of each vocabulary training. They should add a column
containing the improvement (in percent, positive or negative) to
the prior training ‘session.’ Figure 4.2 shows the user interface of an
example solution. To complywith the architecture, changes in three
Java source files and one properties file (string resources) were
necessary. However, many different and much simpler solutions
exist. A detailed description of this taskwas provided by the survey
tool after completing the pretest questionnaire (see Chapter B).

Setting

The questionnaire opened by the participants after their log-in
to the terminal server contained eight pages—with both forward
and backward navigation allowed. The entire questionnaire can be
found in the appendix (Chapter B). The list below gives a summary
of the questionnaire.

1. In the beginning, the participants were welcomed and in-
formed about what to expect. They were also asked to sign
an informed consent before they were able to carry on.

2. The first survey page asked some demographic questions
(gender, age, education, occupation).

3. On the third page, the participants were asked to share
information on their practical experience in programming
and related areas.

4. Another page asked about the usage of bookmarks in IDEs.
These questions were very similar to some questions asked
by Guzzi et al. (2011). Because Guzzi et al. found that many
developers do not even know bookmarks exist, a very short
introduction into the ‘classic’ bookmark function was given
at the top of the page, including two images of a bookmark
in Eclipse and IntelliJ IDEA.

5. The fifth page introduced the automatic bookmark plug-in
to the participants. This page did not contain any questions.

6. After the introduction of the plug-in going to be assessed,
the programming task was explained. This page also did
not contain questions. Instead, at the bottom of the page, the

36 4 Evaluation

participants were invited to minimize the browser window
and launch Eclipse for starting the coding.

7. After finishing the assignment, in this last step, the parti-
cipants were invited to share their opinions on the plug-in
and its influence on their performance.

8. A final page thanked the participants and explained how to
disconnect from the server.

The demographic questions and the questions asking about pro-
gramming experience were in parts taken from the questionnaire
given to the participants of the initial Mimesis study outlined in
Section 3.2.

To avoid a long and possibly complex, written introduction to the
plug-in, it was decided to cut down its functionality. The goal was
to test the plug-in concept, not the participants’ patience. For this
reason, all references to the DOI model had been removed. Thus,
neither a DOI tab showing the raw metric data in diagrams nor
a DOI column in the table could be found during the study. To
allow the users to sort the bookmarks by significance without the
DOI value, each bookmark was given a ‘rank,’ unique for each file
and type. The radio buttons for changing between mask mode
and damp mode were also removed—the mask mode was applied
all the time. These adjustments made it possible to describe the
plug-in in just a few sentences. Figure 4.3 shows the state of the
plug-in in the study.

The tab opened after starting Eclipse (‘Tracks’ or ‘Bookmarks’) can
be set via a file in the user’s home directory.4 The user accounts
on the Linux server were alternatingly configured with one of
both tabs to ensure that both tabs have been visible to participants
during the study, even if they would not change the visible tab.

The setup contained an equal launch configuration for all parti-
cipants allowing them to execute the vocabulary trainer by just
clicking on the launch button in the Eclipse menu bar. Also, a
sample vocable set was already imported enabling the participants
to test the software without having to enter vocables first.

The participants were told to press the Stop button in the plug-in
view (and confirming a dialog) when they were finished with the
assignment. On pressing this button, the plug-in was stopped and
the Mimesis recording was saved to the local Git repository of
the edited vocabulary trainer project. Pausing the recording by
pressing Stop with a delayed restart was not possible, as stopping
results in a dirty repository that Mimesis cannot deal with. Later,
each recording—alongwith the corresponding code changes—was

4 The plug-in searches for a file named ab_tab.txt, containing an integer denot-
ing the requested tab index.

4.2 Results 37

(a) The tracks tab

(b) The bookmark (table) tab

Figure 4.3: State of the plug-in user interface in the experiment: All references to the underlying DOI model as well as
advanced controls (such as those for switching from masking to damping) have been removed

pushed manually to separate branches (one for each participant)
on the Git server.

The recordings also include events related to the plug-in to retrace
the participants’ usage of the plug-in.

4.2 Results

Eight software developers participated in the study (in the follow-
ing named A to H). Most of themmanaged to start the RDP session
without any difficulty5 and the survey software in the web browser
worked trouble-free in most cases—only one participant reported
a time-out error when he returned from Eclipse to the browser,
which forced him to answer the pretest questions again.

5One participant had difficulty with entering the password as he could not
distinguish the capital i from the lower case l in the sans-serif font used for the
instructions. Another participant reported that the remote desktop was very
small. In fact, at least three developers established the RDP session from a Linux
machine, which was hardly explained in the provided instructions. The paper
did not explain how Linux users can increase the screen resolution manually
(the Microsoft tools for Windows and Mac adapt automatically).

38 4 Evaluation

A B C D E F G H

20

30

40

50

participant

ag
e
in

ye
ar
s
(r
an

ge
)

Figure 4.4: Age distribution of the
developers who participated in the
study

A B C D E F G H

5

10

15

20

25

participant

ex
pe

ri
en

ce
in

ye
ar
s
(r
an

ge
)

programming experience
professional programming

Figure 4.5: Programming experience
of the participants

Unfortunately, the first two participants faced a severe Javamemory
issue. In both cases, Eclipse announced its inability to create another
native thread.6 In the first session, the problem occurred directly
after launching Eclipse. Rebooting the server solved the problem,
but forced the affected participant to answer the pretest part of the
questionnaire again. The second participant was unable to launch
the vocabulary trainer inside the running Eclipse environment.
He solved the assignment without executing the edited program.
Nevertheless, he submitted a correct solution.

Unfortunately, modifying the size of Java’s memory allocation pool,
the thread stack size or themaximumnumber of processes per user
did not have a lasting effect.7 Instead, replacing Firefox as the web
browser for the survey with the Falkon browser finally did the trick
and allowed to conduct the study as intended. Though, during
most of the experiments, the author was contactable via telephone
or instant messaging services for possible technical assistance—
which did not include any form of observation. After changing the
browser, Eclipse worked properly in all following sessions. Two
participants just did not stop the recording themselves. After the
sessions, the author had to log into the user account to save the
recording.

