
University of Bremen

Bachelor Thesis

Bi-Kelly-Width
A New Width Measure for Directed Graphs

Enna Gerhard

May 14, 2021

R

C D A

J

S

Z

F

Supervision and first reviewer
Prof. Dr. Sebastian Siebertz

Second reviewer
Dr. Sabine Kuske

Abstract. The notion of Tree-Width is a width measure for undirected graphs with a wealth
of combinatorial and algorithmic applications. Therefore, many attempts have been made to
adapt Tree-Width for directed graphs, leading for example, to the concepts of Directed Tree-
Width, DAG-Width, and Kelly-Width. All of these measures for directed graphs however do
not lead to a satisfying algorithmic theory. One reason is that all acyclic graphs have width
zero or one with respect to all the measures listed above, while for example the directed edge
disjoint paths problem is unlikely to be solved in polynomial time on all acyclic graphs. Hence,
these measures fall short of distinguishing between »simple« and »complex« directed graphs.

We introduce a new width measure for directed graphs that aims to address this shortcoming of
the traditional width measures. Our measure, named Bi-Kelly-Width, is inspired by Kelly-Width,
which is defined in terms of elimination orders. The quality of an elimination order for Bi-Kelly-
Width is measured by forward and backward connectivity properties, which in particular results
in a separation of dense and sparse acyclic graphs. We develop a structure theory of digraphs
of bounded Bi-Kelly-Width by providing characterizations in terms of cops and robber games,
elimination orders, fill-in graphs and partial bi-directed k-trees. Our results show an interesting
new measure sandwiched between undirected Tree-Width and Kelly-Width and open the door
for new algorithmic developments.

Kurzfassung. Das Konzept der Baumweite (Tree-Width) ist ein Weitemaß für ungerichtete
Graphen. Es gibt eine Vielzahl kombinatorischer und algorithmischer Anwendungen. In der
Literatur finden sich viele Versuche, ein Äquivalent zur Baumweite auf gerichteten Graphen zu
finden. Hierzu gehören die Gerichtete Baumweite (Directed Tree-Width), Gerichtete-Kreisfrei-
heits-Weite (DAG-Width) und Kelly-Weite (Kelly-Width). Für einige Anwendungen sind diese
jedoch allesamt nicht zufriedenstellend. Einer der Gründe ist, dass all diese Weitemaße auf
kreisfreien Graphen einen Wert von Null annehmen, während Probleme wie das Überschnei-
dungsfreie-Wege-Problem (Directed Edge-Disjoint Paths Problem) für gerichtete Graphen auch
bei Kreisfreiheit wahrscheinlich nicht in polynomieller Zeit lösbar sind. Aus diesem Grund sind
sie nicht dazu in der Lage, in dieser Frage zwischen »einfachen« und »komplexen« gerichteten
Graphen zu unterscheiden.

Wir stellen ein neues Weitemaß für gerichtete Graphen vor, das versucht, diese Schwierigkeiten
zu lösen. Bezeichnen werden wir es als Bi-Kelly-Weite, in Anlehnung an die ebenfalls über
Eliminierungsreihenfolgen definierte Kelly-Weite. Die Weite einer Eliminierungsreihenfolge wird
durch den Zusammenhang innerhalb des Graphen bestimmt, wobei auch auf Rückrichtungen
von Pfaden geachtet wird. Dies ermöglicht auch die Unterscheidung von dichten und dünn be-
setzten kreisfreien Graphen. Zusätzlich entwickeln wir eine umfangreiche Strukturtheorie der
gerichteten Graphen mit beschränkter Bi-Kelly-Weite, indem wir verschiedene äquivalente Be-
schreibungen betrachten: Räuber- und Gendarmspiele, Eliminierungsreihenfolgen, Auffüllgra-
phen und partielle beidseitig gerichtete k-Bäume. Unser Ergebnis ist ein interessantes neues
Weitemaß. Es liegt zwischen ungerichteter Baumweite und Kelly-Weite und könnte die Grund-
lage für zukünftige algorithmische Anwendungen sein.

4

5

Contents

1. Introduction 7
1.1. Motivation . 7

1.1.1. Adding parameters to complexity . 10
1.1.2. Structural complexity of graphs . 11
1.1.3. Structural complexity of directed graphs 12

1.2. Objective of this thesis . 13
1.3. Outline . 13

2. Definitions and Concepts 15
2.1. General graph notation . 15
2.2. Tree-Width . 18

2.2.1. Tree-decompositions . 19
2.2.2. The invisible inert robber game for Tree-Width 20
2.2.3. Partial k-trees . 21
2.2.4. Sparsity . 22
2.2.5. Computing Tree-Width . 23

2.3. Kelly-Width . 23
2.3.1. Cops and robber games . 24
2.3.2. Elimination orders . 25
2.3.3. Fill-in graphs . 26
2.3.4. Partial k-DAGs . 26
2.3.5. Equivalence of concepts . 27
2.3.6. Sparsity . 27

3. Bi-Kelly-Width 29
3.1. Cops and robber games . 29

3.1.1. Cops winning a game . 30
3.1.2. Robber winning a game . 30
3.1.3. Formal definition . 33
3.1.4. Observations . 34

3.2. Bi-directed elimination orders . 34
3.2.1. Fill-in graphs . 36

3.3. Partial bi-directed k-trees . 38
3.3.1. Observations . 40
3.3.2. Constructing a partial bi-directed k-tree 40

6 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

3.3.3. Sparsity . 41
3.4. Equivalence of concepts . 42

3.4.1. Cops and robber games → Elimination orders 42
3.4.2. Elimination orders → Partial bi-directed k-trees 43
3.4.3. Partial bi-directed k-trees → Cops and robber games 44
3.4.4. Conclusion . 44

3.5. Closure properties . 45
3.5.1. Subgraphs . 45
3.5.2. Intersection . 46
3.5.3. Limited union . 46
3.5.4. Topological minors . 46

3.6. Comparison to other width measures . 47
3.7. Computing Bi-Kelly-Width . 48

4. Interesting Graphs 50
4.1. General classes . 50

4.1.1. Trees . 50
4.1.2. Circles . 50
4.1.3. Complete graphs . 50
4.1.4. Bipartite graphs . 52

4.2. Examples from literature . 52
4.2.1. Slivkin’s gadget construction . 52
4.2.2. Adler’s examples for Directed Tree-Width 53

4.3. Complex classes . 54
4.3.1. The grid . 54
4.3.2. Cylindrical grids . 56
4.3.3. The mesh . 56
4.3.4. The hypercube . 56

5. Conclusion 60
5.1. Further research . 60
5.2. Summary . 61

A. Appendix 62
A.1. References . 62
A.2. Glossary . 65
A.3. Symbols and naming conventions . 66
A.4. List of figures . 67
A.5. Acknowledgements . 68

7

1. Introduction

1.1. Motivation

Our world provides us with ever more complex problems to solve. Large parts of our economical,
physical and social lives are relying on digital infrastructure. We try to use resources more and
more efficiently, for example to reduce waste and overproduction. Computer science needs to
make a strong contribution towards several of these goals (Schneidewind et al., 2018). It offers
tools to formalize real-world problems and methods to solve them efficiently.

Many of the current areas of innovation are focused around networks and connectivity. For
example, a zero waste economy relies on a complete reuse of resources and tracing materials
until their end of life. In the future, our power supply might be organized in smart grids instead of
centralized huge power plants and top down distribution of power. Hybrid routing paradigms
that incorporate public transport and autonomous driving are likely to make commuting more
efficient.

Tackling these problems with algorithms requires creating and understanding a digital repre-
sentation of our world. Many of these problems can conveniently be formalized as network
and graph problems. A graph uses »vertices« as abstract representations of objects and con-
cepts out of our world and »edges« between the vertices to represent relations, connections or
interactions between the concepts represented by the vertices.

Directed Graph Vertex Edge
Academia Publication Citation
Game Board layout Legal move

Infectious disease Person Possible infection
Program Code block Jump

Scheduling Task Constraint
Social network User Message
Transportation Location Way of passage

Wildlife Species Predator-prey relation
World Wide Web Website Hyperlink

Figure 1.1.: A selection of concepts that naturally translate to directed graphs
(after Sedgewick and Wayne, 2007)

8 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

(a) Map (excerpt from Baedeker, 1910)

R
Rental

C
Café

D
Ducks

A
Arcade

J
Junction

L
Lake

S
Castle

Z
Zoo

F
Forest

(b) Graph representation

Figure 1.2.: The boat course in the Bürgerpark in Bremen, Germany

Let us take a look at a simple example, Figure 1.2. Both the map and the graph contain a
representation of the boat course through the Bürgerpark in Bremen. However, they have dif-
ferent primary purposes. The map contains a large amount of information, with the purpose of
informing visitors, but it is difficult to work with it using algorithms. The graph focuses on nine in-
teresting points on its course and represents these as vertices. The round vertices are connected
by edges, depicted as arrows. They also indicate a direction or a connection in both ways as
seen between the vertex labeled Ducks and the vertex labeled Café. The underlying abstract
representation is directly accessible by algorithms.

Problems that we might want to solve for our boat course could include planning of boat trips
which respect one way passages. You could leave the lake aside on a round trip or decide to
go on another loop when getting back to the Island of Ducks. We could also define a maximum
amount of boats allowed at a single site, for example only two on the rental while seven would
be acceptable for the arcade. Then, we could also take movements into account. While it would
still be possible to manage this rather simple boat course by hand, we would quickly need to
resort to finding an algorithm that allows a computer to solve this task for larger graphs and
boat courses, respectively.

Another example of possible real-world applications is the Bremen tram rail map, Figure 1.3 on
the next page. It represents several rails and the way these are connected at junctions. Problems
that are closely connected to railway maps are routing, scheduling and capacity problems that
are restricted by the underlying rail structure.

Concerning routing problems, let us try to find a round trip connecting all points of interest for
our boat course, starting and ending in the rental, ideally only visiting each point once. In graph
theory, this is known as the Directed Hamilton Cycle Problem. A naive approach to solve this
problem is to try out all possible sequences of vertices and test if they form a directed cycle. For
this boat course, this would be 9 · 8 · . . . · 2 · 1 = 9! = 362880 – no problem for a computer.

1. Introduction 1.1. Motivation 9

Figure 1.3.: Bremen tram rail map

The rail map on the other hand uses over one hundred vertices, a magnitude larger than nine
from the boat course. It is obvious that solving non-trivial tasks by hand has become impossible.
However, for large graphs, even a computer will run into difficulties. If we multiply 100 · 99 ·
. . . · 2 · 1 = 100! ≈ 10158, we end up with an amount of required operations that are not
feasible even for a modern computer. A current multi-core computer could have made around
13.82bn years · 20 · 3GHz ≈ 1031 calculations if it started at the beginning of the universe.

The Directed Hamilton Cycle Problem is just one problem that is NP-complete: Verifying an ex-
isting solution is easy – we can take a suggested round trip and verify that each connection is
permissible – and only takes a relatively small amount of steps. For problems that are in NP,
this is possible in polynomial time. We can find a polynomial anb + c such that we can verify a
solution in this amount of steps only depending on the number of vertices n in our graph. How-
ever, we do not know exact algorithms that are efficient for general instances. When looking
at the worst case running time for existing algorithms, we end up with the same running time as
with a naive approach to try out every possible combination, ignoring constant factors.

10 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

The Directed Edge Disjoint Paths Problem is another key problem. Given a graph and k pairs
of vertices (si, ti) with i ∈ {1, . . . , k}, the Directed Edge Disjoint Paths Problem is to determine
whether we can find paths that are not allowed to share any edges to connect all starting
points si with their corresponding terminals ti. It is known to be NP-complete even on acyclic
digraphs. As such, it will be a major motivation for this thesis.

1.1.1. Adding parameters to complexity

When creating algorithms we can find at least some solutions to handle larger input sizes.
Parallelization is in a way trying to reduce required time by performing multiple independent
computations at once. But it can only divide the required time by a constant factor of processors
used, which still does not result in a feasible solution. Dividing 10158 by one billion already
requires one billion computers but only leads to 10149.

On the other hand, if a perfect result is not as important, for example finding the fastest tram
versus one that arrives 30 seconds later, an approximation can be used. This will sacrifice an
exact answer for faster computation. We will usually retain an approximation guarantee, for
example the optimal solution being at most twice as good as the approximation. A second
option is to use heuristics, which may improve running times, though without any approximation
guarantees and often without finding an exact solution either.

Lastly, our algorithm may not need to be able to solve all instances of a size as fast as others. It
may be possible to add additional parameters that describe the complexity of a problem. De-
pending on these parameters, we still get an exact prediction about the worst case for required
running time. For small values of these parameters, running time becomes fast, while for large
parameters it may be slow. Such a parameter allows for a fast, exact solution to a problem, but
sacrifices keeping this promise for instances where the parameters are large.

Depicting these trade-offs, we obtain a triangle (Figure 1.4) where we are only allowed to pick
two corners. This works similar to the project management triangle (time, cost, quality) or the
cleaning triangle (time, force, chemicals).

Universal

Exact Fastand

and and

but
restrict instances with new parameters

but
slow/expensive

but only
approximate solution

Figure 1.4.: Conflicting properties of algorithms

1. Introduction 1.1. Motivation 11

Adding additional parameters into the analysis of complexity in algorithms allows for a fine-
grained view on complexity. Classical complexity theory usually only relies on one input size.
For graph problems, this tends to be the raw number of edges and vertices in a graph, n.
The parameterized approach however allows distinguishing instances on a completely different
basis, taking also structural measures of the input instances into account (Cygan et al., 2016).

In this thesis we aim to develop a new structural parameter for directed graphs. We want to be
able to describe on what instances we can hope for exact and fast algorithms.

1.1.2. Structural complexity of graphs

In graph theory, more efficient algorithms can be created if the underlying graph is well-struc-
tured. The main goal of this thesis is to understand these structures in directed graphs and to
explore a new width measure for directed graphs. The ultimate goal of such a structure theory is
to develop complexity measures that can distinguish exactly between simple and hard instances
of problems and use this for creating efficient algorithms on those simple instances.

A graph property on undirected graphs that has been researched in great detail is Tree-Width.
Works are dating back as far as the seventies (Bertelé and Brioschi, 1972; Halin, 1976). The
principle behind the current definition was introduced by Robertson and Seymour in 1984. Since
then, many equivalent definitions were found. At this point we will only look at one particularly
intuitive description of Tree-Width, as we will explain it in detail in Section 2.2 on page 18.
Seymour and Thomas (1993) used a cops and robber game on graphs. In this game a team
of cops is chasing a robber, and the number of cops required for a winning strategy against
a single robber depends on the Tree-Width and vice-versa. This is similar to other searching
techniques introduced earlier (Kirousis and Papadimitriou, 1986; LaPaugh, 1993).

There are many efficient algorithms taking trees as an input. Searching trees and calculating
properties on trees can generally be done efficiently. Intuitively, this will also apply to a graph
that is similar to a tree, and this similarity with a tree is captured by the parameter Tree-Width. We
could, for example, track properties that apply to an already searched part of our graph using
dynamic programming (Bodlaender, 1988), just as we might have calculated an intermediate
result based on the branch of a tree. In effect, if we use Tree-Width as a fixed parameter, we
are able to solve many problems that are NP-complete in general in polynomial or even linear
time. For example, the Hamilton Cycle Problem can be solved in time f(t) ·n, where t is the Tree-
Width of the input graph, n is the number of vertices of the input graph and f is some computable
function depending only on the Tree-Width (Arnborg, Corneil, et al., 1987). We call this fixed-
parameter tractability (FPT). The superpolynomial dependence on some parameter can very
likely not be avoided, as the Hamilton Cycle Problem is NP-complete, but the dependence is
only on the Tree-Width and not on the size of the graph.

