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Abstract  
 

 

Reasoning about and acting in spatial environments is an important part of everyday             

life and also plays a key role in many scientific research areas. Spatial Cognition              

research deals with specifically these issues and contributes its findings to other            

research areas like cultural studies, study of medicine or linguistics. 

 

The following thesis is making a contribution to spatial cognition research, with the             

aim to fill a niche. Examining three spatial-cognitive problems based on ropes, this             

work is able to provide a manipulable digital simulation of each problem. The             

problems addressed are tying and untying knots , finding the shortest path between            

two waypoints on a route network map and transforming a circle into a square with               

the same surface area . Within the frame of this thesis, these spatial problems are              

implemented without an extensive use of algorithms and complicated computations.          

The simulations focus on the direct manipulation of spatial objects in the spatial             

environment, imitating the human cognitive approach. This work contributes to the           

notion that cognitive, artificially intelligent agents can act in and reason about space             

and spatial objects similarly to humans and animals. 
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1 Introduction [NICKELMANN & RAHMAN] 

 

Humans and animals move, act and solve tasks in a spatial environment at all times.               

Largely intuitively, they do so by processing information about their environment,           

building a conceptual representation of this information and drawing conclusions for           

their actions from the representation. Autonomous robots also move and act in an             

environment and reason about spatial information, but mostly in a different way -             

they sense their environment and build an accurate representation of spatial           

information, calculating consequences for their actions via algorithmic reasoning.         

They only use information they can directly obtain from their environment.  

 

In both cases, the nexus of spatial information processing, representation of spatial            

knowledge and spatial behaviour is referred to as Spatial Cognition , which is            

consolidated in a scientific discipline. The branch called Strong Spatial Cognition           

engages to convey the spatial behaviour of humans and animals to robots, aiming to              

evade complicated algorithms and to replace them with easier, more direct           

approaches oriented around the direct manipulation of physical objects. Initiated by           

the cognitive systems group (CoSy) at the University of Bremen , this subfield is             1

novel and its objects of research not very common-place yet. 

 

Inspired by the approaches from the work by CoSy and coming from a background              

of Digital Media, we were motivated to explore this particular field of research and              

introduce a digital viewpoint to the existing methods. The aim is to build a simulation               

to three particular spatial cognitive problems and, by that, provide existing           

approaches with more efficiency. Furthermore, the simulations are following the          

ideas of Strong Spatial Cognition, as described above, as well as further            

specifications that we set as criteria . The goal is to mimic a realistic cable behaviour,               

wherefore the requirements include options for the manipulation of the objects and            

an accurate transformation of the objects according to the manipulation by an agent.             

1 https://cosy.informatik.uni-bremen.de/index.html , retrieved December 22, 2019. 
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To ensure a realistic environment and intuitive visuals, the simulation is implemented            

in a 3D environment instead of a 2D environment. This is due to the fact that the                 

implementation of a 3D-object allows a 2D usage, however, this is not possible the              

other way around. As we required a 3D-object for our first examined problem the              

entangled knot problem, we decided to use the resulting objects for the other             

problems. Moreover this work is focussed around the functionality of the simulation            

and therefore neglects any visual embellishments of the simulation. 

 

In the beginning of our research, we focused on finding similar approaches in prior              

works in this research area. However, we were astonished to find that this was a               

niche and therefore not very well covered at that point. Motivated to contribute novel              

approaches to this area and inspire future applications, this thesis engages to work             

on an explorative approach. This approach is aiming to introduce a digital factor by              

implementing a simulation to the spatial cognitive problems and expand existing           

boundaries of this field of research.  

 

During our primary examination for existing simulations, we found several          

simulations created with game engines (further explained in chapter 2.3), specifically           

with Unity3D by Unity Technologies, which were not fulfilling our criteria. The            2

simulations were able to fulfil most behavioural attributes, but were unable to            

manipulate to the extent of solving the spatial cognitive problems or did not consider              

ideas of Strong Spatial Cognition. Due to the fact that this thesis is notably inspired               

by the approaches of CoSy group, our criteria for the simulations are derived from              

their existing models. This thesis can be viewed as the explorative work to instantiate              

a digital version of the prior work. Therefore our criteria are quite preset and only               

needed further consideration in the digital implementation.The criteria we set at the            

beginning of our work were based on the specifications of the spatial problems we              

were examining.  

 

This work intends to implement simulations that each depict a specific spatial            

problem, to offer novel and less algorithm-based ways of tackling these problems as             

2 https://unity.com/de, retrieved December 01, 2019. 

2 

https://unity.com/de


 
 

a cognitive agent, and to outline why the simulations are of value for future spatial               

cognition research. Hence, the following chapters of this introduction will provide an            

overview of the scientific field of Spatial Cognition and outline the structure of the              

thesis. Key terms like cognitive agent and spatial task/ spatial problem are described             

so that the chapters on the theoretical background, the documentation and the            

conclusion can be followed and understood. Afterwards, the methods utilized to           

implement the simulations and the thesis as a whole are depicted. Closing the             

introduction is an overview of each following chapter. 
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1.1 Background of Spatial Cognition Research  [NICKELMANN] 

Spatial Cognition is a broad term referring to what information a cognitive agent can              

have about space, like distances or directions, and how to process that information             

(Vasilyeva and Lourenco 2012). The term cognitive agent includes humans, animals           

and autonomous robots, who form a full cognitive system together with their bodies             

and their environment. In classical information processing there is a division between            

the brain or the AI (Artificial Intelligence) system and the perception of a spatial              

problem, the agent’s actions, its body and the environment. Information is abstracted            

from the real-world problem and translated into a knowledge representation, existing           

within the brain or AI system to perform spatial reasoning. However, in a full              

cognitive system , this distinction is dropped in favor of a contiguous system, of which              

the spatial problem itself is a part of. This has the advantage of bypassing the               

abstraction of spatial relations and being able to simulate them, and spatial            

interactions, through motion models (Freksa et al. 2017a). 

 

Cognitive agents solve spatial problems, or spatial tasks , either by a combination of             

knowledge representation and algorithms (in the case of AI), or without conscious            

knowledge processing (in the case of humans or animals). The subfield Strong            

Spatial Cognition deals with problems regarding the direct use of spatial and            

temporal structures by AI, considering embodiment and preserving all properties of           

the environment, while neglecting abstracted knowledge representations and        

algorithmic reasoning. The goals are to (1) generate less CPU-intensive models for            

AI, so that it can act more efficiently, and to (2) more accurately model cognitive               

processes and their dynamics, complexity and scalability (Dreyfus 1978, Freksa          

2015, Freksa et al. 2017a). 
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1.1.1 Cognitive Agent [RAHMAN] 

The word ‘agent’ in correlation to the computer world, may be allocated to many              

entities. Here it is mainly referred to computational agents, specifically ‘cognitive           

agents’. In the following segment we are analysing and examining the role of an              

cognitive agent and its role in our thesis. 

 

It might be advisable to recollect the term ‘cognitive concepts’ as well as the              

‘intentional stance’ at this point. People often use cognitive concepts to understand            

how others behave. To understand the complex role of these agents we need to              

examine the challenges they are facing. Although computational agents outperform          

the human agents in many aspects, such as accuracy, iterating problems and            

gathering data, they are still behind in other aspects. Not only can a cognitive agent               

not take over all human processes, but it is vastly limited to a specific set of tasks.                 

Yet as humans we tend to assign these agents with cognitive concepts, such as              

beliefs, knowledge, desires and intentions. Although it is commonly known that the            

agents are programmed. Most computational processes merely mimic the human          

capabilities. Even with the involvement of deep learning the agents are bound to             

have a programmed starting point, specifically implemented handling of situations          

and technical restrictions. The smarter the agents get, the higher we raise our             

expectations and the more we ascribe them intention to their action. It is a common               

phrase in our daily work to say ‘He doesn’t like me today.’ or ‘It always does the                 

opposite of what I want’, referring to the computational assistant/agent. By claiming            

that it can act differently or chooses not to function when used by a specific person,                

we assign a human behaviour to a pre-programmed agent. 

 

A cognitive agent has yet to learn to imitate the irrational human instinct; although,              

this being the most unstable and inexplicable feature of the human mind, it is              

indispensable. This feature allows us to take actions faster, omitting long and            

cumbersome algorithmic comparisons. In fact, it allows us to drive the car, without             

rationally examining the other drivers next steps. Furthermore, it enables us to            

estimate our surroundings, is the key in our problem-solving and continuously saves            
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us from potential danger. In our thesis we are designing a simulation of different              

spatial problems. The goal is to benefit from the human approach to solve problems              

and enhance these in the processes of cognitive agents.Thus trying to ensure a             

faster and more intuitive operation. 

 

 

1.1.2 Spatial Problems [NICKELMANN] 

Spatial problems, or spatial tasks, are specific configurations of a spatial           

environment or a spatial structure which necessitate a cognitive agent to act in             

certain ways to find a novel solution to that problem or to achieve a known goal. In                 

this thesis, we are demonstrating three digital simulations, each corresponding to a            

different spatial problem a cognitive agent might encounter at one point.  

 

 

 

Entangled Knot Problem [NICKELMANN + RAHMAN] 

 

There are many domains in which tying or untying a knot can occur - from the daily                 

lacing of shoes, to untangling earbuds, to the many forms of medical sutures. The              

necessity to apply knot-tying in many different areas attaches importance to the            

implementation of a digital simulation for knot-tying, considering the increasing          

incorporation of digital devices in home, agents and the overall notion of the Internet              

of Things (IoT). Apart from the importance of a knot and the ability to tie or untie one                  

in our everyday lives, the most remarkable thing is the fact that this simple intuitive               

process, as seen in draft 1, is hard to recreate. What seems quite trivial and easily                

done - by toddlers even - strains the scientists to this date.  

 

The formalisation of this process that combines cognitive and spatial understanding           

has been implemented by relying on the heavy use of algorithms (Phillips et al. 2002,               
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Brown et al. 2004, Wang et al. 2005, Mayer et al. 2008), especially for the medical                

domain. There has not yet been an significant effort made to implement such a              

simulation with strong spatial cognition in mind, which we would like to change in the               

course of our thesis. The final outcome of this work is aiming to provide a simulation                

that is based upon the strong spatial cognition. Furthermore draft 1 is providing us              

the guideline to follow along in our digital approach. 