One participant reported that the plug-in view disappeared when
he made use of the debugger because Eclipse changed from the
default Java perspective to the debug environment. According to
his answers in the questionnaire, the participant had no experience
in using Eclipse. Via online chat, he was guided back to the Java
perspective where he was able to stop the recording, eventually.

Demographic Characteristics and Experience

Five participants were younger than 26, two of them were under
36 and one older than 45 years (Figure 4.4). The oldest participant
was a self-employed software developer with a master’s degree
(diploma) and more than 20 years of programming experience.
Two participants were undergraduate students, another two were
graduate students, and two participants had a bachelor’s degree
and were employed in industry. The only female participant holds
a master’s degree and was occupied at the university. Most of the
participants had less than ten years of programming experience
(see Figure 4.5).

6 The exception message was: java.lang.OutOfMemoryError: unable to
create native thread: possibly out of memory or process/resource
limits reached

7 The initial and maximum heap size of Eclipse were set to -Xms1G and -Xmx2G.
Table 4.1 contains the system’s limits.

4.2 Results 39

Software
development

Object-oriented
programming

Java Java Swing (GUI) Eclipse IDE Linux

0

1

2

3

4

3

4 4

1

3

4

2

3 3

0

2

33 3

2

1

3

1

4

3 3

2

1

2

1 1 1

0

1

2

4 4

3

2 2

3

2 2 2

1

0

1

4 4 4

1

2

1

A B C D E F G H

Figure 4.6: The participants’ self-assessed experience in areas related to the task (0: unexperienced, 4: very experienced)

Figure 4.6 shows the participants’ experience in areas that were
relevant to the assignment. Most participants were at least medium
experienced software developers, but their experience in UI devel-
opment with Java Swing was rather poor, as was the participants’
experience with the Eclipse IDE. Actually, only two participants
use Eclipse frequently. In contrast, six developers use IntelliJ IDEA
on a regular basis. Other answers were Android Studio—which is
based on IntelliJ—, NetBeans, Visual Studio as well as RStudio.

Bookmark Usage

According to the answers given in the survey, only one of the
participants uses bookmarks often, one rarely, and the remaining
six never. The developer who likes to set bookmarks stated he
uses them to mark code locations for a short time. Figure 4.7
shows the reasons why the other developers do not use bookmarks.
Confirming the result of Guzzi et al. (2011), four of them declared,
they did not even know bookmarks existed. One participant used
the text field and explained that he does not knowwhy bookmarks
shall be useful, at all, as IDEs offer shortcuts for jumping to class
and method definitions (translation): “If classes/methods are kept
short, for what do people need bookmarks?”

I didn’t know
they existed

I don’t find
them useful

Creating a
bookmark is
cumbersome

My IDE
doesn’t have
bookmarks

Other

0

2

4
4

1

2

1

2

0 0

1

0 0

#p
ar
tic

ip
an

ts

never
rarely

Figure 4.7: Reasons why the parti-
cipants nerver or rarely use boomarks

40 4 Evaluation

1 2 3 4 5

0

2

4
3

5

0 0 0

option

#p
ar
tic

ip
an

ts

(a) How intensivly did you use the
automatic bookmarks? (1: little, 5:
very much)

1 2 3 4 5

0

2

4

1

4

3

0 0

option

#p
ar
tic

ip
an

ts

(b) To what extent did the automatic
bookmarks support you in fulfilling
the assignment? (1: not at all, 5: very
much)

Figure 4.8: The participants state-
ments concering their own plug-in
usage and its support. The plots show
the number of participants per an-
swer

Posttest Results

Six participants stated, they were able to solve the assignment. Test-
ing the solutions confirmed these statements. However, differences
in the quality of the solution exist. One participant was unsure
and one was unable to submit a working solution. The one who
was unsure was the second participant who could not execute the
program due to a memory issue. The participant who was unable
to solve the assignment was the one with the most programming
experience. He managed to change the user interface but stated he
had problems to formulate the required calculation.

Being asked about their usage of the automatic bookmarks, the
participants answered, they did not use them very much (Figure
4.8). Though, three participants thought, the plug-in gave them
medium support.

The answers to the open question asking for explanations for the
usage, or rather non-usage, were inductively coded in order to
analyze them. The coding can be found in Chapter C.

One participant stated, he did not fully understand, how the plug-
in works. Prior to the assignment, the participant stated he has low
experience in (object-oriented) software development and Java. He
also was the only participant who said to have no experience at
all in using Eclipse. Two participants stated, they were not used
to (classic) bookmarks. One of them explained this is why she is
used to memorizing the locations relevant to her task. The other
one wrote, he is unsure how to use bookmarks, because he never
used them before.

Both undergraduate students and another participant answered
the assignment was not complicated enough, which is why they
felt no need for any tool support. Two participants thought the tool
might be useful when working on larger software projects. At least
three participants recalled, that the automatic bookmark plug-in
helped them to find a relevant location. One of them explained, he
had difficulty identifying the required bookmark from the table,
but “wild clicking” succeeded. Another one stated, he once forgot
a class name and could find the required class in the table faster
than in the package browser. Two participants found that not all of
the generated bookmarks were relevant to them. One suggested, a
five-minute phone conversation, he had during his session, might
be the reason, why the class MainFrame constantly was the first
entry in the table, even though it was not relevant to him, at all.