12 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

Many other applications for Tree-Width have been found (Bodlaender, 1993). Arnborg and
Proskurowski (1989) achieved several results for solving generally NP-hard problems such as
Independent Set, Dominating Set, Graph K-Colorability and Network Reliability on instances
with bounded Tree-Width. Courcelle (1990) proved that graph properties defined in monadic
second-order logic (MSO) can be determined in linear time, which is a very powerful tool. It
helps both with solving decision problems and optimisation problems on graphs (Courcelle and
Engelfriet, 2012). Furthermore, the undirected Edge-Disjoint Paths Problem can be solved in
time f(k, t) · nO(1), where k is the parameter of the problem, t is the undirected Tree-Width of
the input graph with n vertices and O(1) is a constant (Robertson and Seymour, 1995). The
function f is large, however, for small values of k and t we indeed get fast running times. Other
applications include circuit design (Möhring, 1990), or evolution theory with solving the Perfect
Phylogeny problem (Bodlaender and Kloks, 1992).

1.1.3. Structural complexity of directed graphs

As we have seen in the initial examples, many important problems can be naturally formalized
as directed graphs. Tree-Width on the other hand only applies to undirected graphs. Sure, one
could remove the directions of edges and treat a directed graph as an undirected one, but this
is not satisfying. A lot of valuable information can get lost during that process (see Figure 2.3
on page 17).

Therefore, there have been several attempts to translate the notion of Tree-Width to directed
graphs. These include the notions of Directed Tree-Width (Johnson et al., 2001; Reed, 1999)
and DAG-Width (Berwanger et al., 2006; Obdržálek, 2006). Hunter and Kreutzer (2008)
transferred the Tree-Width game with similar principles to directed graphs. Surprisingly however,
the number of cops required does not correspond to Directed Tree-Width, but rather gives rise
to a new width measure they called Kelly-Width. One motivation behind these directed width
measures is that they shall distinguish between simple and complex directed graphs, taking edge
directions into account. On the other hand, when the directed version is applied to symmetric
graphs (that can be understood as undirected graphs), then the measure should be equal to
undirected Tree-Width.

Unfortunately, there are some fundamental restrictions on what we can expect from directed
width measures. For example, the model-checking problem for monadic second-order logic
can be solved efficiently essentially only if the underlying undirected graphs have bounded
Tree-Width (Makowsky and Mariño, 2003). This rules out very general algorithmic tractability
results for directed width measures that generalize undirected Tree-Width.

However, several possible applications remain. For example, the Directed Edge Disjoint Paths
Problem can be solved in time nO(k+w), where k is the number of paths to be found and w is the
Directed Tree-Width of the input graph. We call this complexity class W[1].

1. Introduction 1.2. Objective of this thesis 13

The assumption FPT ≠ W[1] can be seen as a parameterized analog of the assumption P ≠ NP and
are even related. The problems in FPT admit efficient parameterized algorithms, while we do not
expect that such algorithms exist for W[1]-hard problems (without going further into the details
of parameterized complexity theory, for more details see Downey and Fellows, 2013). As a
result, many connectivity problems can be solved efficiently only on graphs of small Directed Tree-
Width. This means that we cannot expect that there is an algorithm running in time f(k) · ng(w)

for any functions f, g, as Slivkins (2010) proved that the Directed Edge Disjoint Paths Problem is
already W[1]-hard on acyclic graphs, which have Directed Tree-Width 0. A width measure that
distinguishes between simple and difficult instances must hence distinguish between simple and
difficult acyclic digraphs (Ganian, Langer, et al., 2014).

While Kelly-Width is never smaller than Directed Tree-Width, it still is not the refined measure
that we are looking for (Ganian, Meister, et al., 2016). In particular, all acyclic digraphs have
Kelly-Width 0, so an FPT algorithm with parameter k for the Directed Edge Disjoint Paths Problem
characterized by Kelly-Width is still ruled out.

1.2. Objective of this thesis

In this thesis, we take the very intuitive definition of the cops and robber game and give additional
power to the robber. In the game we allow the robber to run not only along directed paths, but
also along directed paths in the reverse direction.

This typically requires a larger number of cops to catch the robber than in the game for Kelly-
Width and leads to the new measure Bi-Kelly-Width. The new measure lies somewhere between
undirected Tree-Width and Kelly-Width. On symmetric graphs, it collapses to undirected Tree-
Width, as required by all well-behaved directed Tree-Width-like measures. Furthermore, it is
not bounded on all acyclic digraphs, which will potentially allow for an FPT algorithm for the
Directed Edge Disjoint Paths Problem. In particular, Bi-Kelly-Width is unbounded on the worst-
case construction of Slivkins (2010).

While we were unable to solve this difficult algorithmic question, we develop a nice structure
theory for the new width measure. In particular, we will provide various equivalent character-
izations closely related to ones already known for Tree-Width, showing that we have found a
robust new measure for directed graphs.

1.3. Outline

This thesis is divided into five chapters. You are currently reading Chapter 1, Introduction.

14 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

Next up, Chapter 2, Definitions and Concepts, will introduce both the formal definitions used
throughout the thesis, and the most important existing research that we will build upon: Tree-
Width in Section 2.2 and then Kelly-Width in Section 2.3.

After that, we can construct Bi-Kelly-Width itself in Chapter 3 on page 29. We will start with
the very intuitive idea using cops and robber games, then focus on the more formal elimination
orders that can be applied to them. Furthermore, we will look at partial bi-directed k-trees as
a more constructive approach. All of these are identical, as we will prove in Section 3.4. After
that, we can observe different properties of Bi-Kelly-Width.

All in all, we will look at nine width representations that are closely related to each other.

Tree-Width Kelly-Width Bi-Kelly-Width
Game Section 2.2.2 Section 2.3.1 Section 3.1

Elimination orders Section 2.2.1* Section 2.3.2 Section 3.2
Graph construction Section 2.2.3 Section 2.3.4 Section 3.3
* Tree-decompositions differ from linear orders, but are closely related.

Table 1.1.: Different and equivalent reach representations

With this new theoretic toolset at hands, we will compare the similarities and difference between
the three aforementioned width-measures in Chapter 4, Interesting Graphs. Finally, we will
conclude in Chapter 5 with an analysis of the newly introduced width measure, and an outlook
on possible further developments.

The Appendix on page 62 lists references used throughout this thesis and contains a list of
figures. It also provides a short overview of definitions.

15

2. Definitions and Concepts

In the following, we will use standard notation graph theory (for example Bang-Jensen and
Gutin, 2008) wherever possible. As this tends to be ambiguous in some cases and some defi-
nitions may not be known, we will go over the most important ones.

2.1. General graph notation and definitions

A graph G = (V,E) consists of a set of vertices V (G) = V and a set of edges E(G) =
E ⊆ V (G)2, hence every edge e ∈ E(G) is a pair of vertices e = (u, v) with u, v ∈ V (G).
Unless otherwise noted, graphs are directed, otherwise, their edges are undirected 2-element
sets. Directed graphs are sometimes called digraphs. As we defined them using sets, we will
simply ignore adding vertices or edges twice. We also do not allow loops (w,w). Connecting
two vertices with edges in both directions is allowed.

Graphs, for exampleG = ({a, b, c, d} , {(a, b) , (a, c) , (b, a) , (b, d) , (c, b) , (c, d)}) as depicted
in Figure 2.1a, may be represented visually. Vertices (2.1b) are represented as circles. They are
usually labeled and, in this thesis, generally filled black if they do not have a special meaning.
Edges are represented as arrows between two vertices (see 2.1c). In this example, a and b are
connected in both directions.

A subgraph H is a graph itself and is related to its parent graph G such that it contains a
subset of its edges and vertices. We write H ⊆ G with the conditions V (H) ⊆ V (G) and
E(H) ⊆ E(G). A subset of vertices V ′ ⊆ V (G) may be used to create an induced subgraph

a b

c d

(a) A graph G

a b

c d

(b) Vertices V (G)

a b

a c

b a

b d

c b

c d

(c) Edges E(G)

a b

c

(d) A subgraph H ⊆ G

Figure 2.1.: Basic graph examples

16 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

G[V ′] with V (G[V ′]) = V ′ and E(G[V ′]) = {(u, v) ∈ E(G) | u ∈ V ′ ∧ v ∈ V ′}. Figure 2.1d
displays an example where both a vertex and its incident edges, as well as two other edges,
have been removed.

We may intersect graphs G ∩ H such that the result is the largest subgraph of both parents
G ∩ H = (V (G) ∩ V (H), E(G) ∩ E(H)) or join graphs G ∪ H analogously: G ∪ H =
(V (G) ∪ V (H), E(G) ∪ E(H)).

A linear order is a binary relation ≤ on a set X that is

• antisymmetric: if two elements are related in both directions, they are identical: ∀x, y ∈
X : x ≤ y ∧ y ≤ x ⇒ x = y,

• transitive: ∀x, y, z ∈ X : x ≤ y ∧ y ≤ z ⇒ x ≤ z,
• and connex: any two elements are related in either way: ∀x, y ∈ X : x 6= y ⇒ x ≤

y ∨ y ≤ x.

Sometimes, whenX is finite, we will address the ordered elements ofX simply as (x1, . . . , xn).
In this case, ≤ will refer to the placement of elements in this order.

Having defined a linear order ≤ on V (G), we can use V [≤ v] = {vi ∈ V | vi ≤ v} for the set
of elements smaller than or equal to v. G[≤ v] is the subgraph G[V [≤ v]]. V [≥ v], V [> v],
V [< v], G[≥ v], G[> v] and G[< v] work as expected.

A path u1 un is a sequence of vertices u1, . . . , un and connects vertex u1 with vertex un if
there exist directed edges (u1, u2) , (u2, u3) , . . . (un−1, un).

a b

d

c

e

Reach→ (G, V (G), b)Reach� (G, V (G), b)

Figure 2.2.: A simple example of different reach measures on G

We will write Reach→ (G,W, v) = {u ∈ V (G) | ∃(v u) in G[W]} for the set of vertices
reachable by a path from v on the subgraph induced by W . Furthermore, we will use a simi-
lar definition for the set of vertices that are either reachable with a path from v or that are able to
reach v , Reach� (G,W, v) = {u ∈ V (G) | ∃(u v ∈ G[W]) ∨ ∃(u v ∈ G[W])}.
Reach (G,W, v) is the equivalent for undirected graphs, only ensuring a path between two
vertices can be found. For the graph G in Figure 2.2, Reach→ (G, V (G), b) = {b, d} while
Reach� (G, V (G), b) = {a, b, d}. If the graph was undirected, Reach (G, V (G), b) would be
{a, b, d, e}.

2. Definitions and Concepts 2.1. General graph notation 17

A complete graph Kn contains all possible edges between its n vertices, that is, for any two
distinct vertices u, v ∈ V (G), u 6= v : (u, v) ∈ E(G). A one-way complete graph Hn may
also contain just one edge u, v ∈ V (H), u 6= v : (u, v) ∈ E(G) ∨ (v, u) ∈ E(H). In general,
Hn ⊆ Kn. For examples with n = 8, see Figure 4.1g on page 51. A k-clique is a completely
subgraph of a graph with k vertices. A graph is bipartite if it consists of two sets that may be
connected by edges between each other but none inside.

The underlying undirected graph of a graphG can be produced by creating an undirected graph
U with V (U) = V (G) and adding edgesE(U) = {{u, v} | (u, v) ∈ E(G) ∨ (v, u) ∈ E(G)}.
Information is lost in this case. An undirected graph may be represented by a directed graph
that has edges in both directions where the undirected edges would have been.

R

C D A

JL

S

Z

F

(a) Original boat course G

R

C D A

JL

S

Z

F

(b) Undirected graph U

R

C D A

JL

S

Z

F

(c) Converting U back to directed

Figure 2.3.: Conversion between directed and undirected graphs

Graph grammars (Kreowski et al., 2006) are a powerful tool for graph transformation.

Definition 1 (Graph grammar) A graph grammar GG = (Σ, S, P, T) for labels Σ con-
sists of the initial graph S ∈ GΣ (the set of all labeled graphs), graph transformation rules
P and allowed terminal labels T ⊆ Σ. Graph transformation rules are a set of tuples
(Γ, U,W) with U,W ∈ GΣ,Γ, the set of all possible graphs G annotated with labels Σ and
additional per-transformation-rule labels Γ.

A rule can be applied to a graph, replacing a subgraph U with a subgraphW . The empty
graph is represented as ε. Per transformation rule, additional labels Γ may be used to
re-identify vertices. When applying a graph grammar to a graph, we obtain a language
L(GG) of graphs that can be derived from S by applying the transformation rules and only
consist of vertices labeled according to T .

As such, they are very similar to Chomsky grammars on strings. We will generally represent
labels Σ by drawing vertices differently while per-rule labels Γ will be placed next to vertices.

For example, the following graph grammar could be used to describe all directed circlesL(GG):

Σ = {v}
H3 = ({a, b, c} , {(a, b) , (b, c) , (c, a)})
GG = (Σ, H3, {({va, vb, vn} , ({va, vb} , {(va, vb)})) , ({va, vb, vn} , {(va, vn) , (vn, vb)})} ,Σ)

18 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

Directed circle

Initial graph H3

Transformation rules

p1:
1 2

−→
1 n 2

Terminal *

Figure 2.4.: Constructing directed circles

It can be drawn as in Figure 2.4. Notably, we do not need to apply labels to vertices and only
use Γ in individual rules to prevent switching edge directions.

2.2. Tree-Width

Tree-Width for undirected graphs was discovered independently multiple times. In 1972, Bertelé
and Brioschi introduced the concept of dimension. Halin (1976) later defined S-Functions, that
work in the same way. The term Tree-Width was coined by Robertson and Seymour (1984) when
they discovered it again and brought it to the attention of many mathematicians as it plays a key
role in the celebrated graph minors project that eventually led to the proof of Wagner’s conjec-
ture (Robertson and Seymour, 2004). Initially, they defined Tree-Width by tree-decompositions,
which we will define in Section 2.2.1 on the facing page. Since then, many other authors have
studied Tree-Width as well, finding other equivalent ways to define it.

(a) A tree
Tree-Width is one

(b) Still similar to a tree
Tree-Width is two

(c) A grid
Tree-Width is five

(d) Complete graph
Tree-Width is 24

Figure 2.5.: Basic Tree-Width examples

It is defined on undirected graphs. Trees and forests always have a Tree-Width of one (Diestel,
2018). The less tree-like a graph is, the higher its Tree-Width rises. The complete graph has the
highest Tree-Width, in effect as large as its number of vertices.

2. Definitions and Concepts 2.2. Tree-Width 19

2.2.1. Tree-decompositions

As mentioned before, tree-decompositions were originally defined by Robertson and Seymour
(1984). Tree-decompositions also lead directly to many algorithmic applications as one can,
similar as on trees, design dynamic algorithms that work bottom up from the leaves to the root
of the decomposition.

Definition 2 (Tree-decomposition) A tree-decomposition of an undirected graph G is a
pair (T,X). T is a tree and X is a family of subsets of V (G) with X = {Xt : t ∈ V (T)}
such that

•
⋃

X = V (G)
• For every edge e = (u, v) ∈ E(G) there exists a t ∈ V (T) : u, v ∈ Xt

• For t, t′, t′′ ∈ V (T), with t′ being on the path between t and t′′: Xt ∩Xt′′ ⊆ Xt′

The width of such a tree-decomposition is max ({|Xt| − 1 | t ∈ V (T)}).