 

 
Draft 1:  Untying of a headphone cable executed by a human agent displaying the intuitive process (that 
is omitting heavy algorithmic formulations). This draft has been used as inspiration and  set the criteria 

to the destined digital simulation attributes and functionality 
 

Currently cognitive AI agents are able to tie or untie knots by algorithmic processing,              

however, a direct manipulation of a spatial cognitive problem would be useful and             

increase the overall performance. Also, we argue that it would lead to more flexibility              

as the AI is acting in a more exploratory manner and can better react to a changing                 

spatial environment. Thus, a digital simulation of knot (un)tying that is focussed on             

the direct manipulation of spatio-temporal configurations would prove very useful and           

would be a valuable contribution to strong spatial cognition research. 

 

Shortest Path Problem [NICKELMANN  + RAHMAN] 

 

The second problem that is examined in this thesis belongs to the category of              

navigation. This field has experienced strong endorsement not only from the           

automobile industry but has been of general interest and continues to search for             

more efficient ways to improve the navigational process. It is also of interest for              
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Spatial Cognition research; for example, Uttal (2000) outlines how the use of maps             

influences the development of spatial cognition in children and vice versa. 

In the frame of this work these facts are taken into consideration, leading us to the                

approach to find the shortest path, a problem that was worked on by the CoSy               

group. The approach is following the idea of graph theory, which is finding the              

shortest path between two nodes (Dewdney 1988). Building upon the          

non-algorithmic strings-and-pins approach, the CoSy group went on by printing out a            

3D net that imitates a road network on a map (Freksa 2015, Freksa et al. 2016). This                 

analog approach was designed to be manually pulled apart by an agent and detect              

the shortest path by visually distinguishing the most stretched path between two            

points (see draft 2).  

 

Draft 2:  Pulling of a reduced map, printed out by a 3D printer. The displayed process is used to 
determine the shortest path between two points by cognitive AI or human agents. This draft has been 
used as inspiration and set the criteria to the destined digital simulation attributes and functionality 

 

 

Pulling apart two points of a net to find the shortest path between two points is a very                  

natural and overall simple solution to this cognitive spatial problem (Freksa 2015).            

This might not be a very intuitive solution if you confront a cognitive agent with a                

strings-and-pins route network and simply ask them to find the shortest path            

between two given points. However, once established, it takes minimal efforts and            

requires very little movement by the cognitive agents - they are now able to              

manipulate a spatial configuration to find out certain spatial information. If a map is              

large-scaled, with many different roads and waypoints, it would take a lot of             

computations to find the shortest path between two given points. However, if you can              
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simply pull at those points, the effort is reduced drastically. Although the existing             

approach by CoSy is already covering many points, the simulation resulting from this             

thesis will further reduce the usage of resources as e.g. the net printout is no longer                

required. This next step to implement a simulation of a string-based map to be used               

by AI agents is only sensible, so that it can find the shortest path between two points                 

way more efficiently. Thereby the simulation can pick up on the simplicity of the              

process and still withdraw the translation of this process into the real world. 

 

Squaring Circle Problem [NICKELMANN] 

 

The squaring circle problem is a common problem in geometry which has kept             

mathematicians busy for centuries, and cannot be solved by classical,          

straightedge-and-compass approaches (Schubert 1891, Hobson 1913, Seidenberg       

1962, Engels 1977, Saraswathi 1999, Dani 2012, Crabtree 2016). The task is to             

transform a circle into a square with the same surface area. Interestingly, the strings              

and pins approach was already used in Ancient Egypt and Ancient India, dating back              

to around 800 to 600 BC in India as described in the Sulvasutra records (Dani 2012,                

Crabtree 2016). Additionally, in both cultures, approximations for Pi were already           

pretty accurate, considering the time period in which they were calculated - in             

Ancient India, the approximation was the square root of ten, or 3,1622 (Dani 2012),              

whereas in Ancient Egypt, it was 3,1605 (Engels 1977). Due to the prevalence of the               

straightedge-and-compass approach ever since the days of Ancient Greek         

mathematics (Crabtree 2016), the task of squaring a circle was thought to be             

impossible, and in the late 1800s, it was pronounced as such (Schubert 1891).             

However, it turns out to be solvable if you change your utilized tools. With strings and                

pins, and without any mathematical computations, you can accurately transform a           

circle into a square with the same surface area (Crabtree 2016). This approach has              

several advantages: First, strings retain some mobility even after they are pinned            

down to indicate a line, whereas pencil marks do not, giving the option of floating               

pins to represent variables, for example. Second, with multiple pins, you can easily             

describe ellipses and other more complex geometric figures, as you can slide the             
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pins along strings. Third, with one end of a string being fixed at the center of a circle,                  

you can describe not only all points on the circumference line, but all points on the                

surface area of the circle. Most importantly though, with strings and pins, it is              

possible to directly transform the circle’s circumference to a straight line, as strings             

are deformable - this is not possible with straightedge and compass (Freksa et al.              

2016).  

 

The simulation of this problem is most suitable for demonstrating that spatial            

problems can be solved without much algorithmic reasoning or complicated          

mathematical computations. It is implemented in such a way as to mimic a             

strings-and-pins approach to this problem (Freksa et al. 2016). Naturally, it is a great              

fit for strong spatial cognition research, as the strings-and-pins approach does not            

rely on any algorithms, but instead uses the properties of spatial objects (strings and              

pins) to transform the area of a circle into a square with the same surface area .  

 

 

 

 

 
Draft 3: Ordinary strings and pins as the utilized tools to tackle the problem of squaring the circle (left); 

Setting an arbitrary radius for the circle (right)  
 

The squaring circle problem can be solved conveniently by the strings-and-pins           

approach (Freksa et al. 2016). By using ordinary strings and pins (Draft 3, left), you               

can indicate any distance in a two-dimensional plane, and thus, indicate a radius             

(with arbitrary length) of a circle (Draft 3, right). 
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Draft 4: Marking the whole circumference of a circle (left);  

Pinning down the string on the circumference (right) 
 

Next you can pin the string down at any point that is the same length away from the                  

center as the previously established radius (Draft 4, left). By doing that, you can              

create the circumference of the corresponding circle, the marks left by the pinning             

indicating said circumference. Alternatively, you can tie a pencil to the floating end of              

the string and draw out the circumference line. Afterwards, you pull out the string              

from the center, pinning it down on the circumference. That point marks one end of               

the circumference’s length. After pinning down the string along the previously left            

marks (Draft 4, right) or the pencil-drawn circumference line, the entire circumference            

(Draft 5, left) can be discerned and further utilized. 

 

 
Draft 5: The whole radius plus circumference marked and able to be transformed back into a straight line 

(left); The half circumference to be used for the following steps in the solution process (right) 
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At this point, you have solved the problem of extrapolating the circumference of any              

circle, which cannot be solved by the classical straightedge-and-compass approach          

(Freksa et al. 2016). This circumference can now be rolled out into a straight line,               

which can be halved afterwards (Draft 5, right) so that you can use the half               

circumference in the later steps of the solution process. 

 

The strings-and-pins approach illustrates that geometric problems can be solved by           

using the properties of spatial objects instead of mathematical computations. With           

the more common straightedge-and-compass approach, you are not able to solve           

the squaring circle problem, as you cannot accurately extrapolate the circle’s           

circumference. The goal of simulating this approach digitally is to show that digital             

solutions to spatial problems focusing on the direct manipulation of spatial objects            

can be more efficient than common, algorithm-heavy digital solutions. Furthermore,          

the underlying process of solving the problem is more similar to natural and human              

approaches. Thus, cognitive AI agents acting based on such a simulation will lead to              

them acting more like a human, and, in the end, to them interacting better with               

cognitive human agents. 

The subsequent steps after ascertaining the circle’s circumference will not be           

included in the simulation, as the main goal is to show that the strings-and-pins              

approach can solve problems classical approaches cannot solve. To use this           

simulation in a cognitive AI system would necessitate the implementation of the            

absent steps, however, implementing them is not too difficult, but it would go beyond              

the scope of this thesis. 
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1.2 Methodical Approach [RAHMAN] 

This thesis is investigating a suitable approach to simulate three spatial cognitive            

problems, as mentioned above. The interesting and significant facts about these           

problems are that most of them are solved by humans intuitively. This intuitive             

behaviour, without algorithmic formalising, is what is aimed at in our work. In order to               

find an alternative to algorithmic-based solutions we are aiming to implement a            

spatio-cognitive method for a cognitive agent in AI. The overall aim is to explore this               

particular field of research and finally build a simulation to prove that there is a way                

to solve these cognitive problems by an cognitive agent more efficiently and less             

ressource-bound. Current methods and approaches in this field use 3D printouts, to            

implement the idea of Strong Spatial Cognition . For the simulation we set the goal to               

make it a manipulable demonstration of the three spatial cognitive problems. The            

visual appeal of the simulation is not in the focus of this work and is therefore mostly                 

kept simple. This is done consciously to signal the importance of the functionality             

and the main focus of this simulation. Therefore we continue to directly explore the              

possibilities to simulate the spatial cognitive problems and evaluate possible tools to            

use for the simulation. Evidently, the character of the research, as well as the              

preparation, are significantly different from a hypothesis-based thesis.  

 

We set the goal to model the components, assemble and visualise the rope, before              

we go on to simulate the rope with characteristic behaviour. The ultimate aim is to               

have a rope that is working according to our criteria and is able to be spatially                

manipulated by an agent. An explorative approach appeared to be the most suitable             

way to research this matter. In the beginning we started to collect information on this               

topic and find potential programs that would be able to simulate a rope. During this               

part of the research we also assembled our first design ideas. Furthermore, we             

undertook several paper-designed approaches to test out which attributes and          

specifications we need to implement in our simulation. Even though some programs            

were able to simulate a rope, they often did not match our criteria for fulfilling the                

spatial cognition tasks. 
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The idea to this thesis emerged during a discussion of prior approaches to research              

ways to solve spatial-cognitive tasks with computational cognitive agents. The          

research group CoSy of the Bremen University were already profoundly researching           

in the area. Apart from a manifold of studies to look deeper in this area of expertise,                 

we got interested in a few rope-based approaches/experiments. These approaches          

significantly stood out, due to their simplified ways to solve the spatial problems.             

Besides the fact that they could replace lengthy algorithmic solutions, they           

demonstrated the intelligent and intuitive solving techniques of a human agent. The            

aim is to make an computational cognitive agent use and benefit from these solving              

techniques.  

 

At that point, all these approaches were printed in a 3D printer model and then               

actually used in the real world. So to some extent this approach is fulfilling its task                

already. The cognitive agent is able to solve the spatial task with the human              

technique. Now the next step is to omit bringing the 2D into the real world.               