Two developers complained about missing structure in the plug-in.
According to his answer to the question asked later, under which
circumstances he would take automatic bookmarks into account,
one of them likes to search for program elements in the tree view

4.2 Results 41

Markers
in editor

Tracks Bookmark
table

Filters Modifcation of
bookmarks per file

0

1

2

3

4

5

1 1

4

2

3

2 2

3 3

2

4

2 2

3 33

4 4

1 1

2

0

3

0

2

1

4

2 2 22

3

2 2 2

0 0

1

3

0

A B C D E F G H

Figure 4.9: The participants’ assessment of the plug-in’s components (0: not helpful at all, 4: very helpful)

A B C D E F G H
0

20

40

60

20
16

1

49

980

56

0

44

Figure 4.10:Number of plug-in event
nodes in the recordings, indicating
the interaction with the plug-in

showing the package/directory structure of the project. As he is
used to memorizing positions in the tree rather than filenames,
he had problems to identify the required bookmarks in the table.
The last participant, an experienced Java developer, submitted an
entire list of pros and cons. Regarding the plug-in’s design, he
found the table has many columns, is very long, and—in contrast
to source code—it does not offer any “optical clues.” Moreover,
this developer did not like the selection of the entire bookmark
region when he clicked on entries in the table. He also disliked the
tracks as they moved,8 which made him nervous.

Figure 4.10 shows the number of PlugInEvents recorded in the
sessions. The plug-in should record a PlugInEvent in the following
situations:

I TAB: A tab change (Tracks↔ Bookmarks).
I GOTO: A jump to a location in the code by clicking on a

bookmark (row) in the table.
I SORT: A change of the tables sorting.
I CONFIG: A configuration change (show/hide categroy or

bookmarks per file).

The first PlugInEvent occurrence of type CONFIG in the recording
has programmatic reasons. All the following events should be
caused by the user. However, the data suggests a defect in the
recording of the plug-in-related events. While most participants
caused a low tomediumnumber of PlugInEvents, it seemsunlikely
that participant E actually caused almost one thousand events and
participant G caused none, although the plug-in itself should at
least produce one event. The reason for this behavior could not be
determined. Hence, it does not make sense to make any statements
on the participants’ plug-in usage, based on the recordings.

8 It is possible to prevent the tracks from moving by changing the position of the
horizontal scroll bar. If the scroll bar is at the very right, the panel constantly
moves with the write cursor.

42 4 Evaluation

The questionnaire asked how useful the participants find the
different aspects of the plug-in. Figure 4.9 shows the answers. The
most popular component was the bookmark table.

In the end, the developers were asked if they would use automatic
bookmarks if they were available for their favorite IDE. Four parti-
cipants answered they would. The developer who submitted the
list of pros and cons declined, and referred to his prior statements.
Three developers were unsure. Two of them would give it a try
in more complex projects. One developer would need some more
time to assess the concept. The developer who frequently searches
the Eclipse tree view would appreciate a similar visualization for
the automatic bookmarks.

The final text field for miscellaneous notes was used twice. One
entry was a piece of session-related information already discussed.
The other developer missed an option in the track panel, allowing
him to jump to code locations (only clicking on table entries
revealed the respective location in the editor).

Conclusion 5
5.1 Discussion 43

Creation and Presentation 43
Acceptance 44
Benefit 45

5.2 Threats to Validity 46
5.3 Future Research 47

This thesis presented a novel approach aiming to enhance the
program understanding of software developers by automatically
marking code locations of possible interest. The selection of these
locations is based on the developers’ interaction with the IDE. The
concept uses the metaphor of bookmarks, as bookmarks name a
feature that is—like the literature review at the beginning showed—
widely neglected by software developers, which calls for a ‘rethink’
of the concept. In order to assess the new approach, a prototypic
Eclipse plug-in implementing the automatic bookmarks has been
developed. Even though the plug-in is notmature enough for being
used in a developer’s every-day work, it allowed assessing the
concept in a controlled laboratory-like environment. The previous
section has given a descriptive overview of the results of these
experiments. This chapter will discuss the results with respect to
the initial research questions. It will also characterize the study’s
threats to validity and, finally, will suggest future research topics
related to this work.

5.1 Discussion

In Section 1.3 four research questions have been presented. RQ1 and
RQ2 dealt with the creation of bookmarks and their presentation
to the user. RQ3 and RQ4 focused on the evaluation and asked
for the automatic bookmarks’ acceptance compared to the neg-
lected classic bookmarking and their benefit concerning program
comprehension.

Creation and Presentation

The first two research questions RQ1 and RQ2 asked for the events
eligible for the creation of automatic bookmarks and how this
information can be processed to generate automatic bookmarks
displayed to the user.

Section 3.1 discussed a selection of event types recorded by the
Mimesis framework that can be used to detect locations possibly
interesting to the developer. This choice allowed implementing a
prototype of an automatic bookmark plug-in. Undoubtedly, the
selection could be easily complemented by further event types,

44 5 Conclusion

such as tree selections or certain mouse events, for example indic-
ating reading patterns with the cursor used as a pointer. Other
events, such as launches, could improve the model but would need
additional changes in the Mimesis code in order to associate a
location with event types that normally do not belong to a specific
location in the code. In the case of launch events, for example, it
might be interesting to know which was the last location that has
been edited or visited before the developer decided to do a test
run.

RQ1 also asked, how the creation is influenced by the features of
the corresponding code lines. The current model does not analyze
the content of code lines. Of course, this would be possible and
should be considered for future versions. Owing to the viewport-
based approach, without such a content analysis, sometimes the
model creates bookmarks for empty lines. As lines above and
below the bookmarked line belong to each bookmark, in such cases
the relevant part might be included in that region. Nevertheless,
a method allowing to rate lines differently depending on their
contents would further improve the concept and might lead to a
more precise bookmarking.

Approaching RQ2, in Section 3.2 a method has been presented
allowing to generate automatic bookmarks based on peaks in a
DOI model. Different from previous approaches, the developed
DOI model rates individual lines instead of being restricted to
abstract program elements. The plug-in constantly updates the
model which makes outdated bookmarks disappear and new
markers appear. The developer can further adjust the bookmarking
by making use of the filter options presented in Section 3.5.

Acceptance

As stated at the end of the previous chapter, only one of the
participants said, he uses bookmarks regularly. However, in the
survey’s posttest part, four developers who use bookmarks rarely
or never answered they would use automatic bookmarks if they
were available for their favorite IDE.Another twodeveloperswould
consider using such a plug-in. One of themwould need somemore
time to test the tool. The other asked for a tree-like listing of the
bookmarks, which reminds of the Mylar approach which offers
task-specific filtering of the Eclipse tree views.