G has a Tree-Width equal to the smallest width of all tree-decomposition that can be found.

Let us examine an example in Figure 2.6. A possible tree-decomposition consists of six decom-
position sets (2.6a). Each of these sets allows us to cut the graph into pieces, just like removing a
vertex from a tree. Furthermore, it is possible to draw the decomposition tree T itself (2.6b). The
vertices t ∈ V (T) are filled with the vertices that are in each respective setXt. Dashed lines are
used to help differentiate between sets. We can see that, for the Island of DucksD which needs
to be contained both in a set with the Zoo Z and the Arcade A, the path in the corresponding
decomposition tree always contains D as well. As we are using up to three element sets, the
Tree-Width of this graph is at most two.

R

C D A

J L

S

Z

F

(a) Decomposition sets Xt

R
C C

D

D
A

J

D
J

S

D

S
F

D
F

Z

J

L

(b) Decomposition tree T

Figure 2.6.: Tree decompositions of the underlying undirected graph of Figure 2.3b on page 17

20 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

2.2.2. The invisible inert robber game for Tree-Width

In 1967, Breisch first introduced the concept of graph searching games, then motivated by his
cave research.

The problem is this: A person is lost in a particular cave and is
wandering aimlessly. Is there any efficient way for the rescue party to
search for the lost person? What is the minimum number of searchers
required to explore a cave so that it is impossible to miss finding the
victim if [the lost person] is in the cave? (Breisch, 1967, as cited in
Dyer, 2018)

Graph searching games lead to one of the most intuitive and easy to understand alternative
definitions of Tree-Width. There are several equivalent games, we are going to use the invisible
inert robber game. Intuitively, a team of k + 1 cops tries to capture a robber. The robber
occupies some vertex of the graph. She is allowed to move if a cop is about to arrive and
may then move to another vertex of the graph via a path that is not occupied by another cop.
The cops on the other hand can move anywhere, then are not restricted by paths in the graph
(imagine them to be in a helicopter).

The strategy the cops are going to use is known to the robber. In other words, she could observe
all moves made by the cops and just announce having taken advantage of any movement
pattern not accounted for by the cops, perhaps similar to a non-deterministic finite automaton
(NFA) reaching an accepting state.

The Tree-Width becomes a measure of how many cops are needed to catch the robber, which
very intuitively captures the notion of separators in a graph. As graphs become connected
more strongly, the easier it gets for the robber to escape. This results in an increasing amount of
cops required to be able to capture her – by taking advantage of the limited Tree-Width of the
underlying graph.

Definition 3 (Invisible inert robber game for Tree-Width) Formally, the invisible and inert
cops and robber game with k + 1 cops can be described by series of n game states:

(C1, R1), (C2, R2), . . . , (Cn, Rn)

Each tuple represents a set of up to k+1 cops locations Ci ⊆ V (G) with |Ci| ≤ k+1 and
possible robber locations Ri for a specific move i according to the cops’ strategy. Initially,
the robber could be located everywhere: (C0, R0) = (∅, V (G))

For every move, the k + 1 cops are allowed to move freely: Ci ⊆ V (G), |Ci| ≤ k + 1.

Meanwhile, the robber is only allowed to move as soon as a cop is about to enter her
location. She can move along paths in the graph as far as she likes, but she cannot use
paths through vertices that are currently occupied by cops. The cop needs to leave their

2. Definitions and Concepts 2.2. Tree-Width 21

position to start moving, she is able to use this freed vertex both for finding paths and resting.
In the end, she will rest in a place that won’t be occupied by a cop:

Ri+1 =

Ri ∪
⋃

v∈Ri∩Ci+1

Reach (G, V (G) \ (Ci ∩ Ci+1), v)

 \ Ci+1.

When looking at strategies for this game, the cops need to find a way to eliminate all
possible robber locations. In fact, this is a one-player game. The robber does not have
a strategy on her own, as the changes to the possible robber locations are completely
determined by the new cop locations. The cop strategy is to find the right set of locations
C1, . . . , Cn to capture the robber. As a result, the cops have a winning strategy if they can
reach a game state with Rn = ∅.

A strategy is robber-monotone if the robber is not able to occupy any vertex that was inaccessible
before: ∀i ∈ [2, . . . , n − 1] : Ri ⊆ Ri−1. The restriction that the robber can only move upon
arrival of a cop allows the strategy of cops choosing locations C1, . . . , Cn to be simplified as a
pair of choosing up to k locationsBi that cannot trigger a robber movement, and then occupying
a new vertex ci with the remaining cop. This results in an elimination order c1, . . . , cn, that will
become relevant later.

A lot of alternative cops and robber games have been defined. LaPaugh (1993) focused on
contaminated edges. Seymour and Thomas (1993) have created an alternative game with a
visible robber where fewer cops are sufficient as they don’t need to account for parts of the
graph that weren’t chosen.

2.2.3. Partial k-trees

Tree decompositions illustrate how to deconstruct and analyze a graph. Partial k-trees on the
other hand offer a constructive view on Tree-Width. Intuitively, they are easily described using
graph grammars.

During construction, we always ensure that the Tree-Width doesn’t exceed the limit we specified
at the start. As long as we follow a set of rules, we can now transform any k-tree into a k-tree
with more vertices.

Technically, when adding a new vertex, the positions we connect it with are the locations a cop
would need to reside at for clearing that vertex. By remembering this order and because the
robber may only move prior to cop occupation, these vertices remain exactly as the separators
between the already cleared, and the still possibly occupied vertices of the k-tree. The basic
principle of partial k-trees is that any subgraph will have a smaller or equal Tree-Width when
compared to its super graph. We could, for instance, just use the very same cop strategy with
the robber having a subset of its moves.

22 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

Partial 4-trees

Initial K4

Rules

p1: −→ p2: −→ p5: −→

p3: −→ p4: −→ p6: −→ ε

Terminal *

Figure 2.7.: Construction rules for partial 4-trees

Such a super graph may be created first by following a set of simple rules first devised by Rose
in 1970:

Definition 4 (Partial k-tree) For obtaining a k-tree for some k, first, the complete graph
with k verticesKk is created. It is a k-tree itself. After that, assume a k-treeGwith n vertices
is given, a k-tree G′ with n + 1 vertices may be created by adding a new vertex and
connecting it with each member of a k-clique of G.

Finally, vertices and edges of a k-tree may be removed to obtain a partial k-tree.

Using this procedure allows the creation of any graph with a Tree-Width of at most k. In Fig-
ure 2.7, we can see all rules that apply for k = 4. We have created additional rules for smaller
inducing cliques, otherwise, we could have added support vertices to allow for this. We also
allow removing edges right away as this does not increase the Tree-Width of the graph and does
not remove restrictions for further construction steps.

2.2.4. Sparsity

Sparsity describes the amount of edges a graph has in relation to its vertices. Sparse graphs
have fewer edges than dense graphs and are usually better suited for algorithms. One way to
measure sparsity is the average degree of vertices of a graph (Nešetřil and Mendez, 2012).

Corollary 1 For graphs of fixed Tree-Width, the average degree of vertices is always at
most twice as large as its Tree-Width.

2. Definitions and Concepts 2.3. Kelly-Width 23

Proof Strong induction over the number of vertices.

Base case At the beginning, each of the k vertices of the complete graph has an outgoing
degree of k − 1.

Induction hypothesis We assume that the average outgoing degree of k-trees with n ≥ k
vertices is at most 2k.

Induction step We will now determine the average degree of a k-tree with n + 1 vertices. In
each construction step, we add one vertex and up to k edges. As a result, the total degree
rises by at most 2k, as each edge is connected to two vertices. We now have an average
degree of up to 2k·n

n
· 2k

1
= 2k for a k-tree with n+ 1 vertices.

Those added edges are always connected to the added vertex. If remove one, we are not able
to increase the degree over 2k. �

As a result, a k-tree with n vertices can have at most k ·n edges. A general graph on n vertices
could have

(
n
2

)
edges, which is quadratic in n.

2.2.5. Computing Tree-Width

Arnborg, Corneil, et al. (1987) demonstrated that given a graph, computing the smallest k such
that a k-tree can be constructed for this graph is an NP-complete problem. There have been
several efficient algorithms with different approaches, for example using parameterization or an
approximation of a guaranteed quality.

2.3. Kelly-Width

There have been several attempts to generalize the definition of Tree-Width to directed graphs.
The various characterizations lead to different notions for directed graphs. We will in particular
study one measure related to the definition by orders, the invisible cops and robber game and
k-trees at the same time.

Hunter and Kreutzer (2008) have discussed attempts of finding an equivalent measure for di-
rected graphs. They have called it Kelly-Width after the famous outlaw Ned Kelly that was able
to evade the police for several months, using a network of accomplices, safe hiding-places,
and spies. In this section, we will present their aspects most relevant to understand the new
Bi-Kelly-Width, which we will introduce in the next chapter.

24 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

Kelly-Width may as well be defined by a cops and robber game, explained in more detail in
Section 2.3.1, which works similar to the game for undirected Tree-Width seen before. However,
the robber is only allowed to move along edges in their direction.

For this, a directed graph is assumed with the new robber locations being computed via Reach→
and with all other rules remaining unchanged.

Elimination orders are provided as a more formal approach directly usable as a winning strategy
for the corresponding game. They are a rather direct adoption from the Tree-Width cops and
robber game and transfer the rules to paths on directed graphs.

The new construction has properties similar to directed acyclic graphs (DAGs), so k-trees are
adapted as k-DAGs. This includes their constructive approach and using partial k-DAGs to
describe all graphs of width k. For this, the definition relies on slightly more conditions than the
original:

k-DAGs always have a Kelly-Width of at most k. The initial graph is a full digraph with k vertices,
each connected in both directions. Given a k-DAG with n vertices, a new k-DAG with n + 1
vertices may be constructed by a set of simple construction rules.

We now define these concepts formally.

2.3.1. Cops and robber games

With the invisible inert robber game, Hunter and Kreutzer found a way to define Kelly-Width
using a cops and robbers game. In this case, the robber is only allowed to move alongside
edges in their natural direction, and only if the vertices are not occupied by cops.

Definition 5 (Invisible inert robber game for Kelly-Width) This game is played with k+1
cops and is played with a list of moves

(C1, R1), (C2, R2), . . . , (Cn, Rn)

with sets of cops positionsCi ⊆ V (G)with |Ci| ≤ k+1 and possible robber positionsRi ⊆
V (G) after a move i. We start with (C1, R1) = (∅, V (G)). The cops win if (Cn, Rn) =
(Cn, ∅).

For a set of vertices Ci previously occupied, a number of cops may move to Ci+1. If any of
these fields were occupied by the robber (Ri ∩ Ci+1), she may start moving along edges
as long as no remaining cops Ci∩Ci+1 block them. The positionsW a robber could move
to starting at a specific vertex v are therefore limited to:

W = Reach→ (G, V (G) \ (Ci ∩ Ci+1) , v)

2. Definitions and Concepts 2.3. Kelly-Width 25

Therefore, a complete robber move from locations Ri to Ri+1, given previous cop posi-
tions Ci and future cop positions Ci+1 may be defined as

Ri+1 = (Ri \ Ci+1) ∪

 ⋃
v∈Ri∩Ci+1

Reach→ (G, V (G) \ (Ci ∩ Ci+1), v)

As the robber may only move if a cop would occupy her location, no changes will follow if no
previous position is occupied:

(Ri ∩ Ci+1 = ∅) ⇒ (Ri+1 = Ri)

Obviously, one cop can catch the robber on any acyclic digraph, hence, acyclic digraphs have
Kelly-Width 0. In particular, also very dense graphs can have small Kelly-Width and Kelly-Width
does not distinguish between complicated and simple acyclic graphs.

2.3.2. Elimination orders

Another formal approach to define Kelly-Width is via elimination orders. They naturally corre-
spond to the monotone winning strategies in cops and robber games, however allow for a more
intuitive approach to paths within graphs. This approach is slightly different to the original by
Hunter and Kreutzer. We will present their idea in Section 2.3.3 on the following page instead.

Definition 6 (Strong reachability) Given a linear order ≤ = (v1, v2, . . . vn), we can de-
fine a new reachability measure on a graph. SReach→ (G,≤, v) denotes vertices that are
smaller than v and that are reachable through a path with all of its internal vertices larger
than v:

SReach→ (G,≤, v) = {w ∈ V (G) | w < v and ∃p = v w : ∀u ∈ p \ {w} : u ≥ v}

We decided to denote elements eliminated first as smaller. This may be defined in the opposite
direction in some sources and should be noted to avoid confusion.

Definition 7 (Width of an order) The width of an order ≤ is the largest number of strong
reachable vertices of any vertex.

Width→(G,≤) = max {|SReach→ (G,≤, v)| | v ∈ V (G)}

As such, they are closely connected to the inert robber game. Given an elimination order for
a graph of width k, a winning strategy for k cops immediately follows. At position i, the cops
have to move to the up to k smaller vertices in SReach→. Afterwards, the one remaining cop

26 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

moves to vi, removing it from the set of possible robber locations. Going by the definition of
elimination orders, none of the previously occupied vertices can be reached anymore. They are
always blocked by a cop. As a result, the robber can only reach the larger vertices. Therefore,
the set of possible vertices is reduced for each inspected vertex. At the end of this game and
following all moves, the graph is cleared of all possible robber locations, and the cops have
won.

2.3.3. Fill-in graphs

Fill-in graphs were used by Hunter and Kreutzer (2008) as one of the three equivalent ways to
define Kelly-Width. They used it as a formal approach to vertex elimination on digraphs. We
should note, that our order is inverted to the one used by Hunter and Kreutzer. This allows us to
be more consistent with cops and robber games.

Definition 8 (Fill-in graph) First, we start with a graph G and its vertices V (G) placed in
a linear order ≤ = (v1, . . . , vn). Now, we construct the graph F with a fill-in procedure. It
is called fill-in graph of G with respect to the order ≤.

Let Gn be G. For i = n− 1, n− 2, . . . , 1, we will assume that the previous graph Gi+1 has
been constructed. Now, we obtain Gi from Gi+1 by adding all edges (u, v) if u, v < vi+1

and (u, vi+1) , (vi+1, v) ∈ E (Gi+1). We apply these rules several times, until we reachG1

at the end. This graph with all possible paths made explicit is now F .

The width of an order ≤ of V (G) is equivalent to the maximum out-degree of any vertex vi to
smaller vertices in Gi [≤ vi], its respective fill-in step.

The vertices that the outgoing smaller edges of vi in Gi lead to, directly correspond to
SReach→ (G,≤, vi). Hunter and Kreutzer called these vertices guards. Consequently, the Kelly-
Width of a graph again corresponds to the order resulting in the smallest width – in this case a
result of the fill-in procedure.

2.3.4. Partial k-DAGs

Similar to k-trees, k-DAGs can be defined using a small set of rules.
Definition 9 (Partial k-DAG) Again, we start with a complete directed graph of size k.
Given an existing k-DAG H , we may add a new vertex v and then edges to v such that

• Up to k edges lead from v to a set X ⊆ V (H)
• Wemay then add edges (u, v)with u ∈ V (H) if (u,w) ∈ E(H) for allw ∈ X\{u}

to obtain a new k-DAG of the same k. Now, a partial k-DAG is a subgraph of a k-DAG.

2. Definitions and Concepts 2.3. Kelly-Width 27

Any 0-DAGs and their subgraphs are DAGs. For k′ < k, a k′-DAG is also a k-DAG, as we are
allowed to apply the same rules.

Let us look at the construction of partial 4-DAGs in Figure 2.8. We always keep track of the
currently added vertex to prevent adding illegal edges using a marker that is passed through
creation steps.