Introducing a simulation might be beneficial to that. Our idea is, as previously             

mentioned, to simulate and thereby visualise this whole process.Thus we are not            

only increasing the speed of this process, but also enhancing the overall efficiency,             

by skipping the entire 2D-3D translation procedure. The manipulations of the rope,            

such as undoing knots, forming a loop, finding the shortest paths or measuring the              

length of a circle (in order to transform it into a square with the same surface area),                 

are all combined in the simulation. Likewise delivered in the real world, they are now               

all part of the simulation. As we are examining more than one rope-based             

manipulation, we are confident to research this as a team of two. Since all of these                

spatial problems are rope based, thus quite similar to approach, we decided to work              

on ‘all’ of them. It serves the purpose not to neglect one experiment in favour of the                 

other, or entirely dispose of one subtopic. By forming a team, we hope to give               

sufficient attention to each subtopic and generate a competent visualisation of spatial            

cognitive tasks in a short amount of time.  
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1.3 Chapter Overview [RAHMAN] 

The first chapter Introduction of this thesis is stating our intention and motivation to              

pursue our work. It further introduced the term Cognitive Agent and illustrates the             

Spatial Problems, before focussing on three particular spatial cognitive problems          

assessed in this work. The problems described are the entangled knot problem, the             

shortest path and the squaring circle. This chapter closes with the detailed            

description of the Methodical Approach that is used to examine the spatio-cognitive            

problems and the Chapter Overview , to provide the structural composition of this            

thesis. 

 

The second chapter Current State of Spatial Cognition research and Game Engines ,            

is a informing about the current state of the art and relevance of this thesis to the                 

contemporary developments in this research domain. Furthermore, a rough overview          

as well as definitions that are relevant to our work, are provided. This is to allow an                 

easy understanding and access to this work, even for readers that are entirely new              

to this topic. This chapter is introducing game engines as a tool of choice, thereby               

initiating the third chapter. 

 

The third chapter Game Engines is introducing and comparing three game engines,            

by emphasizing on their qualities and attributes that are required for the solution of              

the spatial cognitive problems examined. The compared game engines are          

CryEngine by Crytek, Unreal Engine 4 by Epic Games and finally Unity3D by Unity              

Technologies. By this comparison we intend to provide the technical facts and            

thought processes that helped us to choose our tool for our purpose. 

 

In the following fourth chapter Modelling and Implementation, we are giving an            

overview of all methods used and functions implemented. We are giving an insight of              

the modelling process and the implementation process that were required to           

construct our simulations. Besides a detailed documentation of the functions used           

during the implementation, it further provides images to accompany the different           
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stages of the simulations. The idea is to be transparent about our methods and thus               

enable or inspire further work in this field.  

 

In chapter five we provide the results that we produced in the scope of this thesis. All                 

three simulations, as well as the demovideo that we produced, are separately stated             

and illustrated with pictures from the simulations. This chapter will describe the            

entangled knot problem, the shortest path problem, as well as the squaring circle             

problem elaborately. The demovideo is described with a precise minutes disclosure           

to exactly describe the visual display to the audience. 

 

Finally this thesis is closed by the last and sixth chapter Discussion and Conclusion.              

This last chapter of this thesis comprises a discussion of the final simulations and the               

conclusion of where this thesis can be placed. Subsequently, that chapter states the             

reached goals and limitations of the work. An outlook on possible future applications             

and encouragements for immediate research directions in this field is closing the            

thesis. 
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2 Current State of Spatial Cognition Research and        
Game Engines [NICKELMANN & RAHMAN] 

 

This chapter gives an overview over the topics of spatial cognition research and             

transdisciplinary research. There are many research areas interested in aspects of           

spatial cognition and many scientists included findings of spatial cognition research           

in their studies. Afterwards, the subfield of strong spatial cognition is introduced.            

Strong spatial cognition is a novel research area birthed by the CoSy group at the               

University of Bremen. Many interesting ideas and approaches to topics of general            

spatial cognition research are advanced and refined. In the context of strong spatial             

cognition research, the CoSy group focuses on cognitive agents acting directly in a             

spatial environment and with spatial objects, detached from extensive algorithm use. 

Afterwards, a general introduction to game engines is closing this chapter, including            

some criteria for choosing a game engine for the simulations. A description of the              

most commonly used game engines as well as a comparison and a justification for              

the game engine chosen for the implementation is given in the following Chapter 3. 

2.1 Spatial Cognition Research and Transdisciplinary Domains       
[NICKELMANN] 
Spatial cognition research deals with questions regarding the interaction of cognitive           

agents with spatial structures: How do cognitive agents reason about the spatial            

environment and spatial objects? How do they translate their knowledge about the            

spatial structures into actions? Or why do they behave differently than other            

cognitive agents? It is a very broad and manifold research field with a lot of possible                

research topics and questions. Those topics and questions can be applied in many             

situations and improve our understanding of the world around us. For example,            

spatial problem-solving skills are of great importance in many technological or           

engineering domains, in all forms of sport and, especially since the emergence of             

Augmented and Virtual Reality, in many digital domains as well.  
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2.1.1 Research Topics of Spatial Cognition Research [NICKELMANN] 

A common research topic of spatial cognition research is the question of how             

cognitive agents reason about spatial structures and spatial relations (Byrne and           

Johnson-Laird 1989, Buckley et al. 2019). Researching this topic would not only            

involve which logical inferences cognitive agents make about spatial relations, but           

also on what basis. Are there general principles underlying the thought about spatial             

configurations? If so, is it possible to express them as formulas?  

Another research topic related to spatial reasoning is spatial problem solving (Freksa            

et al. 2017a & 2017b, Buckley et al. 2019). Spatial problem solving also includes the               

actual real-world spatial structure of what is reasoned about (or a spatial            

representation of it), focusing on finding possible solutions to a spatial problem.            

Common spatial problems are finding a shortest path on a route map, detecting if an               

object is in front of or behind another object, or mundane activities like opening              

doors, driving a car or throwing a basketball. As spatial problems and tasks are              

around all of us all the time, applying the findings of research on spatial problem               

solving has a great potential for developing new approaches to these problems and             

finding novel, more efficient ones that can improve our daily lives. 

Representations of spatial knowledge in a cognitive agent’s brain (or network of            

sensors and actuators) are also of interest to spatial cognition researchers (Kuipers            

1978, Uttal 2000, Tomai 2004). This subdomain deals with conceptual          

representations of perceived spatial information and how that representation is built           

within the agent’s mind. For example, a cognitive map is an abstracted, but coherent              

model of the large-scale environment surrounding a cognitive agent, guiding them           

when navigating through said environment. It is a representation constructed via           

observing and filtering key aspects of the spatial environment. A mental step-by-step            

route description is also a representation of spatial knowledge, utilizing          

commemorated actions instead of a mental picture. There are many different           

representations of spatial knowledge - examining them can provide novel and           

practical approaches to spatial tasks. 
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These are only some topics spatial cognition research deals with. It is a very broad               

field that commonly thinks outside its own box, providing its findings to other             

research areas and importing knowledge from them. Thus, spatial cognition          

researchers often engage in transdisciplinary research, developing and expanding         

the field of spatial cognition research itself. To signify this, a sample of             

transdisciplinary research approaches is given in the following subchapter. 

2.1.2 Transdisciplinarity of Spatial Cognition Research [NICKELMANN] 

Spatial cognition research has a lot of interest in other related research fields.             

Researchers not only deal with questions regarding spatial cognition itself, but           

branch off into other research areas like biology, sociology or mathematics. What            

follows is an overview over related literature and research to give a better             

understanding of what spatial cognition research can contribute to other domains.  

Burgess (2008) summarizes advances in the field of Cognitive Neuroscience and           

how they relate to Spatial Cognition, focusing on spatial memory and knowledge            

representation (for example egocentric versus allocentric representations). He also         

addresses how the activities of neural networks evoke corresponding spatial          

behaviour. Sinha and Jensen de López (2000) write about combining both cognitive            

linguistics and socio-cultural approaches to language and cognition to develop a           

broader picture of both research areas. They argue that this transdisciplinary           

approach can yield a better understanding of the embodiment of culture and spatial             

cognition and can extend it beyond the human body. Haun et al. (2011) also write on                

the influence of culture on spatial cognition, focusing on the expression of spatial             

relations via language. They found that both preference of spatial strategies and            

competence to apply them vary across cultures and that this variation stays            

consistent with increased complexity in spatial arrangement.  

Other research investigates: The role of hand gestures in spatial cognition and how it              

influences expression of, communication and reasoning about spatial information         

(Alibali 2005); cognitive space as non-metric, topological space and how it can            

extend the findings of spatial configuration analysis on how people move in different             
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locations (Penn 2003); or how spatial ability impacts the capacity for and the             

approach to spatial problem solving (Buckley et al. 2019). 

We already mentioned the research of the CoSy group at the University of Bremen in               

the introduction to Chapter 2. They carry out research in a previously uncharted             

research territory, called strong spatial cognition . It deals with topics of spatial            

cognition and tries to expand the notion of cognitive AI agents being able to handle               

spatial information and derive actions from it in a manner akin to human or animal               

agents. This means that the aim of their research is to develop approaches which              

allow direct manipulation of spatial configurations and diminish use of algorithms and            

computations. As the three simulations we are working on are implemented with the             

same goal in mind, the following subchapter will provide an insight into the novel              

research area of strong spatial cognition. Furthermore, it transitions towards          

illustrating the current use of ropes for digital simulations and the rationale for why              

they do not fit the criteria for strong spatial cognition and our simulations as they are                

intended. 

2.2 Strong Spatial Cognition Research and the State of         

Rope-Based Simulations [NICKELMANN] 

Strong spatial cognition research reflects upon the role of AI in usual spatial             

cognition research and on how to use spatial cognition methods to develop better AI.              

Nebel and Freksa (2011) outline artificial cognitive systems and their strengths and            

weaknesses compared to natural cognitive systems. They argue that artificial          

cognitive systems are “excellent candidates to assist human cognizers and to           

complement their weaknesses” (Nebel and Freksa 2011). Freksa (2015) also          

illustrates some spatial tasks which are of use for AI agents when implemented as a               

computer simulation. These tasks include determining which object is in front of            

another object, performing spatial operations without detailed knowledge about the          

operation or the environment, or interpretation of road or street maps. He also writes              

about the idea of representing these maps via strings and pins which enables pulling              

at two points of the string map to find out the shortest path between those two points,                 
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which is the most stretched. This approach is an easy and reproducible solution to              

the shortest path problem and has not been tried out yet as a digital simulation to be                 

used by artificial cognitive agents without conscious, algorithm-based knowledge         

processing. In general, there are many rope-based spatial tasks which offer different            

solutions to spatial problems than tasks not using ropes. For example, it is not              

possible to construct a square from a circle with the same surface area as the circle                

by using the common geometric tools like a straightedge and a compass. It is,              

however, possible to do this with strings and pins. Freksa et al. (2016) write about               

the advantages the strings-and-pins approach has over the        

straightedge-and-compass approach. It can be the basis for a digital simulation of            

the squaring circle problem. 