The fact that four developers stated, they did not know book-
marks existed makes it difficult to answer RQ3. Three of them
said, they would use or would consider using bookmarks. As
they did not know bookmarks existed, it is not possible to com-
pare their statement regarding the automatic bookmarks to their

5.1 Discussion 45

non-existent usage of classic bookmarks. To answer the research
question it would be necessary to know if they will start using
classic bookmarks, now they know this function exists.

On the other hand, only three developers, knowing bookmarks
existed prior to the study, would or might use the automatic book-
marks. Thus, based on the statements of the eight participants,
RQ3 cannot be answered. However, there is some evidence sug-
gesting that developers do show a greater acceptance towards
the use of automatic bookmarks than they do towards the classic
bookmarks.

Benefit

RQ4 asked whether automatic bookmarks can support program
comprehension. The study was not designed to measure any
performance. Three developers even stated the codebase of the
vocabulary trainer was too small to require any advanced tool
assistance. Thus, this evaluation must rely on the answers given by
the participants. Three of them stated, the automatic bookmarks
gave themmediumsupport. Four thought the plug-in helped a little
bit. The participant who stated he did not fully understand how the
automatic bookmarks worked answered the plug-in did not assist
him at all. Asked to elaborate on their statements, three participants
wrote, the automatic bookmarks helped them to find locations
they wanted to revisit. Though, participants complained about
irrelevant bookmarks and flaws in the interface like a crowded
table, unneeded text selections when jumping to bookmarks, as
well as the moving tracks.

To sum up, the results suggest that automatic bookmarks can
support comprehension tasks. However, it is difficult to make any
statements on a tool’s benefit if the participantswhowere supposed
to test it did not really try it—none of the participants stated to
have used the automatic bookmarks more than a little bit. Roehm
et al. (2012) presented some ideas about why developers might
not make use of program comprehension tools (see Section 2.3).
Apparently, at least one of the participants found the bookmarks
too abstract and did not understand the concept. Roehm et al. also
suggested a fear of training and familiarization efforts as well as
a lack of trust in the new tools. These are problems most tool
developers probably face in the beginning.

46 5 Conclusion

5.2 Threats to Validity

All of the participants were personally known to the author. Three
of them were undergraduate students from the same research
group dealing with Mimesis or connected topics. For this reason,
there might be a social desirability bias in the answers to the
posttest questions asking for the usability of the plug-in. On the
other hand, a close relationship with the researcher might also
motivate participants to submit a proper solution or give decent
feedback.

Another threat is given by the fact that the sample contains many
young developers with rather small experience in professional,
non-academic software development. Young developers might be
more open-minded about new tools, but the lack of experience
might also have biased the results.

Furthermore, the remote participation caused different conditions
in each session. Of course, the accounts on the Linux server were
set up equally. But establishing the RDP connection was different
depending on the host system.Hence, for some participants getting
started was more cumbersome than for others. Also, the RDP
window adapted to the host’s screen size (on Windows and Mac),
or had a low resolution on Linux (if not configured manually),
which led to different experiences of the plug-in.

Before they launched Eclipse, the participants were interviewed
on their usage of bookmarks. Moreover, the new concept was
introduced as automatic bookmarks. Both may have influenced
the participants’ reception of the assessed plug-in. Some of the
statements indicate that participants did not understand the auto-
matic bookmark as an own concept, only loosely based on the
classic, neglected bookmarks, but as some kind of extension of
these bookmarks they were not used to work with. Probably it
would have been better to ask questions about bookmark usage
in the questionnaire’s posttest part or to ‘hide’ them in a series of
similar questions on other IDE features, so the participant does
not recognize the bookmark focus.

Lastly, the software system in the study was not an industry-scale
project. Neither was the change task a real-world problem. As
stated above, some participants even thought this was the reason
why they did not make use of the automatic bookmarks a lot.

5.3 Future Research 47

5.3 Future Research

The experiments showed that automatic bookmarks have the
potential to support developers’ program understanding. And
even more important, the study suggests that developers would
consider using a well-designed automatic bookmarks tool. These
results motivate further research efforts on this topic.

The following list gives some ideas for possible conceptual im-
provements in the automatic bookmark model:

I DOI increases with respect to the features of the respective
code lines (empty lines, certain program elements, defini-
tions, etc.)

I Also considering information that is not just based on user
interaction, such as dependencies, calls, etc.

I Proactive handling of line differences (insertions and dele-
tions): What should happen to the DOI values of deleted
lines, and should a new line really ‘inherit’ the DOI value of
the previous content at this location?

I Emphasizing locations that have been visited many times
(not just summing up the visit durations)

I The ‘radius’ of the bookmark regions is based on the current
size of the editor window, which may change during the
task: How should this affect the size of the bookmark re-
gions? Should the region size really depend on the window
dimensions?

As a side result, this thesis showed the potential of remote parti-
cipation in software engineering studies. A more stable terminal
server allowing parallel participation combined with an improved
connection concept such as a browser-based solution or scripts for
fully automated connection on each platform could provide access
to massive sample sizes with participants distributed around the
entire globe.

But also an evaluation in real-world software engineering work-
places is necessary to give profound evidence for a tool’s benefits.
A study over a longer period of time would allow participants to
familiarize themselves with the new plug-in which might give the
tool a better chance to demonstrate its effects on the developers’
work.

Of course, such a study would also require improvements in the
plug-in. For example, currently, it does not support any kind of
break in the comprehension task; neither ‘idle times’ caused by
a sudden phone call or a developer’s urge to fill up the coffee
mug, nor larger breaks like the end of the working day or even an
entire weekend. Thus, the tool would both need to stop increasing

48 5 Conclusion

DOI values during idle times (whether automatically or just by
pressing a pause button) and had to restore sessions when the IDE
is launched again. Both could be easily realized as Mimesis already
offers an interface for parsing the XML recording file containing
all relevant events. However, the system might need enhanced
data structures as, currently, neither Mimesis nor the automatic
bookmarkplug-in is designed to record sessions lastingmore than a
few hours maximum. For a realistic study also converting the plug-
in to be used in other popular IDEs should be considered as the
participants’ answers indicate that developers are not necessarily
used to work with Eclipse.