2.3.5. Equivalence of concepts

All these measures are equivalent, as Hunter and Kreutzer (2008) demonstrated and proved:

Theorem 2 Let G be a digraph. The following are equivalent:

(1) G has a directed elimination ordering of width ≤ k.

(2) k + 1 cops have a monotone winning strategy to capture an inert robber.

(3) G is a partial k-DAG.

2.3.6. Sparsity

Corollary 3 Graphs of bounded Kelly-Width are not necessarily sparse.

Proof As a counterexample, let us consider a specific class of one-way complete graphs. If we
take a linear order of n vertices and connect any two distinct vertices by an edge leading from
the smaller to the larger vertex, we end up with a graph free of directed circles and therefore a
Kelly-Width of zero. This graph however, is still very dense with an average outgoing degree of
1
2
n. An example can be found in Figure 4.1f on page 51. �

28 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

Partial 4-DAGs

Initial K4 and marker M M

Rules
p1: M −→ 0

v
p2:

w1
0
v

−→
w1

0
v

p3:
w1

M −→
w1

1
v

p4:
w1

u

1
v

−→
w1

u

1
v

p5:

w1

w2

M −→

w1

w2

2
v

p6:

w1

w2

u

2
v

−→

w1

w2

u

2
v

p7:

u

w2

2
v
−→

u

w2

2
v

p8:

w1

w2

w3

M −→

w1

w2

w3

3
v

p9:

w1

w2

w3

u

3
v

−→

w1

w2

w3

u

3
v

p10:

u
w2

w3

3
v
−→

u
w2

w3

3
v

p11:

w1

w2

w3

w4

M −→

w1

w2

w3

w4

4
v

p12:

w1

w2

w3

w4

u

4
v

−→

w1

w2

w3

w4

u

4
v

p13:

u
w2

w3

w4

4
v
−→

u
w2

w3

w4

4
v

p14: 1
v
−→

v

M
p15: 2

v
−→

v

M
p16: 3

v
−→

v

M
p17: 4

v
−→

v

M

p18: 0
v −→ v

M p19: M −→ ε p20: −→ p21: −→ ε

Terminal Only remaining

Figure 2.8.: Construction rules for partial 4-DAGs

29

3. Bi-Kelly-Width

In this chapter, we will introduce a new width measure for directed graphs, Bi-Kelly-Width. In
contrast to Kelly-Width, it also takes the reverse direction of edges into account.

3.1. Cops and robber games

Cops and robber games for defining Bi-Kelly-Width can easily be extended from the inert invisible
robber game used to characterize Kelly-Width in Section 2.3.1 on page 24. They are played
on a directed graph. A limited number of k + 1 cops are allowed to move to any vertex. They
are trying to capture an invisible robber who may only move once the cops are about to occupy
its position. She, however, always knows the strategy of the cops and will always elude capture
unless the cops follow a strategy that accounts for every starting position and every allowed
move of the robber.

A further restriction is that the strategy of the cops needs to be monotone. They have to ensure
that the robber is not able to reoccupy vertices where an occupation was ruled out earlier.

Once a cop announces its next position, the robber is allowed to start moving. In contrast to the
cops that are allowed to move anywhere, she is only allowed to follow along edges, adhering to
the direction of edges. However, at the start of a turn, she is also able to decide to follow edges
in the opposite direction during her move. She is forced to only use one of both movement sets
for each turn, but can use both over the course of the whole game. She may neither rest on nor
move over vertices that are currently occupied by a cop. On the other hand, she is allowed to
use locations that the cops have deserted, both in previous moves and, importantly, the vertices
currently moving cops used to occupy.

As a result of our robber only being able to move once a cop arrives and having complete
foreknowledge of the cop strategy, she rather becomes a set of possible locations. The cops
always have to account for every possible location and for every movement that follows from
landing on a possible location. Otherwise, she would have predicted this and decided to take
this chance in the first place.

30 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

It is possible for the robber to reoccupy a vertex if a cop triggers a movement that has an
unoccupied path to this vertex. As a result, if there are too few cops involved in the chase, she
is able to find a set of densely connected vertices where she can always move between places
the cops could occupy, each with enough connections to other hiding places. This is called a
haven. In the worst case, the complete graph, each vertex would need to be occupied by a cop
as the robber would always find somewhere to move to escape the moving cop if it were fewer.
The whole graph becomes the haven.

3.1.1. Cops winning a game

Let us take a look at a complete game in Figure 3.1 on the next page. The game will be played
by three cops on our boat course from Figure 1.2b on page 8. The graph consists of a directed
circle with two branches to its sides that allow movement in both directions.

She is not able to escape, and the game is won by three cops in Figure 3.1o, though only two
were involved in the last turns. Notably, even though the actual robber was located in the center
right next to a previously cleared and not occupied vertex, she cannot move, as that would have
required a cop announcing to moving there. This particular game did not involve reoccupation,
but the next one in Section 3.1.2 will.

3.1.2. Robber winning a game

In Figure 3.2, we will try the same graph, using just two cops. Let us even assume that our
robber has been so friendly to tell the cops where she will start and that she will only rest in
three different places of her choice, while still following all other rules.

The cops can now move however they like, but they still face a problem. For any move they
make, she is always able to escape, even though she keeps her promise, and the cops know
exactly where she has to be.

It doesn’t even make sense for the cops to move elsewhere. If they occupied one of the interme-
diate vertices on the path, she would even be able to reach both of the other appointed vertices
once the other cop moved to her hiding place. Those three vertices form a haven for her, where
she is able to evade the cops no matter how they move. In fact, she is always able to occupy a
position previously owned by a cop if the cops move across the graph. Thus, she wins the game
as the cops are never able to capture her.

As a result, we now know that our boat course has a Bi-Kelly-Width of exactly two since we
know that three cops have a monotone winning strategy while two can be evaded.

3. Bi-Kelly-Width 3.1. Cops and robber games 31

At the start of the game in 3.1a, the robber can be anywhere, so she has to be expected every-
where. 3.1b shows the first cops arriving. The robber could start moving from these positions,
though there are no vertices she couldn’t have occupied already, resulting in 3.1c.

C

R

?

Cop

Robber definite

Robber possible

Cop immanent

Unoccupied
?

? ? ?

??

?

?

?

(a) Initial state
?

? ? ?

??

?

?

?

(b) Cops will appear
C

C C ?

??

?

?

?

(c) End of first turn

For the next turns, one cop remains at the Ducks to guard the already cleared areas. Meanwhile,
two cops take turns to clear the outer circle while also guarding the just cleared area.

C ??

???

?

?

?

(d) Two cops move

C C

C?

?

?

?

(e) End of second turn

C

C?

??

?

?

(f) A cop moves

C

C?

C

?

?

(g) End of third turn

C

?

C

?

??

(h) A cop moves

C

?

C

?

C

(i) End of fourth turn

C

???

C

(j) A cop moves

C

RC

C

(k) End of fifth turn

Finally, the last vertex she could have evaded capture on and therefore her hiding location needs
to be inspected. The cops, however can’t move there directly and need to guard the Junction
first. In the end, as seen in 3.1n, a cop can announce the arrival at her location.

R

(l) A cop moves back

CR

(m) End of sixth turn

CRR

(n) A cop moves

CC

(o) End of game

Figure 3.1.: Different turns as part of a game on the boat course from Figure 1.2b on page 8

32 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

State Transition with intermediate state State

R

CC

C

CR

C

RC

C

R

C

R

RC

R

C

R

C

CR

Figure 3.2.: States in an impossible game for two cops on the boat course from Figure 1.2b

3. Bi-Kelly-Width 3.1. Cops and robber games 33

Actually, any combination of three vertices of the circle have this property for only two cops. The
haven exists if we can either find k vertices that are connected with disjoint paths to each other
(so a cop cannot occupy a crucial vertex) or, in general, a location where all future moves and
those of all successors will fulfill these conditions, even if the set of reachable vertices changes
throughout the game. The latter occurs on complete grids as in Figure 4.4f.

3.1.3. Formal definition

Definition 10 (Invisible inert robber game for Bi-Kelly-Width) The invisible inert robber
game is played on a graph G.

The game may be represented as a series of turns (C1, R1), (C2, R2), . . . , (Cn, Rn) con-
sisting of cop locations C1, C2, . . . , Cn ⊆ V (G) and remaining possible robber locations
R1, R2, . . . , Rn ⊆ V (G).

We again start with no cops and all vertices being the possible hiding place of our robber

(C1, R1) = (∅, V (G))

and take no remaining places for our robber

(Cn, Rn) = (Cn, ∅)

as well as the monotonicity of the robber locations

∀1 ≤ i ≤ n : Ri+1 ⊆ Ri

as the winning conditions for the cops.

For each move of the robber starting at a vertex v, she may move either along or against
unoccupied edges, including those of cops moving in this turn:{

w ∈ V (G) \ Ci+1 | w ∈ Reach� (G, V (G) \ (Ci ∩ Ci+1) , v)
}

If we combine this with the condition that the robber may only move if a cop would appear
in her place, we are able to define all moves from possible locations Ri to the next allowed
locations Ri+1 for our robber:

Ri+1 =

Ri ∪
⋃

v∈Ri∩Ci+1

Reach� (G, V (G) \ (Ci ∩ Ci+1), v)

 \ Ci+1

Now, we define the sufficient-guards-number kguards for a graph such that we are able to
find a monotone winning strategy for kguards+1 cops. |Ci| ≤ kguards+1 for all 1 ≤ i ≤ n.

34 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

3.1.4. Observations

Again, no changes in possible robber locations will follow if no possible robber location be-
comes occupied:

Ri ∩ Ci+1 = ∅ ⇒ Ri+1 =

(
Ri ∪

⋃
v∈∅

Reach� (G, V (G) \ (Ci ∩ Ci+1), v)

)
\ Ci+1

= Ri \ Ci+1

= Ri

In general, graphs don’t need to be connected. However, as a result of the movement patterns,
the number of cops required for the component with the highest Bi-Kelly-Width would be able
to clear this part of the graph and take care of all other components after that. This is because
there is only one robber, and she is not able to move between components. It is notable that
the component with the largest Bi-Kelly-Width is not necessarily the largest component. As a
result, the Bi-Kelly-Width of a graph consisting of multiple components is equal to the maximum
Bi-Kelly-Width of all components.

It is insignificant if a single or multiple cops are allowed to move at the same time. It is clear that
even if multiple movements were allowed, the cops could also decide to always move alone,
thus having the same result. On the other hand, as the moving cops disappear first and allow
the robber to start moving from multiple locations, this would actually benefit the robber if used.
In the end, neither the cops gain an advantage nor do they have to grant that for the robber
unless they choose to.

3.2. Bi-directed elimination orders

In the following, we will discuss linear orders of vertices ≤ of a graph G. These lead to a width
measure slightly different to SReach→ (G,≤, v) that was defined for Kelly-Width (Definition 6
on page 25).

Definition 11 (Strong bi-directed reachability) In this case, strong reachability takes into
account paths in both directions. From a vertex v of a graph G given an order ≤, this
includes all smaller vertices that can either be reached from v through a path through larger
vertices or that can reach v only using vertices larger than v.

SReach� (G,≤, v)
= {w ∈ V (G) | w < v and ∃p ∈ {v w,w v} : ∀u ∈ p \ {w} : u ≥ v}

3. Bi-Kelly-Width 3.2. Bi-directed elimination orders 35

in SReach Current vertex Larger vertex |SReach|

Fill-in-edge

Path

R C D A J S F Z L 0

R C D A J S F Z L 1

R C D A J S F Z L 1

R C D A J S F Z L 1

R C D A J S F Z L 2

R C D A J S F Z L 2

R C D A J S F Z L 2

R C D A J S F Z L 2

R C D A J S F Z L 1

v1 < v2 < v3 < v4 < v5 < v6 < v7 < v8 < v9

Figure 3.3.: Analyzing strong reachability for each vertex given an elimination order

36 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

Definition 12 (Bi-directed width of an order) The width of an order≤ is the largest num-
ber of strong reachable vertices.

Width�(G,≤) = max
{∣∣SReach� (G,≤, v)

∣∣ | v ∈ G
}

Definition 13 (Bi-Kelly-Width) The Bi-Kelly-Width of a graph is the smallest width of all pos-
sible orders.

Bi-Kelly-Width(G) := min
{

Width�(G,≤) | for all orders ≤
}

If we look at our cops and robber game (Figure 3.1 on page 31), we will now treat early occu-
pied vertices as smaller within our order, resulting in (R,C,D,A, J, S, F, Z, L). In Figure 3.3
on the preceding page, SReach→ (G,≤, vi) for each vertex is displayed. We can now take the
maximum cardinality of these sets to calculate the width of this order, which is 2. For computing
the actual Bi-Kelly-Width of the order, we would need try out all possible orders or use other
measures that will be explained later. As there is no order resuting in a smaller width, 2 is also
the Bi-Kelly-Width of this graph.

3.2.1. Fill-in graphs

Similarly to Kelly-Width, a fill-in graph with an equivalent Bi-Kelly-Width may be constructed.
Only the restriction of added vertices is altered to encompass the additional possible paths to
be taken care of.

To do this, we will start with a graph G and its vertices V (G) placed in a linear order of ver-
tices ≤ or (v1, . . . , vn). Now, we are able to construct a new graph F with the fill-in proce-
dure F = fill(G,≤). It is called fill-in graph of G with respect to the order ≤.

Definition 14 (FILL(G,≤)) Let Gn be G. For i = n− 1, n− 2, . . . , 1, we will assume that
the previous graph Gi+1 has been constructed already. Now, we are able to obtain Gi

from Gi+1 by adding all edges (u, v) if u, v < vi+1 and (u, vi+1) , (vi+1, v) ∈ E (Gi+1).
As we are able to apply these rules several times, we can reach G1 at the end. This graph
with all possible paths made explicit is now the fill-in graph G1 = F .

Lemma 4 Let G be a graph and let ≤ be an order of V (G). Then SReach� (G,≤, vi)
exactly contains the set of smaller adjacent vertices of vi in Gi (in either direction). As a
result, the width of an order ≤ can be found in F as the highest number of smaller vertices
adjacent to any vertex.

Proof Let us use complete induction over the inspected vertex i, counting down from n.

Base case In the base case, i = n. Therefore, there are no larger vertices than vi. As a re-
sult, SReach� (G,≤, vi) = {v | (v, vi) ∈ E(G) ∨ (vi, v) ∈ E(G), v 6= vi}. At the same
time, no vertices have been added to the fill-in graph yet, so both sets are equal.

3. Bi-Kelly-Width 3.2. Bi-directed elimination orders 37

1

2 3 4

59

6

8

7

(a) G9

Adjacent smaller: 1

1

2 3 4

59

6

8

7

(b) G8

Adjacent smaller: 2

1

2 3 4

59

6

8

7

(c) G7

Adjacent smaller: 2

1

2 3 4

59

6

8

7

(d) G6

Adjacent smaller: 2

1

2 3 4

59

6

8

7

(e) G5

Adjacent smaller: 2

1

2 3 4

59

6

8

7

(f) G4

Adjacent smaller: 1

1

2 3 4

59

6

8

7

(g) G3

Adjacent smaller: 1

1

2 3 4

59

6

8

7

(h) G2 (same as G1)
Adjacent smaller: 1

Figure 3.4.: Fill-in graph construction for the boat course

Induction hypothesis We now assume that Lemma 4 applies to all vertices ≥ vi+1 and Gi+1.

Induction step We will now construct Gi and inspect the vertex vi.