 
We already mentioned that there has not yet been an attempt to implement a digital               

version of the shortest path problem or the squaring circle problem via the             

strings-and-pins approach. However, Brown et al. (2004) worked on a knot-tying           

simulator where users can “grasp and smoothly manipulate a virtual rope and [...] tie              

arbitrary knots” (Brown et al. 2004). They focus on how to overcome common             

problems in regards to contact detection and contact management, and illustrate           

how their simulator could be of use for domains like surgical suturing, sailing or rock               

climbing. Their work is of great value for these domains, but in our case, we want to                 

use methods which are not reliant on an extensive use of algorithms - the main goal                

of our work is to develop simulations which work towards cognitive AI agents making              

direct use of spatial and temporal information while, more or less, neglecting            

algorithmic reasoning and artificial knowledge representations. The goal of Brown et           

al. was to develop a realistic application for said domains and to enhance a human               

agent’s ability to perform in these areas, regardless of whether or not many             

algorithms were used within the simulation.  

 

There are other researchers working on these kinds of simulations, like Phillips et al.              

(2002), who also worked on simulated knot-tying with the goal of application in the              

medical field in mind, or Wang et al. (2005), who implemented a virtual reality              

training simulation for laparoscopic surgery. Mayer et al. (2008) even developed an            
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AI system using recurrent neural networks to perform knot-tying for heart surgeries.            

While most of these are novel ideas and are of great value for their respective field of                 

research, the work of Mayer et al. even being a cognitive AI system, they all rely on                 

heavy use of algorithms. There has not been a knot-tying simulation focusing on the              

direct use of spatial or temporal structures developed yet, which is why our work is a                

valuable contribution to the field of (strong) spatial cognition research. 

 

We have so far outlined the core of spatial cognition research, given an overview of               

related research areas and what is researched at the intersection with spatial            

cognition. Furthermore, we have given a glimpse of the novel field of strong spatial              

cognition research. We purposefully aim to make a valuable contribution to spatial            

cognition research, particularly to strong spatial cognition, and to explore the borders            

we have previously illustrated. We argue that our rope-based simulations fill a niche             

and are an important approach to answer research questions and tackle problems            

not yet or fully explored. We intend to implement simulations that each depict a              

specific spatial problem, offer novel and less algorithm-based ways of tackling these            

problems as a cognitive agent, and to outline why they are of value for future spatial                

cognition research in the closing chapters of this thesis. What follows next is an              

overview over the current state of game engines, as they are digital environments             

that fit very well to our approach of implementing the simulations.  

2.3 Introduction to Game Engines [RAHMAN] 

A game engine is a software, designed to be a framework, in which a developer can                

build for different platforms, such as mobile devices, desktop computers or consoles.            

It typically consists of several essential parts, e.g. a rendering engine, a physics             

engine and collision detection. The benefits from game engines can basically be            

derived from the fact that it offers a much simpler approach to develop games rather               

than doing it from scratch. They contain presets of objects and functions, so that the               

developer doesn’t have to figure out each parameter for every pixel in the scene.              

This allows even less experienced developers to produce high quality software. Most            

game engines allow a cross platform performance, which lifts the constraints to any             
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certain platform. This also allows the integration of objects that have been processed             

in other graphic software programs, e.g in blender , to the game engine. To give an               3

overview of existing game engines and to understand our criteria and the resulting             

choice, it is necessary to give a brief introduction to current game engines. 

The existing engine options are already very competent and accommodate a fair            

amount of presets to build a game. Despite that, the development of an engine is               

rather complex and laborious. Even the allure and the advantages of a customized             

game engine, don’t appeal in comparison to the extent of the complexity. Therefore,             

it is generally recommended to avoid writing the software for an engine from scratch.              

Although it is definitely one of many options.To find the most suitable tool, we took a                

closer look at three game engines. Apart from their technical aspects, we also looked              

for the support by the systems community and the most intuitive workspace that             

would allow us to quickly pick up it's functionality and learn about new options after               

updates. To find a program that was not only technically strong, but also supportive              

in their community was important to us. Thereby we ensured to have the opportunity              

to discuss any on-going problems along the way and to research any functions we              

were unsure of using.  

Besides our own criteria, there are several suggestions of significant features to look             

out for, when choosing an engine, on gaming forums and websites. Not only do they               

suggest to take in account the capabilities of your computer’s hardware, but also to              

look out for the compatibility of the game engine and the operating system of the               

computer. Furthermore there are engines that are specifically designed for particular           

game genres, which often allow developers to create games without the use of code              

- which might come in handy when the developer is fairly new or entirely              

inexperienced. It is also crucial to consider the targeted platform, where the game or              

software is supposed to be run on, otherwise the game might end up having              

difficulties to port on different platforms. Subsequently the skills and preferences of            

the developer do determine the engine choice. If the developer’s own experience is             

limited or outdated, it is safe to research current features and reviews give by more               

3 Blender: https://www.blender.org/download/releases/2-80/ 
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experienced game developers. It is most likely to find recent and accurate            

proposition and information online, rather than in books or outdated publications. 

In some cases engines have an integrated visual editor, allowing you to manipulate             

any objects in the engine directly. Alternatively, the engines do not come with an              

editor, which means the developer has to import manipulated objects from other            

programs. The perspective plays another great role, as only some engines are able             

to do both 2D and 3D. In fact the engines that are able to provide 3D features are                  

more likely to be more complicated and turn out to have more challenging learning              

curves. 

Before we get into a direct comparison of thee engines, it might be beneficial to               

understand the context of where and when game engines came into existence or             

when they reached their height of significance. Prior to the concept of game engines,              

each game had to be hard-coded as an individual entity. Engineered mostly around             

the display and memory constraints that inhibited elaborated designs, due to its            

heavy data usage. Even when platforms increased their accomodation capabilities,          

the games were substantially detached - which made it infeasible to create an             

engine that facilitates more than one game. This resulted in games, that not only              

were limited in their graphics data, but also small in level numbers and bound to be                

hard-coded. In the 1980s games and their creation began to become exceedingly            

popular, which promoted the release of various 2D game developing systems. These            

game developing systems were referred to as ‘construction kits’. Such as ‘Pinball            

construction set’ (1983), Adventure construction set’ (1984) or ‘Arcade game          

construction kit’ (1988). The first true 3D game engine was XnGine, released by             

Bethesda in 1995. However this engine suffered from stability issues and bugs on             

Windows 95. In the scope of this thesis we are focussing on three game engines               

that were derived from the above mentioned evolution. 

 

Game engines like CryEngine , Unreal or Unity3D are mostly derived from a            

preceding game. Developed in 2002, Crytek published CryEngine to facilitate their           

first-person shooter game FarCry. Likewise Epic Games, was released the Unreal           
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Engine to facilitate the first-person shooter game Unreal in 1988. Unity , the game             4

engine published by Unity Technologies, however, was released as a Mac OS            

exclusive game engine in 2005. However all engines mentioned support multiple           

platforms nowadays and thus can be categorized as cross platform game engines.  5

 

This chapter outlined the scope of spatial cognition research and gave insight into             

transdisciplinary research areas. The objects of general spatial cognition research          

were discussed and the relevance of spatial cognition research for other research            

areas highlighted. The novel research area of strong spatial cognition, developed by            

the CoSy group at the University of Bremen, was explicated, while the value of our               

work within that novel research area was stated. Additionally, the characteristics and            

advantages of game engines were presented, leading into a more detailed analysis            

of specific game engines in the following chapter. Building upon the introduction of             

these game engines, a comparison of them and, ultimately, the reasoning for the             

game engine of choice conclude the next chapter. 

 

 

 

 

  

4 Kissner, Michael: Writing a Game Engine from Scratch (2015), last accessed on 21.10.19: 
https://www.gamasutra.com/blogs/MichaelKissner/20151027/257369/Writing_a_Game_Engi
ne_from_Scratch__Part_1_Messaging.php  
 
5How Unity3D become a game development beast (2013), last accessed on 21.10.19: 
https://insights.dice.com/2013/06/03/how-unity3d-become-a-game-development-beast/ 
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3 Tool Selection: Game Engines [RAHMAN] 
To examine the cognitive spatial problems mentioned above, it is essential to use the              

appropriate tools. The right tool will not only allow us to simulate the spatial task in                

the most effective way, but also yield the best possible performance and outcome.             

This chapter introduces the most commonly used game engines and works towards            

a comparison of them. Concluding from that comparison, the choice of the game             

engine used for the simulations closes this chapter 

 

Our simulation requires a 3D environment to ensure an intuitive real-world design to             

solve the cognitive spatial problem by the cognitive agents. The idea is to implement              

a manipulable rope that acts according to our defined physical and geometrical            

properties, to resemble the behaviour of a cable.  

As the rope needs to be flexible, the individual objects that assemble the rope are               

crucial. After trying out different shapes of objects, we decided to stick to capsules              

and spheres. This is due to the fact, that these geometrical instances ensure the              

highest angular motion, out of all other geometrical shapes we had on hand.             

Although the goal is to mimic a realistic cable behaviour, we decided to omit              

implementing any effects that emerge gravity. This is because the main task is to              

solve the actual spatial problem, which is not dependent by the force of gravity.  

 

Nevertheless, during some initial designing of the simulation we came to know, that             

the implementation of gravity was in fact hindering the simulation at this point. The              

rope’s maneuvering was heavily affected by this force, making it extremely           

challenging and almost impossible to form or pull through a loop. However, this             

ability needed to be provided, given that we are aiming to resolve a knot. 

 

During our research we found several attempts of rope designs that were based on              

rectangular objects. In our opinion this shape was not very suitable. For our work we               

intended to go for a shape, that not only provides flexibility, but also ensures stability               

in our rope design. The aim was to omit gaps and breakage, without giving in to the                 
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ropes default elasticity. This is one of the reasons why we chose to go for two types                 

of objects to instantiate the rope. Initially we undertook endeavours to design a rope              

solely on one geometrical shape. As a result of a rope based on sphere-shaped              

objects only, we observed a severe lack of stability. Similarly unsuccessful was rope             

based on capsules-shaped objects only, as it showed a deficiency of flexibility,            

derived by its shape. 

 

Furthermore some pre-made rope sets were purchasable in the game engines asset            

store. However, those rope designs failed to work on certain platforms or were             

unable to form a knot. Oftentimes the vendors of such rope sets declared many              

options to manipulate the rope behaviour, raising our hopes. Unfortunately many of            

them lacked crucial functions, which led to their negligence in their entirety in our              

further approach. 