Lastly, for any future research of the automatic bookmarks, a
new name should be considered for the concept—at least in all
communication that might influence experiments. A promising
approach like the automatic bookmarks should not suffer from the
bad reputation of outdated IDE features.

Bibliography

[S. K. Card and Nation 2002] Card, Stuart K. and David Nation
(2002): “Degree-of-Interest Trees: A Component of an Attention-
Reactive User Interface”. In: Proceedings of the Working Conference
on Advanced Visual Interfaces. AVI ’02. Association for Computing
Machinery, pp. 231–245.

[Chabanois 2018] Chabanois, Cédric (2018): Mesfavoris: A book-
marks Eclipse plugin. url: https://github.com/cchabanois/
mesfavoris (visited on 27/11/2019).

[Eclipse Foundation 2020] Eclipse Foundation (2020): Eclipse
Mylyn. url: https : / / projects . eclipse . org / projects /
mylyn (visited on 30/11/2020).

[Fjeldstad and Hamlen 1979] Fjeldstad, R. K. and W. T. Hamlen
(1979): “Application Program Maintenance Study. Report to our
Respondents”. In: Proceedings of the GUIDE 48.

[Flatt and Maison 2011] Flatt, Andy and Mickael Maison (2011):
Best practices for developing Eclipse plugins. url: https://
www.ibm.com/developerworks/opensource/tutorials/os-

eclipse-plugin-guide/index.html (visited on 18/02/2020).

[Guzzi et al. 2011] Guzzi, Anja, Lile Hattori, Michele Lanza,
Martin Pinzger and Arie van Deursen (2011): “Collective Code
Bookmarks for Program Comprehension”. In: 2011 19th IEEE
International Conference on Program Comprehension, pp. 101–110.

[Kersten and Murphy 2005] Kersten, Mik and Gail C. Murphy
(2005): “Mylar: A degree-of-interest model for IDEs”. In: Proceed-
ings of the 4th International Conference on Aspect-Oriented Software
Development, pp. 159–168.

[Knuth 1984] Knuth, Donald E. (1984): “Literate programming”.
In: Comput. J, pp. 97–111.

[Ko et al. 2006] Ko, Amy, Brad Myers, Michael Coblenz and
Htet Aung (2006): “An Exploratory Study of How Developers
Seek, Relate, and Collect Relevant Information during Software
Maintenance Tasks”. In: IEEE Transactions on Software Engineering
32, pp. 971–987.

[LimeSurvey 2020] LimeSurvey GmbH (2020): LimeSurvey Com-
munity Edition. url: https://community.limesurvey.org
(visited on 08/11/2020).

[Maalej et al. 2014] Maalej, Walid, Rebecca Tiarks, Tobias Roehm
and Rainer Koschke (2014): “On the Comprehension of Program

https://github.com/cchabanois/mesfavoris
https://github.com/cchabanois/mesfavoris
https://projects.eclipse.org/projects/mylyn
https://projects.eclipse.org/projects/mylyn
https://www.ibm.com/developerworks/opensource/tutorials/os-eclipse-plugin-guide/index.html
https://www.ibm.com/developerworks/opensource/tutorials/os-eclipse-plugin-guide/index.html
https://www.ibm.com/developerworks/opensource/tutorials/os-eclipse-plugin-guide/index.html
https://community.limesurvey.org

50 Bibliography

Comprehension”. In: ACM Transactions on Embedded Computing
Systems 23 (4), 31:1–31:37.

[Martin 2009] Martin, Robert C. (2009): Clean Code. A Handbook of
Agile Software Craftsmanship. Upper Saddle River: Prentice Hall.

[Murphy et al. 2006] Murphy, Gail C., Mik Kersten and Leah
Findlater (2006): “How are Java software developers using the
Elipse IDE?” In: IEEE Software 23 (4).

[Neutrinolabs 2020] Neutrinolabs (2020): xrdp - an open source
RDP server. url: https://github.com/neutrinolabs/xrdp
(visited on 21/10/2020).

[Piorkowski et al. 2013] Piorkowski, David J., Scott D. Fleming,
Irwin Kwan, Margaret M. Burnett, Christopher Scaffidi, Rachel
K.E. Bellamy and Joshua Jordahl (2013): “The Whats and Hows
of Programmers’ Foraging Diets”. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 3063–3072.

[Pirolli and S. Card 1999] Pirolli, Peter and Stuart Card (1999):
“Information foraging”. In: Psychological Review 106 (4).

[Proksch et al. 2018] Proksch, Sebastian, Sven Amann and Sarah
Nadi (2018): “Enriched Event Streams: AGeneral Dataset For Em-
pirical Studies On In-IDE Activities Of Software Developers”. In:
Proceedings of the 15th International Conference on Mining Software
Repositories, pp. 62–65.

[Roehmet al. 2012] Roehm,Tobias, RebeccaTiarks, RainerKoschke
and Walid Maalej (2012): “How Do Professional Developers
Comprehend Software?” In: Proceedings of the 34th International
Conference on Software Engineering, pp. 255–265.

[Schedenig n.d.] Schedenig, Marian (n.d.): Quick Bookmarks
(Eclipse Plug-in). url: http://marian.schedenig.name/proje
cts/quickbookmarks/ (visited on 27/11/2019).

[Sillito et al. 2008] Sillito, Jonathan, Gail C. Murphy and Kris
De Volder (2008): “Asking and Answering Questions during a
Programming Change Task”. In: IEEE Transactions on Software
Engineering 34 (4), pp. 434–451.

[Storey, Cheng et al. 2007] Storey, Margaret-Anne, Li-Te Cheng,
Janice Singer, Michael Muller, Del Myers and Jody Ryall (2007):
“How Programmers can Turn Comments into Waypoints for
Code Navigation”. In: IEEE International Conference on Software
Maintenance, ICSM, pp. 265–274.