For each vertex v > vi, SReach� (G,≤, v) now contains all vertices that have the com-
plete internal path from/to v in G [> v]. For Gi+1, all these have been connected by an
edge. Gi now adds a shortcut for vertices that were connected through a directed path
inG by adding vertices according to connections inGi+1. The smaller vertices connected
with vi in Gi are therefore exactly SReach� (G,≤, vi). Furthermore, this step does not
remove connections of vertices in G [< vi].

Therefore, Lemma 4 on the preceding page applies to all steps leading up to G1. Moreover,
SReach� (G,≤, vi) is exactly SReach� (F,≤, vi) for all vi ∈ V (G). �

Corollary 5 As a result, the width of an order may also be determined with a fill-in graph,
resulting in an alternative characterisation for Bi-Kelly-Width. We will look at the adjacent
vertices in the fill-in graph.

Adj�(G, v) = {v ∈ V (G) | ∃ (v, w) ∈ E(G) ∨ ∃ (w, v) ∈ E(G)}

38 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

We take the largest amount of smaller adjacent vertices in both directions as the width of
our order.

Width�(G,≤) = max{
|{w ∈ V (G) | w ∈ Adj� (fill (G,≤) , v) , w < v}|

| for all v ∈ V (G)}

Now we need to find the order with the smallest width.

Bi-Kelly-Width(G) = min
{

Width�(G,≤) | for all orders ≤
}

vi may also be taken fromGi as edges to smaller vertices aren’t added afterwards anymore.

In Figure 3.4 on the preceding page, we create the fill-in graph using the same order as in
the previous section, (R,C,D,A, J, S, F, Z, L). The additional edges are also displayed in
Figure 3.3, where the equivalence of both notions becomes even more apparent. Again, the
width of the boat course using this order is 2, the maximum of smaller connected vertices.

3.3. Partial bi-directed k-trees

Similar to Kelly-Width with its partial k-DAGs, the partial bi-directed k-tree can be constructed
with a few simple rules.

First, we are able to construct a bi-directed k-tree:

Definition 15 (Partial bi-directed k-tree) A complete directed graph of k vertices, or in
other words a graph with k vertices that are connected to each other, is a bi-directed k-tree.

A bi-directed k-tree with n+1 vertices can be constructed by taking a bi-directed k-tree H
with n vertices and adding a vertex v. In the next step, we will keep in mind two subsets,
X→, X← ⊆ V (H) with |X→ ∪X←| ≤ k such that any two vertices u ∈ X→, w ∈ X←

are either connected by an edge (w, u) or (u,w) or both. We will now add new edges

• (u, v) for all u ∈ X→

• (v, w) for all w ∈ X←

A partial bi-directed k-tree simply is a subgraph of a bi-directed k-tree. As the presence of
edges in a step doesn’t impose new restrictions itself - we are only allowed to add more
edges if edges are present already - a partial bi-directed k-tree may also be constructed
by only adding a subset of edges in each step, as long as all previous conditions still hold.

3. Bi-Kelly-Width 3.3. Partial bi-directed k-trees 39

Partial bi-directed 4-tree

Initial K4

Rules all for partial bi-directed 3-trees and

p1:

1
2

3
4

−→

1
2

3
4

v
p2:

1
2

3
4

−→

1
2

3
4

v
p3:

1
2

3
4

−→

1
2

3
4

v

p4:

1
2

3
4

−→

1
2

3
4

v
p5:

1
2

3
4

−→

1
2

3
4

v
p6:

1
2

3
4

−→

1
2

3
4

v

p7:

1
2

3
4

−→

1
2

3
4

v
p8:

1
2

3
4

−→

1
2

3
4

v
p9:

1
2

3
4

−→

1
2

3
4

v

p10:

1
2

3
4

−→

1
2

3
4

v
p11:

1
2

3
4

−→

1
2

3
4

v
p12:

1
2

3
4

−→

1
2

3
4

v

p13:

1
2

3
4

−→

1
2

3
4

v
p14:

1
2

3
4

−→

1
2

3
4

v
p15:

1
2

3
4

−→

1
2

3
4

v

Terminal *

Figure 3.5.: Construction rules for partial bi-directed 4-trees

40 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

Partial bi-directed 2-tree

Initial K2

Rules (incomplete)

p1:
1

−→
1

p2:
1 2

−→
1 2

p3:
1 2

−→
1 2

Terminal *

Figure 3.6.: Construction rules sufficient for boat course construction

3.3.1. Observations

The two subsets X→, X← ⊆ V (H) actually need to be both sides of an at least one-way
complete bipartite graph during each step. This doesn’t rule out other connections between
members within a set. If there is an intersection X→ ∩X← between the two subsets, this subset
must be a two-way clique.

They don’t necessarily need to have the same size, as long as their total size doesn’t exceed the
desired Bi-Kelly-Width.

Moreover, if X→ = X←, we obtain the same condition of extending a k-clique as with Tree-
Width in Section 2.2.3. This again demonstrates how close this measure is to the original notion
of Tree-Width.

3.3.2. Constructing a partial bi-directed k-tree

We will now recreate our boat course in Figure 3.7. As we already know that it will have a
Bi-Kelly-Width of two, we will use this as our limit for subsets |X→ ∪X←| ≤ 2. Because of
the relatively simple structure of the boat course, we actually only needed a subset of rules for
partial bi-directed 2-trees, Figure 3.6.

We start with a complete graph with two edges in Figure 3.7a. In Figures 3.7b, 3.7c and 3.7h,
we chose X→ = X← with a size of one. Figures 3.7d to 3.7g all use the previous vertex as
the one-element X→ and X← to contain the Island of Ducks. This still ensures the cardinality
of their union to be 2. With the constructed bi-directed k-tree Figure 3.7i, we can remove some
unnecessary edges (Figure 3.7j) to obtain our desired graph Figure 3.7k.

3. Bi-Kelly-Width 3.3. Partial bi-directed k-trees 41

V New Vertex

X→ ∩ X←
R

C

(a) Initial graph

R

C D

(b) Ducks added

R

C D A

(c) Arcade added

R

C D A

J

(d) Junction added

R

C D A

J

S

(e) Castle added

R

C D A

J

SF

(f) Forest added

R

C D A

J

S

Z

F

(g) Zoo added

R

C D A

JL

S

Z

F

(h) Lake added

R

C D A

JL

S

Z

F

(i) Bi-directed two-tree

R

C D A

JL

S

Z

F

(j) Edges to be removed

R

C D A

JL

S

Z

F

(k) Resulting graph

Figure 3.7.: Constructing the boat course in the Bürgerpark

3.3.3. Sparsity

Corollary 6 As with Tree-Width (Section 2.2.4 on page 22), graphs of bounded Bi-Kelly-
Width are sparse. Their average outgoing degree is at most 2k.

Proof The average outgoing and incoming degree of a graph are the same, so we will only
look at the outgoing degrees. We will use complete induction over the number of vertices.

Base case At the beginning, each of the k vertices of the complete graph may have an outgoing
degree of k − 1 each.

Induction hypothesis We assume that the average outgoing degree of bi-directed k-trees with
n ≥ k vertices is at most 2k.

Induction step We will now determine the average degree of a bi-directed k-tree with n + 1
vertices. During construction, we may choose sets X→, X← with a total of k vertices.
As a result, up to 2k edges are added during this construction step. We now have an
average degree of up to 2k·n

n
· 2k

1
= 2k for a bi-directed k-tree with n+ 1 vertices.

42 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

The added edges rely on each individual vertex, so a partial k-tree cannot increase its average
degree over 2k by removing specific vertices. �

3.4. Equivalence of concepts

As with Kelly-Width, all three concepts are equivalent. The elimination order with its fill-in graph
can be interpreted as the steps required in a cops and robber game (Section 3.1). All elimination
orders (Section 3.2) are constructed procedurally. The game can be played and won on the
graphs constructed procedurally (Section 3.3).

Theorem 7 Given a graph G and a fixed k the following are equal:

• k is a sufficient-guards-number in the cops and robber game from Definition 10.
• An elimination order with a width k can be found both in terms of SReach� and for

fill-in graphs.
• G is a partial bi-directed k-tree.

Hence, the k used in orderings used to analyze strong reachability or to create fill-in graphs,
partial bi-directed k-trees and the sufficient-guards-number kguards for k+1 cops being able
to catch a robber are all an upper bound to the Bi-Kelly-Width of a graph. The smallest k
that can be found in any of these representations is the Bi-Kelly-Width of that graph.

Proof The proof can be performed similarly to Kelly-Width (Hunter and Kreutzer, 2008), only
taking into account the differences introduced before. The equivalence of definitions for elimi-
nation orders was already shown in Lemma 4.

3.4.1. Cops and robber games → Elimination orders

Let us assume, that k + 1 cops are sufficient to find a robber monotone winning strategy. As
it makes no difference, see Section 3.1.4, we will assume that this winning strategy relies on
moving each cop individually.

Let us now order all vertices by their first occupation by a cop in our winning strategy. We will
call this order ≤ or (v1, v2, . . . , vn). v1 is the first vertex to be visited while vn will be the last
that will conclude the game.

We will now claim that this order has a width of at most k. Let us look at the movements in the
game. As our k + 1 cops have a monotone winning-strategy, no occupation of a new vertex
allows the robber to move to a previously already occupied and cleared vertex. To help with
this, we have up to k other cops that can be moved within the set of already cleared vertices. As

3. Bi-Kelly-Width 3.4. Equivalence of concepts 43

a result, these will always be placed in a way that obstructs hypothetical paths for the robber to
escape back into the cleared part of the graph. If she in fact could escape, the strategy couldn’t
have been monotone in the first place, contradicting the original assumption.

These vertices however now form SReach� (G,≤, vi). They are smaller with respect to the
order, and are the up to k vertices that are placed on paths that need to be blocked as they
directly come from or lead to the newly occupied vertex.

3.4.2. Elimination orders → Partial bi-directed k-trees

Let us consider the fill-in graph F for a linear order ≤ = (v1, v2, . . . , vn) of graph G that leads
to the width k. We will claim that the subgraph induced by the last k + j vertices of this fill-in
graph are always a subgraph of a bi-directed k-tree Tj .

Let us prove this via complete induction over j.

Base case For j = 0, let us consider the last k vertices. The induced subgraph of those k
vertices is always a subgraph of a complete graph on k vertices.

Induction hypothesis Let us assume that the last k+n vertices of the fill-in graph are a subgraph
of a bi-directed k-tree Tn.

Induction step For j = n+1, we will inspect the vertex v|V (G)|−(k+n+1) that needs to be added
for Tn+1. In other words, i = |V (G)| − (k + n).

As a result of the construction of fill(G,≤) only being connected to k lower vertices,
these form our at most k vertices the new vertex v|V (G)|−(k+n+1) is being connected to.
The second property, that for fixed sets X→, X←,

• (u, v) for all u ∈ X→

• (v, w) for all w ∈ X←

is automatically fulfilled as a result of our fill-in graph construction where we added all
edges (u, v) if u, v < vi+1 and (u, vi+1) ∈ E (Gi+1) and (vi+1, v) ∈ E (Gi+1).

Each edge either

• existed. No further steps were required.
• was added during construction. This however always ensures that a vertex between

our two sets X→, X← has been formed.

Therefore, our fill-in-graph is always a subgraph of a bi-directed k-tree, by definition a partial
bi-directed k-tree.

44 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

3.4.3. Partial bi-directed k-trees → Cops and robber games

First, let us assume, that our bi-directed k-tree is not partial. We will now define a monotone
winning strategy for each construction step using complete induction over the number of vertices
n to be inspected.

Base case For a bi-directed k-tree with k vertices, we will place k cops on all initial vertices.
This will definitely remove any possible robber.

Induction hypothesis Let us assume that the cops have a monotone winning strategy on the
bi-directed k-tree with n vertices.

Induction step If we want to construct a bi-directed k-tree with n+1 vertices and add a vertex
v. We will assume that all vertices that were added earlier are still occupied. We will
now place a cop on any vertex in X→ and X←. This will require at most k cops as,
per construction, |X→ ∪X←| ≤ k. As per induction hypothesis, this will not trigger any
moves by our robber as these vertices were previously unoccupied. For the next move,
we will place the last cop on v.

It is obvious that previous vertices cannot be reoccupied using the edges added during this
step, but what about possible future edges and vertices? This is where the next condition,
the one-way complete bipartite graph between all vertices in X→ and X← comes in.
During construction of any future edges for a vertex v′, and therefore any future paths, we
would have needed an edge between the futureX ′→ andX

′←. If either of these vertices
would need to be v, any future vertices v′ would be connected to current members of
X→ and X←. If they weren’t, they must have been part of the same set where a path to
follow won’t be created. The robber would therefore have to stop at v′ before being able
to move again where blocking these exact moves can be accounted for.

As a result, we can find a monotone winning-strategy on any bi-directed k-tree such that k + 1
cops are sufficient.

If we only take a partial bi-directed k-tree, the robber would only be allowed to use a subset of
moves. The winning strategy of cops would not be affected negatively.

3.4.4. Conclusion

We have demonstrated that all individual properties bind the next observed to be equal or
smaller that the initial size k. If we conclude the circle, we gain that kelimination ≤ kk−trees ≤
kguards ≤ kelimination and that all of them are, in fact, equal.

3. Bi-Kelly-Width 3.5. Closure properties 45

(a) Horizontal lines, constant
Bi-Kelly-Width

(b) Vertical lines, constant
Bi-Kelly-Width

(c) Combined graph with un-
bounded Bi-Kelly-Width

Figure 3.8.: An example for creating a graph with unbounded Bi-Kelly-Width from a union

The smallest k was defined as Bi-Kelly-Width for elimination orders (Section 3.2 on page 34)
and therefore, Bi-Kelly-Width may be characterized by any of these measures. �

3.5. Closure properties

A lot of typical closure properties cannot be applied to Bi-Kelly-Width. For example, if we take
two graphs with k lines of vertices (both having a Bi-Kelly-Width of one) and look at the union
of both, we would obtain a grid of unbounded Bi-Kelly-Width k.

However, some interesting closure properties remain to be observed.

3.5.1. Subgraphs

Corollary 8 A subgraph H ⊆ G has a Bi-Kelly-Width smaller than or equal to G.

Bi-Kelly-Width (H) ≤ Bi-Kelly-Width (G)

The winning strategy of the associated cops and robber game would remain intact – the robber
is restricted to less possible moves while the same number of cops can occupy the (remaining)
vertices as before without opening additional paths for escaping.

46 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

3.5.2. Intersection

Corollary 9 For the intersection of two graphs G ∩H , the intersection of the graphs has
a width at most as large as the smaller graph.

Bi-Kelly-Width (G ∩H)

≤ min (Bi-Kelly-Width (G) ,Bi-Kelly-Width (H))

This is a direct result of Corollary 8 on the previous page because the intersection is a subgraph
of both graphs.

3.5.3. Limited union

In Section 3.1.4 on page 34, we have observed that for graphs with subcomponents that are
not connected, the Bi-Kelly-Width only takes the worst of both into account.

Corollary 10 For a union of two graphs G,H with at most h = |V (G) ∩ V (H)| shared
vertices, the width will be at most as large as h added to the Bi-Kelly-Width of the graph
with the greater Bi-Kelly-Width.

Bi-Kelly-Width (G ∪H)

≤ max (Bi-Kelly-Width (G) ,Bi-Kelly-Width (H)) + |V (G) ∩ V (H)|

In the relevant cops and robber game, we would simply place additional cops on the h vertices
and then continue with the existing strategies for each individual graph using the amount of cops
required for that.

The same applies to adding h edges between two existing disjoint graphs or h new vertices that
are the point of connecting any number of disjoint graphs.