 

One of the most promising systems we found along the way, was an asset called Obi                

Rope . This asset was ready for purchase in the asset store of Unity and provided by                

Obi, a virtual methods studio. Obi claims to be the first CPU-based realtime physics              6

framework that facilitates unified particle physics for Unity. At this point we have not              

come across a software that specifically evolved its expertise around ropes. So, with             

the prospect of not having to do everything from scratch, we decided to take a               

deeper look into the offered features. As the process of constructing a physics             

simulation entirely on our own might excel our efficiency and time limit, thus             

predetermining the quality of the final outcome .  

 

Before purchasing we decided to research more about the advertised features and            

compare them with the overall experience of the community. Besides the Obi Rope,             

this provider had other virtual methods with different functions and types of particle             

physics, which they unified in one framework. Namely the Obi Cloth , Obi Fluid, Obi              

Softbody and lastly Obi Rope, which was particularly our matter of interest. This             

asset claims to create realistic ropes and chains, giving the developer the absolute             

6  http://obi.virtualmethodstudio.com/ 
 

28 



 
 

control over their look. Furthermore it offers advanced editor tools, a two-way            

interaction with rigidbodies and claims to support all collider types. Apart from that, it              

features a multithreaded solver as well as extensible modular architecture and           

frequent updates/support. So all in all it sounded quite promising and the overall             

reviews from the community were positive and mostly high-rated. 

 

The visual method Obi Rope creates rope geometry by generating procedural           

smooth mesh using splines. Furthermore it uses tangent space updating and normal            

map support. This comes in handy as the developer is not busy thinking about              

creating these physics but can concentrate on the actual design of the objects             

purpose. It also allows a change of rope length at runtime, as well as the design of                 

tearable or cuttable ropes and closed loops. The integrated modular solver helps to             

keep performance issues at bay, as it can be specifically tuned down to suit the               

constraints that your rope needs. For instance, constraints for bending and per            

particle pin manipulation, allow an individual rope behaviour. Obi Rope further           

features an in-editor simulation preview, as well as other advanced tools such as a              

particle editor. This particle editor enables an easy application of tools like            

paintbrush, property smoothing and effortless brush selection. To further simplify the           

design process it allows the developer to save ropes mid-simulation and instantiate            

them warm-started. Although it supports all standard Unity colliders, it more           

importantly provides automatic camera culling, which means that non-visible ropes          

do not update their simulation. 

 

Upon further examination, however, minor but essential problems started to reveal           

themselves. First of all, there were the problems of system crashes on mobile             

devices and iOS. Technically, these could have been easily neglected for our further             

approach. Unfortunately, it was secondly also lacking content support. Most          

importantly it was unable to tie a knot with the ropes provided in the framework.               

Although Obi mentioned updates to ensure the elimination of bugs like that, the             

inability to tie a knot was not solved to this date. Therefore we stopped further               

research in this direction, discarded the idea to purchase this asset and decided to              
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concentrate on building a rope directly. This way we hoped to ensure that the rope               

met all our criteria to the best way possible. 

 

The aim is to tackle the spatial problems with the intuitive problem solving of humans               

rather than the lengthy algorithmic approach used by AI robots. Therefore the object             

needs to be partially agent-based, so that the agents can move and select the              

individual objects during a simulation process. In order to guarantee a smooth            

simulation we chose to allow an agent-based selection only to certain objects,            

leaving the elements that form the actual rope not-selectable (see Shortest Path            

Problem). This allows us to give the agent a regulated control, without unnecessary             

and misleading selections of other objects.  

 

To sum up, this thesis is using a game engine to create the suitable environment and                

the specific objects for the simulation of three spatial cognition problems.There are            

several game engines that are competent and notably potent for this task.  

 
 

3.1 CryEngine [RAHMAN] 
The first engine we want to introduce is Crytek’s game engine CryEngine. This             

German brand published modified versions of CryEngine successfully to the game           

development world. The present version is CryEngine V. This version was released            

in 2016 and simultaneously inaugurated a licence model to access full functions. The             

editor in CryEngine is one of the most striking features of this engine. In comparison               

to editors of other companies like Unreal, it adds objects to the world space rather               

than eliminating existing objects from a equipped world space. Enabling the           

development of scenic landscapes and leaving the impressive real-world feel to each            

player. A impeccable graphics system featuring detailed objects of nature and           

weather scenarios, is what made this engine, build by Crytek, outperform other            

engines. Equally distinct is their licence system, that does not come with a royalty              

fee but a reasonable monthly fee. 
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CryEngine was mainly designed to make games for consoles. Far Cry was the first              7

game developed by Crytek and fostered with CryEngine1, while it was published by             

Ubisoft on the Microsoft Windows platform. Besides further extensions of Far Cry,            

they managed to make more popular games like Crysis (2011) and SNOW (2017).             

CryEngine also released their source code, making it a source-available commercial           

software. 

 

They state on their website “With CRYENGINE, we have a simple goal: to create the               

most powerful game engine in the industry, and to give creators all across the globe               

the tools to harness this power to create world-class gaming experiences, no matter             

their budget or team size.” Early on CryEngine has been licenced by Ubisoft, only to               8

develop an in-house version called Dunia Engine, later in 2015 Amazon licenced            

CryEngine as well and modified it with several extensions running it under the name              

Amazon Lumberyard - free of charge. 

 

3.2 Unreal Engine 4 [RAHMAN] 

Equally considerable was the game engine provided by Epic games. This American            

brand, founded by Tim Sweeney, released their engine in 1998. Sweeney wrote 90             

percent of the first Unreal Engine and thereby introduced a powerful engine to             9

gaming industry, almost single-handedly. In the beginning it ran off of UnrealScript. It             

is now written in C++ and uses Blueprint Visual Scripting technology, which allows             

the developer to interact within the editor in a node-based interface to create             

gameplay elements. This enables the full intuitive potential of arranging concepts           10

virtually, a feature that is usually reserved for programmers only. The most current             

7 Unreal Engine vs CryENGINE: Best Game Engines (2015), last accessed 14.09.19: 
https://www.pluralsight.com/blog/film-games/unity-udk-cryengine-game-engine-choose 
 
8https://www.cryengine.com/features, last accessed 14.09.19 
 
9 An Epic Interview With Tim Sweeney (2012), last accessed 14.09.19: 
https://www.gamesindustry.biz/articles/2012-03-13-an-epic-interview-with-tim-sweeney 
 
10 https://docs.unrealengine.com/en-US/Engine/Blueprints/index.html , last accessed 14.09.19 
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version, Unreal Engine 4, was released in September 2019. The engine is licenced             

as free, the developers, however, pay royalties as soon as the commercial revenue             

amount crosses a certain threshold. This licence system allows a large number of             

new developers to interact and develop within this engine, without having to commit             

or heavily invest at first. In 2014 more than 400 games were created with this engine,                

which led to its crowning as the most successful game engine by Guinness world              

records in the same year. Not only has it managed to keep its high position in the                 

gaming industry over the years, but it also created another poster child: Fortnite.             

Epic is perking the cross-platform trend with Unreal Engine using Fortnite. This            11

aspect naturally engaged our interest, as we were considering to develop a            

cross-platform software eventually. However, it is unable to develop games for the            

past generation hardware, which might lead to problems in an overall coverage or a              

stronger focus on mobile and PC platforms. Moreover the engine allows texture and             

material artists to create effects from the beginning, which is useful depending on the              

importance of the texture in the project. As this engine is incredibly powerful visually,              

it usually requires equally powerful hardware to utilize the engine’s full potential. So             

that the overall capacity and capability of the hardware used during the thesis             

needed to be considered, in order to avoid an overload. Another noticeable fact is              

that Unreal Engine 4 is limited in its compatibility with git, which is very unfortunate if                

it is the tool of choice as version control system. 

 

Besides the fact that UnrealEngine has a built-in beginner solution with Blueprint            

Visuals, it is able to export cross-platform including consoles. Moreover it possesses            

outstanding next-gen graphics, good online resources and is literally free to use until             

the game makes profit. Yet it is heavy and demanding on performance, has a more               

challenging learning curve compared to Unity and also obtains a less plenitude of             

assets in its marketplace.  

11 Tim Sweeney wants Unreal to power the cross-platform revolution (2018), last accessed on 
20.09.19:https://www.engadget.com/2018/03/21/tim-sweeney-cross-platform-fortnite-epic-unreal-engi
ne-real-time-gdc/ 
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3.3 Unity3D [RAHMAN] 
Lastly, the third engine option we were to consider was Unity3D developed by Unity              

Technologies. Although this game engine was initially published as a Mac OS            

exclusive in 2005, one of its most prominent features today is its ability to work               

cross-platform. As a result of this, games can be easily ported onto Android, iOS and               

other platforms, making it a great engine for the development of mobile games.             

Unity3D is considered as one of the best game engines out there as the engine               

offers its users a wide range of tools and features that are easily accessible even if                

you are not as tech-savvy. Unity’s simplicity may be one of its greatest selling              12

points.  

In addition tools can be acquired via the asset store, a platform which provides              

assets and environments that are generated by the community. Furthermore Unity is            

approaching spatial computing. Competitors like Epic Games and their Unreal          

engine are focusing more heavily on desktop gaming, but an area where Unity is              

increasingly focusing its efforts is in the AR/VR space. When it comes to making              13

virtual or augmented reality content, there are no companies with technology as            

far-reaching as Unity. Moreover Unity has no real modeling or building features,            14

besides some basic shapes, inside the editor. The lack of this feature can be easily               

bypassed by acquiring assets from the asset library. 

Despite this, it supports various file formats that are common among 3D games,             

thereby enabling and simplifying crucial integration. Unity3D predominantly uses C#          

or JavaScript, which are considered to be the preferred languages for new            

developers, as they are very similar. Thus, this engine preserves the hardware            

capacity with its light and quick interface, omitting major pressure on the CPU.             

Similar to the other engines, Unity3D is free of charge for personal usage. However,              

they introduced a license subscription model in 2016. Its current version, Unity 5,             

12 CryEngine vs Unreal vs Unity: Select the Best Game Engine (2018): 
https://medium.com/@thinkwik/cryengine-vs-unreal-vs-unity-select-the-best-game-engine-eaca64c60
e3e 
13 With new realities to build, Unity positioned to become tech giant (2017) , last accessed on 
26.019.19:https://techcrunch.com/2017/05/25/with-new-realities-to-build-unity-positioned-to-become-t
ech-giant/  
14 Unity Technologies: Most Innovative Company (w.D) , last accessed 27.09.19: 
https://www.fastcompany.com/company/unity-technologies 
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was released with a high number of graphical improvements, like Physically Based            

Shading and real-time Global Illumination besides many more. “It's evident they are            

joining the next-gen game engine war between UE4 and CryENGINE and with 64-bit             

support and WebGL Unity 5 offers some excellent features that make it a strong              

contender among the game engines ”  15

 

To sum it up, Unity has one of the richest asset stores in the gaming world. There                 

are plenty of resources and tutorials, besides online platforms to facilitate the            

developer and grant a connection to the online community. This engine is also free              

to use until a certain revenue is reached. Nevertheless, it can be quite overwhelming              

for beginners and visual coding can only be instantiated by paid plugins. Although             

this engine is fairly popular with indie developers it’s said to be self-centred, meaning              

that Unity users are said to be limited with their acquired skills to this program only. 