[Storey, Ryall et al. 2008] Storey, Margaret-Anne, Jody Ryall,
R. Ian Bull, Del Myers and Janice Singer (2008): “TODO or
To Bug: Exploring How Task Annotations Play a Role in the
Work Practices of Software Developers”. In: 2008 ACM/IEEE 30th
International Conference on Software Engineering.

https://github.com/neutrinolabs/xrdp
http://marian.schedenig.name/projects/quickbookmarks/
http://marian.schedenig.name/projects/quickbookmarks/

Instructions A

Anleitung
zur Teilnahme an der Evaluation zur Masterarbeit

„Supporting Program Comprehension
by Automatic Bookmarks“

Zur Teilnahme an der Studie erhalten Sie über eine Remotedesktopverbindung Zu-
gang zu einem Linux-Sever mit einer vorbereiteten Eclipse-Installation und einem
Fragebogen.

Sobald die Verbindung zum Terminal-Server hergestellt wurde, öffnen Sie bitte die
Verknüpfung Befragung auf dem übertragenen Desktop. Es werden Ihnen einige
Fragen zu Ihnen und Ihrer Erfahrung gestellt. Anschließend werden Sie gebeten,
unter Zuhilfenahme eines neuen Plug-ins eine Programmieraufgabe zu lösen, die
im Verlauf der Befragung erläutert wird. Abschließend werden Sie noch um Ihre
Einschätzung gebeten.

Im Folgenden wird der Verbindungsaufgabu mit dem Sever unter Windows 10
erläutert. Hinweise für die Teilnahme über ein anderes Betriebssystem finden sich
am Ende des Dokuments.

Bei Problemen oder wenn Sie Hilfe benötigen, zögern Sie bitte nicht, eine
E-Mail an Moritz Weinig zu senden (<email>).

Windows 10
Bitte speichern Sie das angehängte ZIP-Archiv auf Ihrem Rechner. Extrahieren Sie
das Archiv anschließend (Rechtsklick > Alle extrahieren...). Die beiden im Paket
enthaltenen Dateien unterstützen Sie beim Verbindungsaufbau.

1. SSH-Tunnel aufbauen
Da der Server aus Sicherheitsgründen nur lokale Verbindungen akzeptiert, muss
zunächst ein SSH-Tunnel aufgebaut werden. Führen Sie dazu die Batchdatei
<username>_A durch einen Doppelklick aus.

1

52 A Instructions

Bestätigen Sie auf Nachfrage durch die Eingabe yes, dass Sie mit der Verbindung
mit dem unbekannten Rechner fortfahren möchten und geben Sie anschließend
das Passwort <password> ein.

Datenverkehr, der sich an den Port 5555 Ihres Rechners richtet, wird nun auf
den Port 3389 des Servers umgeleitet, ebenso andersherum. Bitte schließen Sie
dieses Fenster erst, wenn Sie die gesamte Teilnahme abgeschlossen haben!

2. Remotedesktopverbindung herstellen
Öffnen Sie nun die Datei <username>_B, um die Remotedesktopverbindung
herzustellen. Sie werden nun darauf hingewiesen, dass der Herausgeber der Ver-
bindung sowie die Identität des Remotecomputers nicht überprüft werden können.
Bitte klicken Sie Verbinden bzw. Ja , um dennoch fortzufahren.

Geben Sie anschließend das Passwort <password> ein und klicken Sie OK .

2

53

Andere Betriebssysteme
Unter Betriebssystemen (oder älteren Windows-Versionen) muss die Verbindung
manuell hergestellt werden.

1. SSH-Tunnel aufbauen:
• ssh <username>@<address> -L 5555:127.0.0.1:3389
• Passwort <password>

2. Remotedesktopverbindung herstellen:
• Computername localhost:5555
• Benutzername <username> und Passwort <password>

Hinweise:
• Benutzer älterer Windows-Versionen benötigen einen extra Client zur Her-

stellung der SSH-Verbindung (z. B. PuTTY). Für die Remotedesktopverbin-
dung kann das gleichnamige, in Windows enthaltene Tool verwendet werden.

• Mac-Nutzer können u. a. den Remotedesktop-Client Microsoft Remote Desk-
top aus dem Apple App Store laden.

• Unter Linux kann z. B. die Anwendung rdesktop installiert werden. Nach
dem Aufbau des SSH-Tunnels wird die Sitzung durch folgenden Befehl ge-
startet:

rdesktop -u <username> -p <password> -z localhost:5555

3

Questionnaire B
Asterisked questions were mandatory to proceed the questionnaire. If not
stated differently, only one option could be selected in multiple-choice
questions. Questions without options were open questions with text fields.
Each section has been displayed on a seperate page.

Welcome

Liebe Teilnehmerin, lieber Teilnehmer,

vielen Dank für das Interesse an dieser Untersuchung, die im
Rahmen meiner Masterarbeit im Studiengang Informatik an der
Universität Bremen stattfindet.Nach einigen Fragen zu Ihrer Person
und Ihrer Programmiererfahrung, bitte ich Sie, eine Programmi-
eraufgabe zu bearbeiten. Diese wird später erläutert. Abschließend
werden Sie zu Ihrer Einschätzungen bezüglich der Aufgabe befragt.
Bitte lesen Sie sich alle Texte in diese Befragung aufmerksam durch.
Sie wurden so kurz wie möglich gestaltet.

Moritz Weinig

In dieser Umfrage sind 25 Fragen enthalten.

Informed Consent

Im Rahmen einer Masterarbeit werden Maßnahmen untersucht,
die das Verstehen von unbekanntem Quelltext unterstützen sol-
len. Dazu ist es erforderlich, während der gestellten Program-
mieraufgabe Ihre Interaktion mit der Entwicklungsumgebung
aufzuzeichnen. Zudem werden Daten zu Ihrer Person, relevanter
(Vor-) Erfahrung sowie Ihre persönliche Einschätzungen erhoben.
Für dieweiterewissenschaftlicheAuswertungderAufzeichnungen
werden alle Angaben, die zu Ihrer Identifizierung führen könnten,
verändert. Sie können Ihr Einverständnis jederzeit widerrufen.