3.5.4. Topological minors

A topological minorH in terms of Bi-Kelly-Width of a graphG is a graph with a subset of vertices
V (H) ⊆ V (G) and a set of edges such that all edges between vertices in H correspond to
paths in G. These paths need to be disjoint, and may not share edges. The Bi-Kelly-Width of G
will always be greater than or equal to the Bi-Kelly-Width of H .

This is a result of the cops and robber game definition. The same amount of cops can find a
winning strategy on H by eliminating all vertices in the same order. In cases where paths to
already cleared vertices exist, these need to be blocked by cops. As paths need to be disjoint,

3. Bi-Kelly-Width 3.6. Comparison to other width measures 47

and individual edges would need to have existed earlier, this can still only apply to k vertices.
Otherwise, the robber could have escaped the winning strategy of the cops on our original
graph G.

This allows finding a lower bound for Bi-Kelly-Width on graphs. We now just need to find a
respective minor of a known size. Meanwhile, the upper bound can be provided by specifying
an elimination order, a successful cops and robber game or a construction via partial bi-directed
k-trees.

This construction differs from the Directed Topological Minors introduced in Ganian, Meister,
et al. (2016) for DAG-Width and Kelly-Width. They do not take paths into account and, for
example, allow the creation of completely new paths.

3.6. Comparison to other width measures

Theorem 11 The Bi-Kelly-Width of a graph G is always between its Kelly-Width and the
Tree-Width of its underlying undirected graph U .

Kelly-Width(G) ≤ Bi-Kelly-Width(G) ≤ Tree-Width(U)

In general, Kelly-Width, Bi-Kelly-Width and the underlying Tree-Width of a graph are not
identical.

Proof This is a result of the definition of the three cops and robber games.

Between Kelly-Width and Bi-Kelly-Width, the movement pattern of k + 1 cops in the game for
Bi-Kelly-Width can always be equally applied in the game for Kelly-Width because the robber
is only allowed a subset of moves while all other factors remain identical. The additional moves
allowed for the robber in games for Bi-Kelly-Width can require more cops.

When we look at the Bi-Kelly-Width-game for a symmetric digraph, our robber is able to use
any non occupied path, just as the Tree-Width-robber on the underlying undirected graph. On
the other hand, any just one-way directed edge restricts the robber movement without hindering
cops, resulting in a possibly smaller Bi-Kelly-Width.

Figure 3.9 provides an example for non-equivalence. For an ordered 5 × 5-grid, Kelly-Width
is 0, Bi-Kelly-Width is 2 and the underlying Tree-Width is 5. �

48 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Figure 3.9.: An example for a difference between width measures

3.7. Computing Bi-Kelly-Width

Corollary 12 Computing the Bi-Kelly-Width of a graph is an NP-complete problem.

Proof First, we have to demonstrate that finding the Bi-Kelly-Width is in NP. We can easily
construct a token that can be verified in polynomial time. It consists of an elimination ordering
(verifiable in O(n3)) and a topological minor of known same size and how to construct it. This
can be verified by comparing paths in both graphs and is possible within O(n2) if we were
to mark used edges in an adjacency matrix. Lastly, the width of the minor could have been
demonstrated by a haven with k to min (k2, n) different states, each with up to n adjacent
states to verify the transition to.

We can now demonstrate that finding the Bi-Kelly-Width of a graph is at least as hard as other
problems in NP. As computing the minimum k such that a k-tree can be constructed for a graph
is NP-complete (Section 2.2.5), the same applies for finding the smallest possible width k of an
order for Bi-Kelly-Width. We can simply create a polynomial time reduction on the Partial k-Tree
Problem:

• For an undirected graph U , create a directed graph G with V (G) = V (U) and
{u, v} ∈ E(U) ⇒ (u, v), (v, u) ∈ E(G).

• Find an elimination order with Width�(G,≤) = k, so k + 1 cops can monotonously
catch the robber.

• The game can be played and won by an identical amount of cops in the cops and robber
game for Tree-Width, as the allowed movement patterns are identical.

• The Tree-Width of this graph is at most k, as defined by the game.
• If the Tree-Width was smaller than the k that was found, a better strategy for the cops and

robber game would exist. This strategy, however, could then be applied in the Bi-Kelly-
Width game, contradicting the original assumption.

All of the steps leading to the transfer are possible polynomial time, as we only need to convert
n2 vertices. This is even linear for a fixed k, as graphs of bounded Tree-Width and Bi-Kelly-Width
are sparse. All other operations should be possible in constant or linear time.

3. Bi-Kelly-Width 3.7. Computing Bi-Kelly-Width 49

As a result, the Bi-Kelly-Width of a graph may not be computed in polynomial time, unless
P = NP. �

50

4. Interesting Graphs

We will now observe some interesting graphs. We will first look at general graphs of increasing
Bi-Kelly-Width and bipartite graphs which are important for later constructions. Usually, the
figures will contain one possible elimination order to reach the desired Bi-Kelly-Width. This order
tends to also lead to the minimal Tree-Width and Kelly-Width, which are given as well.

4.1. General classes

4.1.1. Trees

Just as with Tree-Width, trees always have a Bi-Kelly-Width of one, unless they are trivial and only
contain one vertex. Figure 4.1a demonstrates one possible elimination order. First, the root at
the top is occupied. After that, for any occupied vertex that will be occupied, the predecessor
gets blocked first. A depth-first-search would have been possible just as well.

For Bi-Kelly-Width, we are able to start at any vertex for this procedure. Kelly-Width, on the
other hand, may rely on a specific order if it is to take advantage of a tree being circle free and
only relying on one cop. Once bi-directed edges are introduced, this ceases to be possible for
Kelly-Width and it rises from zero to one (Figure 4.1b).

4.1.2. Circles

Circles always have a Tree-Width and Bi-Kelly-Width of two. Only Kelly-Width may reach lower
values if the edge direction is broken and if it doesn’t contain two adjacent bi-directed edges.

4.1.3. Complete graphs

A complete graph, even if all edges are just one-way directed as in Figure 4.1f is a haven and
therefore hase Bi-Kelly-Width of |V (G)| − 1, similar to undirected Tree-Width. This is in contrast
to Kelly-Width, which would even allow for a width of zero if there was a sink for edges.

4. Interesting Graphs 4.1. General classes 51

1

2 3 4

5 6 7 8 9

10 11 12 13 14

Tree-Width 1
Bi-Kelly-Width 1

Kelly-Width 0
(a) Ordered tree

1

2 3 4

5 6 7 8 9

10 11 12 13 14

Tree-Width 1
Bi-Kelly-Width 1

Kelly-Width 1
(b) Full tree

1 2

3

4

56

7

8

Tree-Width 2
Bi-Kelly-Width 2

Kelly-Width 1
(c) Ordered circle

1 2

3

4

56

7

8

Tree-Width 2
Bi-Kelly-Width 2

Kelly-Width 0
(d) Broken circle

1 2

3

4

56

7

8

Tree-Width 2
Bi-Kelly-Width 2

Kelly-Width 2
(e) Full circle

1 2

3

4

56

7

8

Tree-Width n-1 7
Bi-Kelly-Width n-1 7

Kelly-Width 0 0
(f) One-way complete graph

1 2

3

4

56

7

8

Tree-Width n-1 7
Bi-Kelly-Width n-1 7

Kelly-Width n-1 7
(g) Complete graph

Figure 4.1.: Basic graph classes with different edge layouts

52 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

4.1.4. Bipartite graphs

Bipartite graphs have a Tree-Width of at most m = |V (G)|
2

. The cops would be placed on the
smaller set of vertices (at most |V (G)|

2
for an even distribution, such as Figure 4.2c) and one

remaining cop would then be able to clear all other vertices. As we can see in Figure 4.2b,
this measure still needs to be applied on ordered bipartite graphs for Bi-Kelly-Width, while Kelly-
Width cannot find any directed circles anymore. Furthermore, the Bi-Kelly-Width is limited by the
maximum degree of either side if the edges are all directed in the same way. For example in
Figure 4.2a, only four cops would suffice to clear the top row and then block all d = 3 possible
escape routes back into the top layer.

This allows for an easy characterization of some directed graphs, for example those that either
have an incoming or an outgoing degree of zero for all vertices have a Bi-Kelly-Width of at most
|V (G)|

2
. If the two sets of vertices do not have the same size, a strategy can take advantage of

the smaller set. The same applies to having one side with a smaller maximum degree. We can
also take advantage of this with some restrictions in multi-layered scenarios as can be seen in
neural networks.

1

6

2

7

3

8

4

9

5

10

Tree-Width m 5
Bi-Kelly-Width d 3

Kelly-Width 0 0
(a) Sparse bipartite

1

6

2

7

3

8

4

9

5

10

Tree-Width m 5
Bi-Kelly-Width m 5

Kelly-Width 0 0
(b) Complete ordered

1

6

2

7

3

8

4

9

5

10

Tree-Width m 5
Bi-Kelly-Width m 5

Kelly-Width m 5
(c) Complete bipartite graph

Figure 4.2.: Bipartite graphs with different edge layouts

4.2. Examples from literature

4.2.1. Slivkin’s gadget construction

Slivkins (2010) proved W[1]-hardness for the Directed Edge Disjoint Paths Problem on acyclic
directed graphs. All of these would have a Kelly-Width of zero, as they are acyclic, so Kelly-
Width and Directed Tree-Width are not suitable as a parameter for a parameterized approach
to this problem. But how about Bi-Kelly-Width?

4. Interesting Graphs 4.2. Examples from literature 53

At this point, we can only prove that the Bi-Kelly-Width of the acyclic graphs Slivkins constructed
yields instances of arbitrarily large Bi-Kelly-Width. This does not lead to a parameterization of
the Directed Edge Disjoint Paths Problem with Bi-Kelly-Width, however, it doesn’t rule it out either.
Slivkins used a parameterized reduction from the well-known W[1]-hard Clique Problem to the
Directed Edge Disjoint Paths Problem on a specific class of acyclic directed graphs. In the Clique
Problem the input is an undirected graph G and a number k and the question is whether G
contains a clique of size k, that is, a set of k pairwise adjacent vertices. The reductions translate
an input (G, k) for the Clique Problem to a directed graph via a quite complex construction.
The full details of this construction are not relevant for us. We focus on demonstrating that
the constructed instances have unbounded Bi-Kelly-Width. As we will see, there will be almost
complete bipartite directed graphs as in Figure 4.2b on the facing page.

From the instance (G, k) a k×n array of identical gadgets is created. Assume that each of the
n vertices of V (G) exactly corresponds to some u. For each gadget Gi,u for 1 ≤ i ≤ k and
1 ≤ u ≤ n there are k pairs of vertices (aiu1 , biu1), . . . , (aiuk , biuk). There are further vertices that
serve as terminal pairs for the Directed Edge Disjoint Paths Problem as well as further complicated
connections that ensure that a clique of size k exists in G if and only if the desired edge-disjoint
paths exist in the constructed instance.

The part that alone creates a subgraph of unbounded Bi-Kelly-Width is the following. For each
edge {u, v} in G and each i < j there is a directed edge from biuj in Giu to ajvi in Gjv. Assume
now that the input graph G is a complete graph on n vertices and k ≥ 2. We consider in the
constructed directed graph the subgraph H with vertex set b1u2 and a2v1 for u, v ≤ n. As G is
complete, we have a directed edge from b1u2 to a2v1 if and only if u 6= v, hence, we have an
almost complete directed bipartite graph. In fact, we have exactly n2 − n edges, hence, an
edge density of n2−n

2n
, which goes to infinity as we increase our input size n.

As shown in Corollary 8, Bi-Kelly-Width is closed under subgraphs. Furthermore, graph classes
of bounded Bi-Kelly-Width need to be sparse by Corollary 6 on page 41. We can now conclude
that the class of all instances obtained in the reduction does not have bounded Bi-Kelly-Width.

4.2.2. Adler’s examples for Directed Tree-Width

Adler (2007) analyzed the properties of Directed Tree-Width with a couple of graphs. We can
observe that they do result in a relatively high Bi-Kelly-Width as they are very dense. In Figure 4.3
on the following page D1 has a Bi-Kelly-Width of 5. In contrast to Directed Tree-Width, the non-
monotone strategy with one fewer cop fails. The same applies to the Bi-Kelly-Width of D2.

54 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

16

14

15

12

13

10

11

8

9

6

7

4

5

2

3

1

(a) D1

16

17

14

15

12

13

11

12

9

10

7

8

5

6

3

4

1

2

(b) D2

Figure 4.3.: Graphs after Adler

4.3. Complex classes

These classes of graphs usually involve larger structures and more sophisticated instructions how
edges are laid out. Some cases are actually special cases of the aforementioned normal classes,
especially bipartite graphs appear frequently.

4.3.1. The grid

One of the most important classes for demonstrating the differences between the width measures
are grids. For simplicity, we will only observe square grids. Otherwise, game strategies will
usually take advantage of the shorter side if the width is unbounded. We will refer to m as the
amount of vertices on one side, so the total amount of vertices ism2. Tree-Width is constant with
k = m. It therefore also serves as the upper bound for the other width measures.

4. Interesting Graphs 4.3. Complex classes 55

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Tree-Width m 5
Bi-Kelly-Width 2 2

Kelly-Width 0 0
(a) Opposingsource and sink

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Tree-Width m 5
Bi-Kelly-Width 2 2

Kelly-Width 0 0
(b) In- or out-degree of zero

1

2

3

4

5

10

9

8

7

6

11

12

13

14

15

20

19

18

17

16

21

22

23

24

25

Tree-Width m 5
Bi-Kelly-Width 2 2

Kelly-Width 0 0
(c) Some alternating edges

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Tree-Width m 5
Bi-Kelly-Width m/2 3

Kelly-Width m/2 3
(d) Many alternating edges

1

6

11

16

21

2

7

12

17

22

3

8

13

18

23

4

9

14

19

24

5

10

15

20

25

Tree-Width m 5
Bi-Kelly-Width m 5

Kelly-Width 1 1
(e) Some bi-directed edges

1

6

11

16

21

2

7

12

17

22

3

8

13

18

23

4

9

14

19

24

5

10

15

20

25

Tree-Width m 5
Bi-Kelly-Width m 5

Kelly-Width m 5
(f) Full grid

Figure 4.4.: Grids with different edge layouts

In the grids in Figures 4.4a and 4.4b, the cop strategy would rely on blocking the immediate
vertices leading back into already covered ground. This leads to a Bi-Kelly-Width of two, while
the two cops are not required for Kelly-Width which is zero.

With only alternating edges, the grid in Figure 4.4b is actually just a directed bipartite graph
and a Bi-Kelly-Width of two.

56 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

4.3.2. Cylindrical grids

Cylindrical grids can be interpreted as the outer side of a cylinder. For Tree-Width, they were
among the first types of graphs being analyzed (Robertson and Seymour, 1984). Notably, they
are planar graphs.

Most strategies can work on clearing the different layers of the grid one by onewhile securing the
first vertex of a row (Figures 4.5a and 4.5b on the next page). Bi-Kelly-Width becomes unbound
as soon as bi-directed edges appear, which are creating too may paths (Figure 4.5c). This
however does not work once the graph becomes to dense vertically, leading to an unbounded
width on all measures (Figure 4.5d).

If the cylindrical grid becomes very short with a circumference twice as large as one side, strate-
gies can rely on blocking one vertical column and then clearing the remaining vertices like a
regular grid.

4.3.3. The mesh

In contrast to the cylindrical grids, the mesh connects vertex in all directions. For m > 2, these
aren’t planar graphs anymore and many strategies rely on a lot of cops to block escapes through
one side and effectively reduce the capturing problem to a cylindrical grid.