 

 

 

 

 

3.4 Comparison: CryEngine, UnrealEngine 4 and Unity3D [RAHMAN] 
 
In order to compare the game engines with each other and examine how well they               

meet our criteria, we are forming the following categories. These categories are then             

ranked in ascending order of priority. Therefore the categories are divided in:            

learning curve, graphics, language, community, licence model and special features. 

The general data and technical information are gathered objectively . However, the            

ranking of the criteria does depend on and states solely the personal preferences of              

the developer. Equally, the hardware capabilities, the goals of the project as well as              

the existing skills of programming are determined here.  

 

15 Unity Technologies: Most Innovative Company (w.D) , last accessed 27.09.19: 
https://www.fastcompany.com/company/unity-technologies 
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As it is commonly known,game engines tend to take up quite some space and can               

get heavy on your graphic card. Subsequently, it was crucial to undertake trial runs              

with our existing hardware, to make sure the game engine was not exceeding our              

technical competences. Followed by a rough testing of the software and its            

competence to execute the ideas we planned for the simulation. Fortunately all three             

engines provided a trial version to test on. Moreover, our team is not coming from a                

typical gaming background. Besides general knowledge of playing games and thus           

using game engines, there is no further expertise in using game engines. So we              

considered it to be inadequate to go for a game engine with a steep learning curve,                

given that we are limited in our time and resources. These factors determine the              

prioritising and should therefore be considered, in order to generate a positive            

outcome and to understand the following comparison.  

 

Despite the fact that UnrealEngine was the first to be published in 1998, it was               

quickly followed by CryEngine in 2002 and Unity3D in 2005. Nevertheless, the            

chronological gap was quickly closed. Today all three are head to head, commonly             

known and popular choices in the gaming community. In order to examine them             

closer, we are extracting their features in the following categories mentioned before. 

 

 

Learning curve 

As time is a determining and limiting factor in this thesis, we are looking for an                

engine that allows us to adapt quickly to its tools and functions. The ideal engine               

would allow us to use our existing programming skills and integrate them in our new               

project. Unreal is discussed to have a longer learning curve – especially when there              

is no prior exposure or experience to game engines. Furthermore, its coding            

language can be another challenging factor to get into the swing of things. On the               

other hand CryEngine is designed as a add-on editor, which may also need more              

time to get used to. So, these specific points are definitely worth thinking about while               

looking for a tool for the thesis. 
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Graphics 

While the Unreal Engine 4 is a game engine that provides auspicious graphics, -              

which allows the scenes to be realistic and detailed to each particle - ,the CryEngine               

has graphics similar to the capacity of Unreal Engine, but uses an add on editor.  

As this thesis mainly revolves around ropes, the graphical aspect is not of particular              

significance and can thus be neglected. The focus is mainly on the functionality and              

attributes of the rope. This fact also leads to the exclusion of the other two game                

engines, although they were graphically advanced. Another notable factor is the           

cross platform integration of the Unity, that supports more than 25 platforms. Putting             

it way ahead of its competitors, Unreal Engine and CryEngine. 

 

Language 

There is no ‘best’ programming language, however, there are various qualities that            

differentiate a language from another. CryEngine and Unreal Engine 4 are both            

written and coded in C++. Unlike Unity, which uses C# and JavaScript, C++ is              

typically used for console applications, while C# is used for mobile, windows and             

console applications. Also C++ can be run on any platform, however, C# is windows              

specific. Besides the fact that C# was derived from C++, it is also said to be easier                 16

for beginners, especially if there had been a prior exposure to Java. As this is the                

case in our team, it might be a pivotal point to think about. 

 

Licence model 

Unity3D has different license models, that are divided in individual and business            

packages. First, there is the ‘free’ model, which allows you to use the platform              

without any further payment. This model applies as long as the revenue is below              

$100.000/year. The ‘learn premium’ model requires you to subscribe and pay a            

monthly fee. Thereby you are mainly entitled to learn from unity certified instructors,             

besides other extra features. On the other hand business models run on higher             

expenses, while assigning more functions. ‘Unity Plus’ and ‘Unity Pro’ are both            

annual plans. Whereupon the plus model is limited to a revenue of $200.000/year,             

16  C++ vs C# (w.D), last accessed on 30.09.19: https://www.geeksforgeeks.org/c-vs-c-sharp/  
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which the pro model is entirely freed from. However, there are changes planned for              

the business models in the upcoming year 2020. 
 

CryEngine announced a new 5% royalty-based model.The 5% threshold, which only           

kicks in after $5,000 of revenue is raised when working with the latest version of the                

engine, offers developer studios of all sizes the opportunity to achieve their vision             

and means success stories will contribute directly to making the engine better for             

everyone [16]. Until then you gain access by paying a monthly fee. Depending on the               

project size and its targeted usage it may be a more suitable option to consider.  

 

The licence model of Unreal is based on 5% royalties as soon as the revenue is                

above 3.000$/quarter, however, anything below this amount will not be assessed. 

 

Unreal Engine 4, the latest version of the game engine developed by Epic Games, is               

now completely free for anyone to use, the company announced today. 

Epic originally launched Unreal Engine 4 in March 2014 for "early adopters" with a              

subscription model, charging $19 per month plus a royalty fee of 5 percent on sales.               

Previous iterations of the Unreal Engine had been directed at large development            

teams making big-budget games, with costly licensing fees associated with the           

technology. Epic said at the time that it wanted to open up Unreal Engine 4 to a                 

wider audience. Unreal Engine 4 is now free to download, and all future updates will               

also be free. Developers of commercially released games or applications will pay            

Epic a 5 percent royalty on gross revenue above $3,000 per product, per quarter.  17

 

Community 

The community makes a great difference when tackling a new project. Especially            

new developers can find help and solutions to problems that occur along the way.              

Oftentimes the game engine offers help on their website or they provide a platform to               

interact with users in an open space. Besides helping beginners to overcome minor             

hiccups, the community has the power to actively change and influence the engine’s             

17 Epic makes Unreal Engine 4 free (2015): 
https://www.polygon.com/2015/3/2/8134425/unreal-engine-4-free-epic-games 
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development. The companies have learned to follow trends and give solutions to            

bugs that the community has claimed as a problem, over the years. A quick and               

helpful response to questions by the community does not only show integrity of the              

companies, but they also benefit from these ongoing suggestions of improvement. In            

a way it adds to a company's reputation to pay attention and solicit discussions about               

current problems and question. An active community platform can be interpreted as            

a sign for a relevant engine and subsequently a responsible host. Out of the three               

engines mentioned above, Unity3D is said to have a very well-established           

community with great documentation. 
 

Special features  

Unlike Unity, which not only has an asset store, but also targets 27 platforms.              

Furthermore the store allows the developer to get more tools, sound and materials. 

A characteristic feature of Unreal is its Blueprint Visuals. Its node-based interface            

allows an easy handling of object-oriented classes. It was introduced with the            

publishing of UnrealEngine 4. Cry Engine, however, is one of the few game engines              

that works with a add on editor, which can be viewed as a plus or a problem,                 

depending on the developer preferences. 

 

Considering these points of all three engines there are pros and cons for each.              

Nevertheless, Unity3D appears to be most adequate for this thesis. This particular            

game engine allows us to work in 2D and 3D. It has a wide range of tools and a large                    

online community to discuss problems and stay uptodate, which was one of our             

prioritised features in an engine. The fact that it uses and runs on C# and JavaScript                

is another plus point to us, as we are already familiar with these coding languages.  

We are not planning to exceed the yearly revenue, which requires the developer to              

pay a fee, with the current project. So that the factor of licensing can be neglected.                

Furthermore the licence free version should be able to engage to the fullest with the               

features featured by Unity.  18

18 Ranking (w.D), last accessed 06.10.19 : 
https://www.gamedesigning.org/career/video-game-engines/ 
 

38 



 
 

 

 
While it's not completely free like UE4 or Unity 5, it does not require any royalty fee,                 

so $9.90 is all you ever have to pay to Crytek. Consequently, there is no best game                 

engine. Choosing the right one really depends on the game being developed, the             

developer’s preference and requirements. 

 

In this chapter, an overview over specific, customary game engines was given -             

CryEngine, Unreal Engine 4 and Unity3D. Afterwards, a detailed description of each            

of them followed the comparison, considering aspects like the learning curve,           

graphics and, most importantly, which game engine best realizes the criteria for the             

three simulations. The conclusion is that Unity3D is the best fit for the simulations as               

they are intended. In the following chapter, the whole modeling and implementation            

process in Unity3D is described. It includes the overall process, why we chose             

certain methods and ways of implementation, the criteria we met and problems that             

arose during the implementation. 
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4 Modeling and Implementation [NICKELMANN] 

This chapter outlines the modeling and implementation process of the three           

simulations - the entangled knot, the detection of a shortest path on a route map and                

the strings-and-pins approach to the squaring circle problem. The main tool we used             

for the simulations, Unity3D, is described in Chapter 3 of this thesis. In this chapter,               

the modeling tool we first wanted to use for constructing the basic rope model,              

Blender, is explicated. Subsequently, the vital component of all three simulations, the            

Joint component of Unity3D, is elucidated, as well as how it serves to model the               

basic ropes. Proceeding from this foundation, the three simulations are illustrated in            

three consecutive subchapters. For each simulation, the implementation process, the          

final implemented behaviour, the goals achieved and the problems encountered are           

described. 