I Ich stimme den oben genannten Bedingungen zu.*

56 B Questionnaire

Demographic Data

Question D1

Was ist Ihr Geschlecht?*

I männlich
I weiblich
I divers
I keine Angabe

Question D2

Wie alt sind Sie?*

I unter 18 Jahren
I 18-25 Jahre
I 26-35 Jahre
I 36-45 Jahre
I über 46 Jahre

Question D3

Was ist Ihr höchster Bildungsabschluss?*

I Abitur
I Bachelor
I Master/Diplom
I Promotion/PhD

Question D4

Wie sind Sie derzeit beschäftigt?*

I Studium
I Angestellt
I Selbstständig

Question D5

Only if question D4 was answered ‘Angestellt’.

In welchem Bereich sind Sie tätig?*

I Industie/Wirtschaft
I Forschung/Hochschule

57

Expierence

Question E1

Wie schätzen Sie Ihre Erfahrung in folgenden Bereichen ein?*

Matrix question with options 0 to 4 for each item.

0: keine Erfahrung, 4: sehr erfahren

I Erfahrung in der Softwareentwicklung (allgemein)
I Objektorientierte Programmierung
I Java
I Java Swing (GUI)
I Eclipse IDE
I Linux

Question E2

Welche integrierten Entwicklungsumgebungen (IDEs) verwenden
Sie häufig?

Multiple answers allowed.

I Eclipse IDE
I NetBeans IDE
I IntelliJ IDEA
I Android Studio
I CLion
I Visual Studio
I Apple Xcode
I Sonstiges: Text field

Question E3

Wie lange programmieren Sie schon?*

I weniger als drei Jahre
I 3-9 Jahre
I 10-19 Jahre
I 20 Jahre oder mehr

58 B Questionnaire

Question E4

Wie lange wirken Sie schon an größeren Softwareprojekten mit
(z. B. in einem Unternehmen)?*

I weniger als drei Jahre
I 3-9 Jahre
I 10-19 Jahre
I 20 Jahre oder mehr

Bookmarks

Question B1

Wie häufig nutzen Sie Lesezeichen (Bookmarks) während der
Arbeit mit einer integrierten Entwicklungsumgebung (IDE) wie
z. B. Eclipse?*

I Häufig
I Gelegentlich
I Sehr selten
I Gar nicht

Question B2

Only if question B1 was answered with ‘Häufig’ or ‘Gelegentlich’.

In welchen Situationen verwenden Sie Lesezeichen?*

Question B3

Only if question B1 was answered with ‘Sehr selten’ or ‘Gar nicht’.

Weshalb verwenden Sie Lesezeichen sehr selten bzw. gar nicht?*

Multiple answers allowed.

I Ich wusste nicht, dass sie existieren.
I Ich finde sie nicht hilfreich.
I Das Setzen von Lesezeichen ist mühsam.
I Meine IDE hat gar keine Lesezeichen.
I Sonstiges: Text field

59

Plug-in

60 B Questionnaire

Assignment

61

Assesment

Question A1

Konnten Sie die gestellte Aufgabe lösen?*

I Ja
I Nein
I Bin unsicher

Question A2

Only if question A1 was answered with ‘Nein’.

Was hat Ihnen Schwierigkeiten bereitet?*

Question A3

Only if question A1 was answered with ‘Bin unsicher’.

Warum?*

Question A4

Wie intensiv haben Sie von den automatischen Lesezeichen Geb-
rauch gemacht?*

1: wenig, 5: sehr stark

Question A5

Inwieweit haben die automatischen Lesezeichen Sie Ihrer Meinung
nach bei der Bearbeitung der Aufgabe unterstützt?*

1: gar nicht, 5: sehr stark

Question A6

Warum?*

62 B Questionnaire

Question A7

Wie hilfreich schätzen Sie die einzelnen Aspekte des Plug-ins
ein?*

Matrix question with options 0 to 4 for each item.

0: gar nicht hilfreich, 4: sehr hilfreich

I Markierungen im Editor
I Tracks (Darstellung Ihres Scroll- bzw. Navigationsverhaltens)
I Tabellarische Auflistung
I Filterfunktion (Ein-/Ausblenden)
I Ändern der Lesezeichen-Anzahl

Question A8

Können Sie sich vorstellen, automatische Lesezeichen zu ver-
wenden, wenn sie als Plug-in für Ihre IDE verfügbar wären?*

I Ja
I Nein
I Vielleicht

Question A9

Only if question A8 was answered with ‘Nein’.

Warum nicht?*

Question A10

Only if question A8 was answered with ‘Vielleicht’.

Unter welchen Bedingungen würden Sie die Verwendung von
automatischen Lesezeichen in Betracht ziehen?*

Question A11

Gibt es einen Punkt, nach dem nicht gefragt wurde, den Sie aber
für relevant halten? Haben Sie Anmerkungen?

63

End

Vielen Dank für Ihre Teilnahme!

Sie können die Verbindung zum Terminal-Server nun trennen.
WennSiedasMicrosoft-ToolRemotedesktopverbindungverwenden,
fahren Sie dazu mit der Maus an den oberen Bildschirmrand,
um dessen Kontrollelemente einzublenden. Sie SSH-Verbidnung
können Sie anschließend durch Eingabe des Befehls exit in der
Eingabeaufforderung beenden.