In some cases such as Figure 4.6a on page 58, paths may be broken by occupying a diagonal
line first.

4.3.4. The hypercube

Directedm-dimensional hypercubes can have a constant Kelly-Width of zero. For Bi-Kelly-Width
this value rises as the minimum degree of edges increases for each dimension.

Figure 4.7 demonstrates this with tesseracts (m = 4). The underlying undirected Tree-Width or
the full hypercube has a width of 2m−1, as all vertices of a layer need to be blocked, otherwise
reoccupation would be possible. If just few paths are created (Figures 4.7a to 4.7c), Bi-Kelly-
Width rises only with m.

4. Interesting Graphs 4.3. Complex classes 57

6

12

18

24

30

1

7

13

19

25

2

8

14

20

26

3

9

15

21

27

4

10

16

22

28

5

11

17

23

29

6

12

18

24

30

1

7

13

19

25

Tree-Width m 6
Bi-Kelly-Width 3 3

Kelly-Width 1 1
(a) Ordered

6

12

18

24

30

1

7

13

19

25

2

8

14

20

26

3

9

15

21

27

4

10

16

22

28

5

11

17

23

29

6

12

18

24

30

1

7

13

19

25

Tree-Width m 6
Bi-Kelly-Width 3 3

Kelly-Width 0 0
(b) Alternating edges

6

12

18

24

30

1

7

13

19

25

2

8

14

20

26

3

9

15

21

27

4

10

16

22

28

5

11

17

23

29

6

12

18

24

30

1

7

13

19

25

Tree-Width m 6
Bi-Kelly-Width m 6

Kelly-Width 2 2
(c) Horizontally bi-directed edges

6

12

18

24

30

1

7

13

19

25

2

8

14

20

26

3

9

15

21

27

4

10

16

22

28

5

11

17

23

29

6

12

18

24

30

1

7

13

19

25

Tree-Width m 6
Bi-Kelly-Width m 6

Kelly-Width m 6
(d) Vertically bi-directed edges

Figure 4.5.: Cylindrical grids

58 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

6

11

17

23

29

35

1

12

18

24

30

36

1

12

7

13

19

25

31

2

7

13

14

20

26

32

3

8

14

20

21

27

33

4

9

15

21

27

28

34

5

10

16

22

28

34

35

6

11

17

23

29

35

6

12

18

24

30

36

1

Tree-Width 2m 12
Bi-Kelly-Width m+2 8

Kelly-Width m 6
(a) Ordered

6

12

18

24

30

36

31

1

7

13

19

25

31

1

32

2

8

14

20

26

32

2

33

3

9

15

21

27

33

3

34

4

10

16

22

28

34

4

35

5

11

17

23

29

35

5

36

6

12

18

24

30

36

6

1

7

13

19

25

31

Tree-Width 2m 12
Bi-Kelly-Width 4 4

Kelly-Width 0 0
(b) Alternating edges

6

12

18

24

30

36

31

1

7

13

19

25

31

1

32

2

8

14

20

26

32

2

33

3

9

15

21

27

33

3

34

4

10

16

22

28

34

4

35

5

11

17

23

29

35

5

36

6

12

18

24

30

36

6

1

7

13

19

25

31

Tree-Width 2m 12
Bi-Kelly-Width 6 6

Kelly-Width 1 1
(c) Alternating rows

6

12

18

24

30

36

31

1

7

13

19

25

31

1

32

2

8

14

20

26

32

2

33

3

9

15

21

27

33

3

34

4

10

16

22

28

34

4

35

5

11

17

23

29

35

5

36

6

12

18

24

30

36

6

1

7

13

19

25

31

Tree-Width 2m 12
Bi-Kelly-Width 2m 12

Kelly-Width 2m 12
(d) Some bi-directed edges

Figure 4.6.: Different meshs

4. Interesting Graphs 4.3. Complex classes 59

14

13

10

9

16

15

12

11

3

4

7

8

1

2

5

6

Tree-Width 2m-1 8
Bi-Kelly-Width m 4

Kelly-Width 0 0
(a) Opposingsource and sink

14

13

10

9

16

15

12

11

3

4

7

8

1

2

5

6

Tree-Width 2m-1 8
Bi-Kelly-Width m 4

Kelly-Width 0 0
(b) Alternating edges

14

13

10

9

16

15

12

11

3

4

7

8

1

2

5

6

Tree-Width 2m-1 8
Bi-Kelly-Width m 4

Kelly-Width 1 1
(c) Cube with some directed edges

14

13

10

9

16

15

12

11

3

4

7

8

1

2

5

6

Tree-Width 2m-1 8
Bi-Kelly-Width 2m-1 8

Kelly-Width 2m-1 8
(d) Full cube

Figure 4.7.: Different edge layouts for hypercubes

60

5. Conclusion

5.1. Further research

Now that the structure theory has been created, algorithmic applications need to follow. Espe-
cially finding an FPT parameterization for the Directed Edge-Disjoint Paths Problem remains an
open problem.

We focused on comparing Bi-Kelly-Width with Kelly-Width and undirected Tree-Width. It could
be interesting to compare Bi-Kelly-Width to other directed width measures like Directed Tree-
Width (Johnson et al., 2001), DAG-Width (Berwanger et al., 2006; Obdržálek, 2006), or
Kenny-Width and DAG-Depth (both Ganian, Langer, et al., 2014). This would help to under-
stand Bi-Kelly-Width even better. Future width measures could be inspired by modifying existing
directed width measures to take reversed paths into account. As it has been done with Tree-
Width (Kříž and Thomas, 1991), an adoption of Bi-Kelly-Width for directed infinite graphs would
seem plausible.

Considering topological minors, it would be interesting to find the minimum set of forbidden mi-
nors for graphs to have a small fixed Bi-Kelly-Width, as it has been done for Tree-Width (Arnborg,
Corneil, et al., 1990) and Kelly-Width (Kintali and Zhang, 2017).

Results in computing Tree-Width, such as parameterized approaches (Bodlaender, 1992), ap-
proximation (Bodlaender, Gilbert, et al., 1992), both combined (Bodlaender, Drange, et al.,
2016; Korhonen, 2021) or heuristics (Bodlaender, Fomin, et al., 2006) and integer linear pro-
gramming (ILP; Bodlaender, Jansen, et al., 2011) could inspire constructions for Bi-Kelly-Width.

This would also allow for applications outside of being a parameter for complexity. It could be a
useful measure for the complexity of source code or class hierarchies in software engineering. It
would also be interesting to analyze the Bi-Kelly-Width of certain types of Neural Networks that
do not fully connect all nodes of adjacent layers, such as Convolutional Neural Networks (LeCun
and Bengio, 2002).

5. Conclusion 5.2. Summary 61

5.2. Summary

We have created a structure theory that nicely fits between undirected Tree-Width and Kelly-
Width.

Tree-Width Bi-Kelly-Width Kelly-Width
Maximum average degree / density 2k 2k unbounded

Width of trees 1 1 0 or 1
Width of circles 2 2 0 to 2

Width of ordered grids unbounded 2 0
Width of directed acyclic graphs (unbounded) unbounded 0

Width of complete graphs n-1 (maximal) n-1 (maximal) may be 0
Takes edge direction into account 7 3 3

Many different characterizations available 3 3 3

Figure 5.1.: Comparison summary

Bi-Kelly-Width comes with various equivalent definitions. This makes it very robust. The cops and
robber games example is perhaps the most intuitive and visual representation. They allow us to
compare Bi-Kelly-Width with other width measures. Elimination orderings are intuitively closely
related both to winning games and working in algorithmic applications. Fill-in graphs are well
suited for algorithms to compute the Bi-Kelly-Width of a graph. Partial bi-directed k-trees using
their generative approach are well connected to formal languages.

We used different kinds of examples to help to demonstrate its properties, most prominently
grids. Even with these abstract cases it becomes apparent that we are in some cases able to
find structures with bound Bi-Kelly-Width and obtain the same unbound values as undirected Tree-
Width once the graphs become densely connected. This is exactly the behavior we intended,
so it is well suited as a parameter for complexity.

There are many promising possible applications for Bi-Kelly-Width in several fields, and it would
be possible to look into further derived concepts.

In the end, this is exactly what we have hoped to achieve. It even might be the good adaption
of Tree-Width to undirected graphs that many researchers have been looking for.

62

A. Appendix

A.1. References
Adler, Isolde (2007). “Directed tree-width examples”. In: Journal of Combinatorial Theory,

Series B 97.5, pp. 718–725. doi: 10.1016/j.jctb.2006.12.006 (cit. on pp. 53, 54).
Arnborg, Stefan, Derek G. Corneil, and Andrzej Proskurowski (1987). “Complexity of Finding

Embeddings in a k-Tree”. In: SIAM Journal on Algebraic Discrete Methods. doi: 10.1137/
0608024 (cit. on pp. 11, 23).

– (1990). “Forbidden minors characterization of partial 3-trees”. In: Discrete Mathematics
80.1, pp. 1–19. doi: 10.1016/0012-365X(90)90292-P (cit. on p. 60).

Arnborg, Stefan and Andrzej Proskurowski (1989). “Linear time algorithms for NP-hard prob-
lems restricted to partial k-trees”. In: Discrete Applied Mathematics 23.1, pp. 11–24. doi:
10.1016/0166-218X(89)90031-0 (cit. on p. 12).

Baedeker, Karl (1910). “Bremen I”. In: Handbook for Travellers. 15th ed. New York: Charles
Scribner’s Sons. url: https://commons.wikimedia.org/w/index.php?title=File:
Bremen_Map_1910.jpg&oldid=481488614 (visited on 01/13/2021) (cit. on p. 8).

Bang-Jensen, Jørgen and Gregory Z Gutin (2008). Digraphs: theory, algorithms and applica-
tions. Springer Science & Business Media (cit. on p. 15).

Bertelé, Umberto and Francesco Brioschi (1972). Nonserial Dynamic Programming. Vol. 91.
New York: Academic Press. doi: 10.1016/S0076-5392(08)60141-1 (cit. on pp. 11, 18).

Berwanger, Dietmar, Anuj Dawar, Paul Hunter, and Stephan Kreutzer (2006). “DAG-Width and
Parity Games”. In: 23rd Annual Symposium on Theoretical Aspects of Computer Science.
Lecture Notes in Computer Science. Springer. doi: 10.1007/11672142_43 (cit. on pp. 12,
60).

Bodlaender, Hans L. (1988). “Dynamic programming on graphs with bounded treewidth”. In:
Automata, Languages and Programming. Springer, pp. 105–118. doi: 10.1007/3-540-
19488-6_110 (cit. on p. 11).

– (1992). “A linear time algorithm for finding tree-decompositions of small treewidth”. In: Pro-
ceedings of the twenty-fifth annual ACM symposium on Theory of Computing. Association
for Computing Machinery. doi: 10.1145/167088.167161 (cit. on p. 60).

– (1993). “A Tourist Guide through Treewidth”. In: Acta Cybernetica 11.1-2, pp. 1–21. url:
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3417
(cit. on p. 12).

https://doi.org/10.1016/j.jctb.2006.12.006
https://doi.org/10.1137/0608024
https://doi.org/10.1137/0608024
https://doi.org/10.1016/0012-365X(90)90292-P
https://doi.org/10.1016/0166-218X(89)90031-0
https://commons.wikimedia.org/w/index.php?title=File:Bremen_Map_1910.jpg&oldid=481488614
https://commons.wikimedia.org/w/index.php?title=File:Bremen_Map_1910.jpg&oldid=481488614
https://doi.org/10.1016/S0076-5392(08)60141-1
https://doi.org/10.1007/11672142_43
https://doi.org/10.1007/3-540-19488-6_110
https://doi.org/10.1007/3-540-19488-6_110
https://doi.org/10.1145/167088.167161
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3417

A. Appendix A.1. References 63

Bodlaender, Hans L., Pål Grǿnås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michał Pilipczuk (2016). “A ckn 5-Approximation Algorithm for Treewidth”. In: SIAM
Journal on Computing. doi: 10.1137/130947374 (cit. on p. 60).

Bodlaender, Hans L., Fedor V. Fomin, Arie M.C.A. Koster, Dieter Kratsch, and Dimitrios M.
Thilikos (2006). “On exact algorithms for treewidth”. In: European Symposium on Algo-
rithms. Also published as Zuse Institute Berlin Report 06-32. doi: 10 . 1007 / 11841036 _
60. url: https://www.zib.de/de/projects/treewidth-and-combinatorial-
optimization (visited on 04/18/2021) (cit. on p. 60).

Bodlaender, Hans L., John R. Gilbert, Hjálmtýr Hafsteinsson, and Ton Kloks (1992). “Approxi-
mating treewidth, pathwidth, and minimum elimination tree height”. In:Graph-Theoretic Con-
cepts in Computer Science. Springer, pp. 1–12. doi: 10.1007/3-540-55121-2_1 (cit. on
p. 60).

Bodlaender, Hans L., Bart M. P. Jansen, and Stefan Kratsch (2011). “Preprocessing for Tree-
width: A Combinatorial Analysis through Kernelization”. In: Automata, Languages and Pro-
gramming. Springer, pp. 437–448. doi: 10.1007/978-3-642-22006-7_37 (cit. on
p. 60).

Bodlaender, Hans L. and Ton Kloks (1992). “A simple linear time algorithm for triangulating
three-colored graphs”. In: STACS 92. Springer, pp. 413–423. doi: 10 . 1007 / 3 - 540 -
55210-3_201 (cit. on p. 12).

Breisch, Richard (1967). “An intuitive approach to speleotopology”. In: Southwestern Cavers
VI (5), pp. 72–78 (cit. on p. 20).

Courcelle, Bruno (1990). “The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs”. In: Information and Computation 85.1, pp. 12–75. doi: 10.1016/0890-
5401(90)90043-H (cit. on p. 12).

Courcelle, Bruno and Joost Engelfriet (2012). Graph Structure and Monadic Second-Order
Logic: A Language-Theoretic Approach. Encyclopedia of Mathematics and its Applications.
Cambridge University Press. doi: 10.1017/CBO9780511977619 (cit. on p. 12).

Cygan, Marek, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilip-
czuk, Michał Pilipczuk, and Saket Saurabh (2016). Parameterized Algorithms. Springer. doi:
10.1007/978-3-319-21275-3 (cit. on p. 11).

Diestel, Reinhard (2018). “Graph Theory”. In: Graduate Texts in Mathematics. Berlin: Springer.
isbn: 9783662575604. url: http://diestel-graph-theory.com/ (cit. on p. 18).

Downey, Rod and Michael R. Fellows (2013). Fundamentals of Parameterized Complexity.
Springer. doi: 10.1007/978-1-4471-5559-1 (cit. on p. 13).

Dyer, Danny (2018). “Pursuit-evasion games and visibility”. Celebrating Brian Alspach’s 80th
and Dragan Marušič’s 65th birthday. In: Graphs, groups, and more. Koper: Slovenian Dis-
crete and Applied Mathematics Society. url: https://conferences.famnit.upr.si/
event/4/ (visited on 03/05/2021) (cit. on p. 20).