 

4.1 First Attempt at Modeling the Rope: Blender [NICKELMANN] 

Blender is a 3D modeling program providing the functionality for all steps of the                19 20

3D pipeline - modeling, animation, rendering et cetera. The key animation feature of             

Blender is the bone structure. A skeleton is constructed for each 3D model which              

defines the object’s movement via weight matrices. They control the influence of            

each joint on certain mesh vertices. This process is called Rigging and Skinning. A              

model can then be imported into Unity3D, having its movement behaviour already            

implemented. In Unity3D, only small adjustments are then necessary, besides the           

implementation of the specific simulation setups. The reason for using Blender to            

model the rope is that the positions of the mesh vertices are calculated at run-time,               

so less memory is needed for the rope movement. Additionally, there are more             

possibilities for deforming the rope, which is crucial for the simulation . It also allows              21

19 blender.org 
20 Editing Bones - Blender Manual. (w.D.). Accessed on October 3rd 2019, at: 
https://docs.blender.org/manual/en/latest/animation/armatures/bones/editing/bones.html 
21 Blender 3D: Noob to Pro/Bones. (w.D.). Accessed on October 3rd 2019, at: 
https://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Bones 
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us to use any model we want for the rope, as the underlying bone structure turns                

invisible during rendering. Admittedly, the run-time movement evaluation        

necessitates more calculations being made - as we want to implement simulations in             

line with the goals of strong spatial cognition research (see Chapter 2.2), this is a               

poor tradeoff. Higher memory consumption is less of a contradiction to these goals             

than more computations are, which is the main factor to be avoided. Besides, the              

import into Unity3D did not work properly, as the rope deformed in ways it should not                

have - the part above each bone rolled up and formed a half-loop (see Image 1).  

 
 

 
Image 1: On collision, the rope models imported from Blender behaved strangely, deforming the mesh to                
look like a half-loop. 
 
 
As we encountered the Joint component in Unity3D around that time and had not              

fixed the import problems yet, we decided to abandon this approach and model the              

rope as well as implement its behaviour in Unity3D. The game engine provides all              

the features we need to fulfil the criteria, the Joint component being the key to the                

implementation of the three simulations. Using the Joint component instead of the            

bone structure of Blender also reduces the amount of computations necessary, as            

the object meshes need not be deformed for the object’s motion. 
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4.2 The Joint Component in Unity and Joint Types [NICKELMANN] 

“[The] Joint component connects a Rigidbody to another Rigidbody or a fixed point in              

space” . They apply forces to the Rigidbodies that move them along, or rotate them              22

around, each of the three axes in 3D space, as well as limit their movement. Their                

properties are adjusted easily via the Inspector window of Unity3D, and can also be              

accessed in a script via GameObject.GetComponent<Joint>().property (where       

GameObject is the game object the Joint component is attached to, and property is a               

placeholder for the Joint property to be changed, like connectedBody or breakForce ). 

 

In Unity3D, there are five different types of Joints. They cause different object motion              

behaviour by exerting different forces and limiting the movement more or less than             

other Joints. What follows is a short description of the different Joints accessible in              

Unity3D to explain why we used the ConfigurableJoint in the end. Note that the              

evaluation of each Joint type is based on its usefulness for the Entangled Knot              

Simulation, as it was the first simulation we implemented, intending to use the             

underlying rope model for the other two simulations. 

 

The Fixed Joint is used to make the connected Rigidbody directly follow the             23

movement of the Rigidbody the Joint is attached to, akin to parenting in an object               

hierarchy. This is not useful for the intended simulation, as, for example, moving any              

link of the rope upwards would lead to each other link following the upwards              

movement - there would be no rotation possible. Likewise, rotating a link of the rope               

would lead to each other link rotating accordingly. The rope would always be in a               

straight line if the links were connected via Fixed Joints. 

 

 

22 Unity - Manual: Joints. (w.D.). Accessed on October 4th 2019, at: 
https://docs.unity3d.com/Manual/Joints.html 
23 Unity - Manual: Fixed Joint. (w.D.). Accessed on October 4th 2019, at: 
https://docs.unity3d.com/Manual/class-FixedJoint.html 
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The Spring Joint is useful if you want the connecting Joint between two             24

Rigidbodies to be elastic. The game object the Spring Joint is attached to oscillates if               

a force is applied to the connected Rigidbody. A damper can be used to slow down                

this oscillation. This is also not useful for the intended simulations, as we do not want                

any link of the rope to oscillate at all; we want the link to be flexible, but also always                   

connected to each other gapless. 

 

The Hinge Joint rotates the object it is attached to at a predefined anchor point in                25

local space around a predefined axis, like an actual hinge. As you can only choose               

one axis to rotate around, the Hinge Joint is not fit for the intended simulations. For                

entangling and detangling a knot in 3D space, rotation around each of the three axes               

is necessary. The rope should be able to be pulled and pushed in any direction, at                

any part of it, which naturally leads to it being rotated around more than a single axis. 

 

The Character Joint combines the Hinge and the Spring Joint - there is a swing               26

axis around which the joint swings when a force is applied to the connected              

Rigidbody. Similarly, there is a twist axis, which the joint is rotated around when a               

force is applied. The Character Joint is not used in the simulations as it does not                

allow for the velocity of the Joints to be changed. This is necessary as the links of                 

the rope should have the maximum velocity possible to reach the target position as              

fast as possible. In other words, the links need to follow each other immediately.              

However, when the rope is not being manipulated, the velocity should immediately            

be set to zero. This is only possible with the Configurable Joint.  

 

 

24 Unity - Manual: Spring Joint. (w.D.). Accessed on October 4th 2019, at: 
https://docs.unity3d.com/Manual/class-SpringJoint.html 
25 Unity - Manual: Hinge Joint. (w.D.). Accessed on October 4th 2019, at:  
https://docs.unity3d.com/Manual/class-HingeJoint.html 
26 Unity - Manual: Character Joint. (w.D.). Accessed on October 4th 2019, at: 
https://docs.unity3d.com/Manual/class-CharacterJoint.html 
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The Configurable Joint combines the functionalities of all other Joints and thus is             27

the most customizable of the Joints. It is used in the simulations as you can precisely                

define or lock movement along and rotation around all axes, and also change the              

velocity of the rope links. The velocity definitely needed to be changeable as             

movement and rotation need to stop immediately after pulling or pushing the rope,             

while being as high as possible during the rope manipulation. Combined with its very              

high customizability, we decided to use Configurable Joints for the rope model.  

 

4.3 Constructing the Basic Rope and Implementing the        

Entangled Knot Simulation in Unity3D [NICKELMANN] 

The goal for constructing the rope is to create the different rope parts from a script                

while setting as many properties as possible via prefabs. Creating the parts from a              

script saves a lot of time because you do not have to place each object, adjust its                 

properties and link its Joint to the corresponding Rigidbody. This also provides the             

option to adjust the length of the rope easily. 

 

First, we tested the behaviour of the Configurable Joints on a rope we manually              

created. As this was our first time using the Joint component of Unity3D, we had               

some problems initially. In order to best describe the explorative process of creating             

the rope and to help people avoiding these mistakes if they want to work on these or                 

similar simulations, we depict the problems we encountered as detailed as possible.            

Furthermore, we used two different object types for the rope - spheres and capsules              

- as we thought mimicking the bone structure used by Blender would be beneficial              

for the implementation. In the end, the choice of objects makes no difference as long               

as the colliders are set up properly. For this reason, we recommend using objects              

with round ends connected to each other, as to not collide with neighbouring objects              

during motion or rotation.  

 

27 Unity - Manual: Configurable Joint. (w.D.). Accessed on October 4th 2019, at: 
https://docs.unity3d.com/Manual/class-ConfigurableJoint.html 
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Furthermore we decided to omit implementing any effects that emerge gravity. This            

goes by the explanation that the main task is to solve the actual spatial problem,               

which is not dependent on the force of gravity. During the initial designing of the               

rope, we came to know that the implementation of gravity was in fact hindering the               

simulation at this point. The rope’s maneuvering was heavily affected by this force,             

making it extremely challenging/ impossible to form or pull through a loop, and thus,              

testing the rope behaviour. However, this ability needed to be provided (which it is in               

Unity3D), given that we are aiming to resolve a knot in 3D space in a realistic                

manner. 

 

We started by creating multiple spheres and capsules seamlessly connected to each            

other, with the first and last object being a sphere. Each object was given a Collider                

adjusted to its size, a Rigidbody and a Configurable Joint. After scaling, moving and              

rotating the objects into a line, we began testing how the different Joint properties              

worked in order to create the base rope model. As Unity3D provides you with the               

option to move objects along or rotate them around one of the three axes in the                

Scene view, which is enough to fit our criteria, we decided not to implement any               

additional control options for users. The first mistake we made was giving each rope              

object two Joints instead of one, except for the first and last sphere, which we both                

gave one Joint. We thought that a Joint only affects one of the links it connects, and                 

only affects it if the corresponding connected body is moved or rotated (the             

connection between two objects, thus, needing two joints). We quickly discovered           

this to be a problem as there was heavy jittering when colliders were enabled (which               

was necessary so the rope would not move through itself). There was additional             

unwanted behaviour of the rope, some parts were moving when they should not             

have, and vice versa. At that point, we realized that we needed to remove duplicate               

joints. 

 

The next problem was that the movement was very slow and still caused jittering.              

This was because we did not set any link to be kinematic, so that it would affect the                  

physics of each connected object and likewise would not be affected by them. As we               

were still in the testing phase and did not write any scripts, we decided to make the                 
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leftmost sphere kinematic and test the behaviour of the rope by manipulating that             

sphere (if we wanted, we could quickly make other spheres kinematic). It is             

important, however, that only one link is kinematic at one time. Otherwise, the rope              

would be stretched between two kinematic objects as those objects only move when             

they are directly pulled or pushed by a user. In the end, we want to write a script that                   

always switches the kinematic object to be the one currently manipulated by the             

user.  

 

At that point, jittering was still a problem, but at least the rope moved as fast as it                  

should. However, the movement did not stop after pushing or pulling has been             

completed. We decided to write our first script, called Movement (see Appendix,            

Image A1 for the complete final script). Its only purpose is to set the velocity and                

angularVelocity of the rigidbodies to zero every frame. This does not inhibit the user              

from moving or rotating the rope. The movement resulting from the user            

manipulating objects in the Scene view directly via the given tools is caused by              

continuous force application; resetting it merely prevents it from going above a            

certain limit and the object from moving after the user has stopped moving it. This is                

necessary to do every frame as the user might stop moving or rotating the rope at                

any time, and the rope should not continue moving or rotating afterwards.  

The rope finally behaved as we wanted it to in regards to movement, but the jittering                

was still conspicuous. 

 

We thought that this would be a good time to start scripting in general, as we could                 

not stop the jittering with just the Joint properties displayed in the inspector window.              

We created our main script CreateLinks (see Appendix, Image A2 to A5 for the              

complete final script). Its purpose is to seamlessly create the sphere and capsule             

links, connect them properly via Configurable Joints, and attach other scripts to            

them. We also converted the spheres and capsules into prefabs, with an additional             

prefab for the first sphere as it has no Joint. With that, we only need to adjust two                  

Configurable Joints, one for all the spheres except the first one and one for all               

capsules.  
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Image 2: The Inspector window for the 

Configurable Joint component. 