Coding C
Reasons For Plug-in Usage and Non-Usage

Categories

I I did not understand, how the plug-in works
I The assignment was not complicated
I I can image, the plug-in would assist in larger projects
I I am not used to use (classic) bookmarks
I Automatic bookmarks (or some of them) were not relevant
I The plug-in helped me to find a relevant location
I Missing structure
I Idea for improvement

Answers

Participant A
Die Aufgabe war fuer mich nicht so kompliziert, dass ich die Lesezeichen benoet-
igt habe, um die relevanten Codestellen wiederzufinden, und es war fuer mich
komplizierter, das richtige Lesezeichen anhand des Dateinamens und der Zeilen-
nummer zu identifizieren, als die Datei in der Baumstruktur herauszusuchen
und sie direkt zu oeffnen, wobei die relevante Zeile in diesem Falle dannmeistens
noch im Fokus war, weil sie die letzte Zeile war, mit der ich interagiert habe.

Participant B
Da ich die Lesezeichen nur in sehr geringem Maße genutzt habe, konnte ich
dadurch auch nicht wirklich unterstützt werden (vielleicht wäre ich es aber, wenn
ich sie genutzt hätte.)
Bei Aufgaben wie diesen sind die für die Aufgabe relevanten Stellen klein genug,
dass ich nicht unbedingt ein externes Tool (wie die Autobookmarks) brauche,
um mir die Stellen zu merken. Zum Beispiel habe ich mir hier ja nur ResultsDia-
logPanel, Result und ResultsTableModel merken müssen, wobei das schon durch
die Tabs der offenen Dateien in Eclipse (quasi als Datei-Bookmarks) gegeben ist
und wegen der geringen Anzahl an Zeilen in diesen Klassen kein externes Tool
erfordert.
Bei größeren Projekten könnte ich mir schon eher vorstellen, dass ich die Auto-
bookmarks nutzen würde, weil es dann zu viele Codestellen werden, als dass
man sich diese merken oder mit Tabs im Vordergrund behalten kann.

66 C Coding

Participant C
Die Lesezeichen haben dabei geholfen, bestimmte Stellen innerhalb einer Datei
wiederzufinden. Da die Dateien selbst jedoch recht übersichtlich war, waren die
Lesezeichen in den Dateien nicht entscheidend für die Lösung der Aufgabe. Bei
komplexeren Dateien helfen diese vielleicht mehr.
Ich habe vorher nie Lesezeichen in Eclipse (oder einer anderen IDE) verwendet
und bin mir unsicher, wie diese korrekt zu verwenden sind.

Participant D
Nicht alle automatisch generierten Lesezeichenwaren für mich relevant.

Participant E
Genutzt um in andere Datei zu springen.
Bin nicht gewoehnt Lesezeichen zu nutzen, deswegen habe ich mir aus der
Erinnerung gemerkt, welche Dateien wichtig sind

Participant F
Normalerweise hangle ich mich durch Code, indem ich die IDE Funktionen zum
Suchen von Deklaration und Aufrufen verwende (oft Strg+Mausklick).
Es war ungewohnt in der Liste der Bookmarks das richtige zu identifizieren.
Wildes Durchklicken hat jedoch auch gut geklappt.

Participant G
Ich müsste mich etwas mehr einlesen wie ich sie sinnvoll verwenden kann.
(Breakpoints sind ja keine automatischen lesezeichen, weil man sie manuell setzt
oder?)
ich glaube ich hab noch nicht so 100% verstanden wie sie funktionieren.

Participant H
Was war gut:
+ Als ich einen Klassennamen vergessen hatte, konnte ich die Klasse in der
Tabelle schneller wiederfinden im Package Browser
+ Filter wechseln funktioniert schnell und intuitiv

Wo gibt es Verbesserungspotenzial:
- "Main Frame", die Klasse, die nie geändert wurde war konstant ganz oben
in der Tabelle. In mitten der Bearbeitung musste ich ein 5m Telefonat "dazwis-
chenschieben". Möglicherweise war die Main Frame Klasse da geöffnet? Zeiten
in denen der Computer nicht aktiv genutzt wird und die IDE auf einer "unin-
teressanten" Datei verharrt sind im Entwickleralltag jedoch häufig.
- Die Tabelle gibt optisch keine Anhaltspunkte: Suchen im Quellcode ist einfacher
als Suchen in der Tabelle, da der Quellecode eine optische Struktur hat.
- Die Tabelle ist sehr lang.
- Die Tabelle hat sehr viele Spalten.
- Beim Anklicken eines Lesezeichens wurden häufig große Teile des Quellcodes
markiert. Gar keine Markierung wäre mir lieber.
- Während ich mir die Tracks angucke möchte ich nicht, dass diese sich weiter
bewegen. In der Zeit interagiere ich ja nicht mit dem Quellcode.
Die Bewegung während der Betrachtung macht mich nervös und hat mich davon
abgehalten das Feature zu benutzen.

CD-ROM D
A CD-ROM containing source code, results and plots is attached.
The following tree lists the files and directories on the disc.

/

{ analysis

{ timelapse

Videos showing animated plots of the DOI developments
(like in Figure 3.4).

{ visits

Plots showing the visits (like in Figure 3.5).
{ answers

The answers of each participant.
{ assignment

{ master

The source code given to the participants.
{ solutions

The solutions of each participant.
{ task

A reference solution by the author.
{ checking

{ pdf

Listings with colored bookmark areas (like in Figure 3.7).
{ raw

The results of the simulations as described in Section 3.4
3 de.unibremen.informatik.autobookmarks_1.0.0.jar

The plug-in version installed for the experiments.
{ sources

{ automatic-bookmarks

{ full

Source code of the automatic bookmark plug-in in-
cluding all developed features (as presented in Section
3.5)

{ master

Source code of the automatic bookmark plug-in as used
for the experiments.

{ mimesis

The edited Mimesis sources.1
 thesis.pdf

Digital version of this document.

	Contents
	Introduction
	Motivation
	Thesis Structure
	Research Questions

	Background
	Bookmarks
	Bookmark Usage
	Program Comprehension
	Mylar/Mylyn kersten05
	Mimesis

	Automatic Bookmarks
	Requirements
	Detecting Regions of Possible Interest
	Specification
	Checking the Automatic Bookmark Model
	User Interface

	Evaluation
	Method
	Results

	Conclusion
	Discussion
	Threats to Validity
	Future Research

	Instructions
	Questionnaire
	Coding
	CD-ROM