Ganian, Robert, Alexander Langer, Petr Hliněný, Joachim Kneis, Jan Obdržálek, and Peter Ross-
manith (2014). “Digraph width measures in parameterized algorithmics”. In: Discrete Ap-
plied Mathematics 168. Fifth Workshop on Graph Classes, Optimization, andWidth Param-
eters, Daejeon, Korea, October 2011, pp. 88–107. doi: 10.1016/j.dam.2013.10.038
(cit. on pp. 13, 60).

https://doi.org/10.1137/130947374
https://doi.org/10.1007/11841036_60
https://doi.org/10.1007/11841036_60
https://www.zib.de/de/projects/treewidth-and-combinatorial-optimization
https://www.zib.de/de/projects/treewidth-and-combinatorial-optimization
https://doi.org/10.1007/3-540-55121-2_1
https://doi.org/10.1007/978-3-642-22006-7_37
https://doi.org/10.1007/3-540-55210-3_201
https://doi.org/10.1007/3-540-55210-3_201
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1017/CBO9780511977619
https://doi.org/10.1007/978-3-319-21275-3
http://diestel-graph-theory.com/
https://doi.org/10.1007/978-1-4471-5559-1
https://conferences.famnit.upr.si/event/4/
https://conferences.famnit.upr.si/event/4/
https://doi.org/10.1016/j.dam.2013.10.038

64 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

Ganian, Robert, Daniel Meister, Petr Hliněný, Joachim Kneis, Jan Obdržálek, Peter Rossmanith,
and Somnath Sikdar (2016). “Are there any good digraph width measures?” In: Journal of
Combinatorial Theory, Series B 116, pp. 250–286. doi: 10.1016/j.jctb.2015.09.001
(cit. on pp. 13, 47).

Halin, Rudolf (1976). “S-Functions for Graphs”. In: Journal of Geometry. doi: 10 . 1007 /
BF01917434 (cit. on pp. 11, 18).

Hunter, Paul and Stephan Kreutzer (2008). “Digraph Measures: Kelly Decompositions‚ Games‚
and Orderings”. In: Theoretical Computer Science 399. doi: 10.1016/j.tcs.2008.02.
038 (cit. on pp. 12, 23–27, 42).

Johnson, Thor, Neil Robertson, Paul D Seymour, and Robin Thomas (2001). “Directed Tree-
Width”. In: Journal of Combinatorial Theory, Series B. doi: 10.1006/jctb.2000.2031
(cit. on pp. 12, 60).

Kintali, Shiva and Qiuyi Zhang (2017). “Forbidden directed minors and Kelly-width”. In: The-
oretical Computer Science 662, pp. 40–47. doi: 10.1016/j.tcs.2016.12.008 (cit. on
p. 60).

Kirousis, Lefteris M. and Christos H. Papadimitriou (1986). “Searching and pebbling”. In: The-
oretical Computer Science 47, pp. 205–218. doi: 10.1016/0304-3975(86)90146-5
(cit. on p. 11).

Korhonen, Tuukka (2021). Single-Exponential Time 2-Approximation Algorithm for Treewidth.
arXiv: 2104.07463 [cs.DS] (cit. on p. 60).

Kreowski, Hans-Jörg, Renate Klempien-Hinrichs, and Sabine Kuske (2006). “Some essentials of
graph transformation”. In: Recent Advances in Formal Languages and Applications. Studies
in Computational Intelligence. Heidelberg: Springer, pp. 229–254. doi: 10.1007/978-3-
540-33461-3_9 (cit. on p. 17).

Kříž, Igor and Robin Thomas (1991). “The menger-like property of the tree-width of infinite
graphs”. In: Journal of Combinatorial Theory. B. doi: 10.1016/0095-8956(91)90093-Y
(cit. on p. 60).

LaPaugh, Andrea S. (1993). “Recontamination does not help to search a graph”. In: Journal of
the ACM (2). doi: 10.1145/151261.151263 (cit. on pp. 11, 21).

LeCun, Yann and Yoshua Bengio (2002). Convolutional Networks for Images, Speech, and
Time Series. Ed. by Michael A. Arbib. 2nd ed. Cambridge, MA, USA: MIT Press, pp. 255–
258. doi: 10.7551/mitpress/3413.003.0006 (cit. on p. 60).

Makowsky, Johann A. and Julian P. Mariño (2003). “Tree-width and the monadic quantifier
hierarchy”. In: Theoretical Computer Science 303.1. Logic and Complexity in Computer
Science, pp. 157–170. doi: 10.1016/S0304-3975(02)00449-8 (cit. on p. 12).

Möhring, Rolf H. (1990). “Graph Problems Related to Gate Matrix Layout and PLA Folding”. In:
Computational Graph Theory. Vienna: Springer Vienna, pp. 17–51. doi: 10.1007/978-
3-7091-9076-0_2 (cit. on p. 12).

Nešetřil, Jaroslav and Patrice Ossona de Mendez (2012). Sparsity. Graphs, Structures, and
Algorithms. Springer. doi: 10.1007/978-3-642-27875-4 (cit. on p. 22).

Obdržálek, Jan (2006). “DAG-width. Connectivity measure for directed graphs”. In: Proceed-
ings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm. Symposium
on Discrete Algorithms SODA’06. doi: 10.1145/1109557.1109647 (cit. on pp. 12, 60).

https://doi.org/10.1016/j.jctb.2015.09.001
https://doi.org/10.1007/BF01917434
https://doi.org/10.1007/BF01917434
https://doi.org/10.1016/j.tcs.2008.02.038
https://doi.org/10.1016/j.tcs.2008.02.038
https://doi.org/10.1006/jctb.2000.2031
https://doi.org/10.1016/j.tcs.2016.12.008
https://doi.org/10.1016/0304-3975(86)90146-5
https://arxiv.org/abs/2104.07463
https://doi.org/10.1007/978-3-540-33461-3_9
https://doi.org/10.1007/978-3-540-33461-3_9
https://doi.org/10.1016/0095-8956(91)90093-Y
https://doi.org/10.1145/151261.151263
https://doi.org/10.7551/mitpress/3413.003.0006
https://doi.org/10.1016/S0304-3975(02)00449-8
https://doi.org/10.1007/978-3-7091-9076-0_2
https://doi.org/10.1007/978-3-7091-9076-0_2
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1145/1109557.1109647

Glossary A.2. Glossary 65

Reed, Bruce A. (1999). “Introducing Directed Tree Width”. In: Electronic Notes in Discrete
Mathematics 3. 6th TwenteWorkshop onGraphs andCombinatorial Optimization, pp. 222–
229. issn: 1571-0653. doi: 10.1016/S1571-0653(05)80061-7 (cit. on p. 12).

Robertson, Neil and Paul D. Seymour (1984). “Graph minors. III. Planar tree-width”. In: Journal
of Combinatorial Theory, Series B. doi: 10.1016/0095-8956(84)90013-3 (cit. on pp. 11,
18, 19, 56).

– (1995). “Graph Minors .XIII. The Disjoint Paths Problem”. In: Journal of Combinatorial The-
ory, Series B 63.1, pp. 65–110. doi: 10.1006/jctb.1995.1006 (cit. on p. 12).

– (2004). “Graph Minors. XX. Wagner’s conjecture”. In: Journal of Combinatorial Theory,
Series B 92.2, pp. 325–357. doi: 10.1016/j.jctb.2004.08.001 (cit. on p. 18).

Rose, Donald J. (1970). “Triangulated graphs and the elimination process”. In: Journal of Math-
ematical Analysis and Applications. doi: 10.1016/0022-247X(70)90282-9 (cit. on p. 22).

Schneidewind, Uwe, Stefan Lechtenböhmer, Christa Liedke, Stefan Thomas, Henning Wilts, Car-
olin Baedeker, Christiane Beuermann, Ralf Schüle, and Peter Viebahn (2018). Die große
Transformation. Eine Einführung in die Kunst gesellschaftlichen Wandels. 1st ed. Frankfurt
am Main: Fischer Taschenbuch. isbn: 978-3-596-70259-6 (cit. on p. 7).

Sedgewick, Robert and Kevin Wayne (2007). Directed Graphs. url: https : / / www . cs .
princeton.edu/courses/archive/spring07/cos226/lectures.html (visited on
04/18/2021) (cit. on p. 7).

Seymour, Paul D. and Robin Thomas (1993). “Graph Searching and a Min-Max Theorem for
Tree-Width”. In: Journal of Combinatorial Theory. doi: 10.1006/jctb.1993.1027 (cit. on
pp. 11, 21).

Slivkins, Aleksandrs (2010). “Parameterized Tractability of Edge-Disjoint Paths on Directed A-
cyclic Graphs”. In: SIAM Journal on Discrete Mathematics. doi: 10.1137/070697781 (cit.
on pp. 13, 52, 53).

All references have been verified on May 14, 2021. Digital Object Identifiers (DOIs) can be
resolved through https://www.doi.org/.

A.2. Glossary

Bipartite graph A graph with connections solely between two sets, members of each set are
not connected. 17, 40, 44, 50, 52–55

Clique A completely connected component of a graph. 17, 22, 40, 53

Complexity theory Branch of computer science that analyzes the resource cost of algorithms.
11

DAG Directed acyclic graph. 24, 27, see Digraph

https://doi.org/10.1016/S1571-0653(05)80061-7
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1016/j.jctb.2004.08.001
https://doi.org/10.1016/0022-247X(70)90282-9
https://www.cs.princeton.edu/courses/archive/spring07/cos226/lectures.html
https://www.cs.princeton.edu/courses/archive/spring07/cos226/lectures.html
https://doi.org/10.1006/jctb.1993.1027
https://doi.org/10.1137/070697781
https://www.doi.org/

66 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

DAG-Width A width measure on directed graphs. 12, 47, 60

Digraph A graph with directed edges. 10, 13, 15, 24–27, 47

Directed Edge Disjoint Paths Problem A problem on directed graphs. 10, 12, 13, 52, 53

Directed Tree-Width A width measure on directed graphs. 12, 13, 52, 53, 60

FPT Fixed parameter tractable, W [0] in the W -hierarchy. 11, 13, 60, see Parameterized com-
plexity

k-DAG A graph similar to a DAG. Smaller k is more similar, a 0-DAG is a DAG. 24, 26–28, 38,
68, see DAG

Kelly-Width A width measure on directed graphs. 12–14, 23, 24–27, 29, 34, 36, 38, 42,
47, 50–52, 55–61

NP Nondeterministic polynomial time; complexity class. 9–13, 23, 48, 49, see Complexity
theory

P Polynomial time; complexity class. see Complexity theory

Parameterized complexity Branch of complexity theory that distinguishes between simple
and easy instances for algorithms. 13

Tree-Width A width measure on undirected graphs. 11–14, 18–24, 40, 41, 47, 48, 50–52,
54–61, 68, 69

W[1] part of the W -hierarchy. 12, 13, 52, 53, see Parameterized complexity

A.3. Symbols and naming conventions

O(x) Worst case running time depending on input size n ignoring constant factors

∨ Logical or

∧ Logical and

∅ Empty set

Glossary A.4. List of figures 67

G = (V,E) Graph with vertices V and edges E

F Fill-in graph

T Tree

V (G) Vertices of a graph G, typically u, v, w

E(G) Edges of graph G, typically e = (u, v)

u v Path connecting u and v

≤ A linear order on elements of a set (v1, . . . , vn)

A ⊆ B Subset or, when on graphs, subgraph

A ∪B Set (or graph) union

A ∩B Set (or graph) intersection

A \B All elements of set A that are not in set B

|X| Cardinality, or number of elements of a set

G [≤ v] Subgraph of G with vertices smaller than or equal v with respect to ≤

V [≤ v] Subset of V with vertices only smaller than or equal v with respect to ≤

Reach→ (G,W, v) Vertices in G reachable with a path over vertices of W from v

Reach� (G,W, v) Vertices in G reachable with a path from v over vertices of W or vice-versa

Reach (G,W, v) Reachable vertices on undirected graphs

SReach→ (G,≤, v), SReach� (G,≤, v) Strongly reachable vertices according to ≤

GG = (Σ, S, P, T) Graph grammar with alphabet Σ, initial graph S, rules P and terminals T

A.4. List of figures

1.1. A selection of concepts that naturally translate to directed graphs 7
1.2. The boat course in the Bürgerpark . 8
1.3. Bremen tram rail map . 9
1.4. Conflicting properties of algorithms . 10

68 Bi-Kelly-Width · Bachelor Thesis Enna Gerhard

2.1. Basic graph examples . 15
2.2. A simple example of different reach measures on G 16
2.3. Conversion between directed and undirected graphs 17
2.4. Constructing directed circles . 18
2.5. Basic Tree-Width examples . 18
2.6. Tree decompositions . 19
2.7. Construction rules for partial 4-trees . 22
2.8. Construction rules for partial 4-DAGs . 28

3.1. Different turns as part of a game . 31
3.2. Impossible game for two cops . 32
3.3. Analyzing strong reachability for each vertex given an elimination order . . . 35
3.4. Fill-in graph construction for the boat course 37
3.5. Construction rules for partial bi-directed 4-trees 39
3.6. Construction rules sufficient for boat course construction 40
3.7. Constructing the boat course in the Bürgerpark 41
3.8. An example for creating a graph with unbounded Bi-Kelly-Width from a union . 45
3.9. An example for a difference between width measures 48

4.1. Basic graph classes with different edge layouts 51
4.2. Bipartite graphs with different edge layouts 52
4.3. Graphs after Adler . 54
4.4. Grids with different edge layouts . 55
4.5. Cylindrical grids . 57
4.6. Different meshs . 58
4.7. Different edge layouts for hypercubes . 59

5.1. Comparison summary . 61

Figure 3.7g on page 41 also appears on the title page.

A.5. Acknowledgements

Writing this thesis would not be possible without my family, friends, and the people I work with.
Keeping in touch and staying together, especially during these dire times of a pandemic, is a
privilege.

I am grateful for the support I have received by Sebastian and his group, Sabine and my fellow
students. Thank you, Jona, Leo and Marc for your valuable feedback!

Glossary A.5. Acknowledgements 69

I would also like to thank the contributors to open source projects and communities such as
LATEX, all of its packages and extensions, GIMP and GitLab, that I have relied on while creating
this document.

Furthermore, the Wikipedia article on Tree-Width provides an excellent introduction to its topic,
though I have primarily used other sources as references.

70

Statutory declaration

I, Enna Gerhard, declare that I have produced this thesis without outside assistance. I have not
used other sources or means than declared. All parts that are reproducing or paraphrasing
sources have been attributed as such.

Bremen, May 14, 2021

(Enna Gerhard)

	Introduction
	Motivation
	Adding parameters to complexity
	Structural complexity of graphs
	Structural complexity of directed graphs

	Objective of this thesis
	Outline

	Definitions and Concepts
	General graph notation
	Tree-Width
	Tree-decompositions
	The invisible inert robber game for Tree-Width
	Partial k-trees
	Sparsity
	Computing Tree-Width

	Kelly-Width
	Cops and robber games
	Elimination orders
	Fill-in graphs
	Partial k-DAGs
	Equivalence of concepts
	Sparsity

	Bi-Kelly-Width
	Cops and robber games
	Cops winning a game
	Robber winning a game
	Formal definition
	Observations

	Bi-directed elimination orders
	Fill-in graphs

	Partial bi-directed k-trees
	Observations
	Constructing a partial bi-directed k-tree
	Sparsity

	Equivalence of concepts
	Cops and robber games →Elimination orders
	Elimination orders →Partial bi-directed k-trees
	Partial bi-directed k-trees →Cops and robber games
	Conclusion

	Closure properties
	Subgraphs
	Intersection
	Limited union
	Topological minors

	Comparison to other width measures
	Computing Bi-Kelly-Width

	Interesting Graphs
	General classes
	Trees
	Circles
	Complete graphs
	Bipartite graphs

	Examples from literature
	Slivkin's gadget construction
	Adler's examples for Directed Tree-Width

	Complex classes
	The grid
	Cylindrical grids
	The mesh
	The hypercube

	Conclusion
	Further research
	Summary

	Appendix
	References
	Glossary
	Symbols and naming conventions
	List of figures
	Acknowledgements