In order to attain the desirable motion       

behaviour for the rope, you first have to        

lock the X, Y and Z motion, as otherwise,         

moving a single object would not affect       

any other object at all. The Angular X, Y         

and Z motion need to stay free as the         

rope would remain completely stiff     

otherwise. After that, you have to reset       

the anchor points around each Joint is       

oriented. For the sphere’s Joints, this is x        

= -0.5 to place it on its left side, for the           

capsules it is y = 1 as they are rotated by           

90 degrees around the Z axis. By       

changing these Joint attributes on the      

prefabs, the motion behaviour is already      

very close to fulfil the criteria for the        

simulation.  

 

The script CreateLinks instantiates prefabs of the spheres and capsules          

alternatingly, the first sphere not being connected to any rigidbody but the other             

objects being connected to the rigidbody of the previously instantiated object via            

Joints. Afterwards, each object is assigned the Movement script and is set to not              

being kinematic (except for the first sphere, again). The last object to be instantiated              

is again a sphere. As the instantiation happens as a loop, users can easily change               

the number of loops in the script to change the number of links, and by that the                 

overall length, of the rope.  

 

 

At this point, the only problem left was the jittering of the rope. After some research                

on the internet , we discovered the property inertiaTensor. In Unity3D, it is a                28 29 30 31

28 What is inertia Tensor for Dummies? (2014). Accessed on October 27th at: 

48 



 
 

Vector3 that describes how much torque is needed to rotate an object around an              

axis (torque being equivalent to the force you need to move an object, but for               

rotation). The higher the values, the harder it gets to rotate an object around a               

certain axis. If the inertiaTensor is not set manually, it is “calculated automatically             

from all colliders attached to the rigidbody” . After some experimentation on            32

whether this could stop the jittering, we discovered that we needed to set the values               

way higher than those that were automatically calculated. This stopped the jittering            

completely, which in hindsight was probably caused by the links rotating too quickly             

but being stopped each frame. This was mitigated by setting the inertiaTensor via             

script to values that make it harder for objects to rotate (the value was set in the                 

CreateLinks script during the instantiation).This does not inhibit the user from           

rotating any object. If anything, the overall manipulation of the rope is working             

smooth and as intended to fit the criteria for the simulation. 

 

Next, we wanted to enable pulling and pushing the rope at any part of it, not just the                  

first sphere. To achieve this, you have to make any object that the user currently               

manipulates kinematic and each other object not kinematic. In the end, we created             

the KinematicController script (see Appendix, Image A6 to A7 for the complete final             

script), which sets the first sphere instantiated as the active (kinematic) sphere            

immediately after instantiation. In the next step, the object currently being           

manipulated by the user is assigned as the active object and made kinematic via the               

assignment of Selection.activeGameObject to a placeholder. The previously active         

object (which was saved in a second placeholder after it was made active) is made               

non-kinematic. The newly activated object is likewise saved in the placeholder for the             

previously activated object. The script now works and enables users to pull at and              

push every part of the rope along the three axes with the motion tools contained in                

https://forum.unity.com/threads/what-is-inertia-tensor-for-dummies.235919/ 
29 Calculus 3: Tensors (13 of 45) What is the Inertia Tensor? (2018). Accessed on October 27th at: 
https://www.youtube.com/watch?v=Ch-VTxTIt0E 
30 Moment of Inertia Tensor (2011). Accessed on October 27th at: 
http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node64.html 
31 Unity - Joint tearing under larger force (2015). Accessed on October 27th at: 
https://gamedev.stackexchange.com/questions/99245/unity-joint-tearing-under-larger-force 
32 Unity - Scripting API: Rigidbody.inertiaTensor. (w.D.). Accessed on October 27th, at: 
https://docs.unity3d.com/ScriptReference/Rigidbody-inertiaTensor.html 
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Unity3D. The rope is now behaving exactly as we wanted it to, meeting every criteria               

we set in the beginning of our work - almost. 

 

There is one problem we have not been able to fix, and that no other programmer                

has seemed to fix yet, likely because the situation it appears in is not of interest to                 

many people. The problem is that the individual rope objects pull slightly apart from              

one another. In most simulations, this is not an issue as no other object should be                

exactly at that gap and be small enough to squeeze through it with enough force.               

Unfortunately, this is the case when you try to tie a knot. If you pull a knot too tight,                   

one object will eventually slip through a gap where the knot is tied, breaking it. The                

elasticity of a Spring Joint, which is also inherent to the Configurable Joint, cannot be               

fully disabled. Intuitively, we tried to change the values for the Spring and Damper              

values of the Joint. However, setting the Damper value very high and the Spring              

value to zero did not solve the problem. We also tested other velocities for the               

objects or changing their force but still, the rope objects slipped through the gaps,              

breaking the knot that way. We also tried other solutions like increasing the solver              

iteration count in the project settings, changing the time step or increasing the             

rigidbodies’ drag, but despite the knot being more stable, none worked out. The             

problem is, regrettably, not solvable to our knowledge, inhibiting the simulation to            

fulfil its intended purposes  .  33 34

 

As time has become a concerning factor at that point, we decided to move on and                

implement the other two simulations. The rope objects pulling slightly apart from            

each other is not a problem for the shortest path simulation or the squaring circle               

simulation as the objects will not be put tightly together in one place with great force.  

We would have liked to solve the problem and have a fully functioning entangled              

knot simulation, however, the other two simulations became our priority considering           

the time frame left.  They will be explicated in the following two subchapters. 

33 Non-Springy Configurable Joint (2010). Accessed on November 30th at: 
https://answers.unity.com/questions/14358/non-springy-configurable-joint.html 
34 Joints sag with mass? What is the cause? Can it be eliminated? (2019). Accessed on November 
30th at: 
https://www.reddit.com/r/Unity3D/comments/dv3byh/joints_sag_with_mass_what_is_the_cause_can_i
t_be/ 
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4.4 Building the Shortest Path Simulation [NICKELMANN] 

Besides the entangled knot simulation, we also wanted to implement a map            

simulation based on the shortest path problem (Freksa, 2015).  

 

First, we planned how to construct the route network. We used bigger, red spheres              

as the waypoints/nodes between which a shortest path can be detected. The routes             

are made of the spheres and capsules we used for the entangled knot simulation. As               

spheres and capsules are alternating in this simulation as well, but the node spheres              

are connected to multiple capsules, we decided to give each capsule two joints to              

connect them to each adjacent sphere.  

 

The only script from the entangled knot simulation we could use was the Movement              

script which limits the velocity of the links. We could not use the CreateLinks script               

as we created the route network manually, and the kinematic property is handled             

differently in this simulation, so we also could not use the KinematicController script. 

 

 
Code 1: The variables of the MapBehaviour script (the starting and ending point game objects of the                 
path, a counter, a material to indicate the selected starting and ending point). 
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Code 2: Start of the Update() method. This allows for selecting the starting point of the path, which is the                    
object that is fixed in position. 
 

 
Code 3: The rest of the Update() method, which allows for selecting the ending point of the path and                   
simulates the pulling apart of the map. 
 
For the kinematic property, we wrote a script called MapBehaviour which is attached             

to a game controller object. Its purpose is to pin down one of the node spheres (see                 

Code 2) and pull a different one straight away from it (see Code 3), which is done by                  

simply clicking the nodes (the first one being fixed in its position, the second one               

being pulled away from it in a straight line). Between those nodes, the shortest path               

52 



 
 

will be detected automatically. The two selected nodes are made kinematic as they             

should not be influenced by the movement of other links of the route network. They               

are marked by being assigned a green material.  

 

 
Code 4: The MapVariables script for game object and joint properties. 
 

In addition to the MapBehaviour script, we wrote the MapVariables script attached to             

each object which sets each Joint’s break force and each object’s inertia. We had to               

experiment a little bit to find out the optimal value for the break force, in the end, we                  

settled at 30.000. If this value is exceeded, or in other words, the Joints are pulled                

apart by a force greater than 30.000, the Joint breaks, indicating the shortest path              

between the two selected nodes. 

 

 
Code 5: The ShortestPathDetection script for stopping the motion after a joint breaks. 
 

The last script we wrote was the ShortestPathDetection script attached to each            

capsule, as they hold the Joints. When a Joint breaks, the function OnJointBreak() is              

called, disabling the MapBehaviour script and stopping the traction of the previously            

pulled node. 
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As we had already figured out the most difficult steps for implementing a simulation              

based on the specific rope properties and rope behaviour we wanted to use,             

implementing the shortest path simulation was not that difficult. What made it even             

easier for us was the fact that this simulation is basically a 2D simulation, and               

besides user input for selecting the two waypoints, each step is carried out by the               

scripts and not the user. 

 

4.5 Implementing the Squaring Circle Simulation [NICKELMANN] 

In addition to the entangled knot simulation and the shortest path simulation, we             

want to implement a simulation based on the strings-and-pins approach to the            

squaring circle problem explicated in Chapter 1.1.2. 

 

We have implemented the simulation up to the point where the circumference of the              

circle is marked and the string should be unrolled, as this is the part which cannot be                 

solved by a straightedge-and-compass approach. A central script, called         

SquaringCircles (see Appendix, Image A8 to A15 for the complete final script),            

directs each step of the squaring circle process. There are different materials for the              

cylinder, the spheres, pinned spheres and the spheres that are part of the             

circumference. This is done in order to discern the pins and the different parts of the                

string - the radius, the circumference et cetera. One array lists all spheres, another              

one all pinned spheres; this is important for counting the pinned spheres as a certain               

number of pinned spheres starts a certain part of the process. Two additional arrays              

hold all spheres beyond those inside the cylinder and all spheres of the             

circumference respectively. 

 

The spheres are instantiated like they are in the entangled knot simulation. The only              

difference, besides different scripts being attached, is that the method          

CheckBounds() is called during instantiation. It checks whether or not a sphere is             
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created inside the cylinder (the first one is always instantiated at the center of the               

cylinder) and if it is, assigns it to a layer which ignores collision with the sphere. 

 

A user has to follow certain steps during the simulation of the squaring circle              

process, or else it will not work properly. The first step is to pin the sphere at the                  

center of the cylinder (pinning works like in the shortest path simulation, besides the              

object’s positions being frozen), and afterwards, they have to pin the first sphere             

directly outside the cylinder. The script checks the number of pinned spheres every             

frame. If that number is two, the part of the rope behind the sphere pinned directly                

outside the cylinder is rotated counterclockwise around the cylinder. This is done to             

measure the cylinder’s circumference.  

 

At this point, a script called SCCollision (see Appendix, Image A16 for the complete              

final script) comes into play, which is attached to each sphere. It checks for collision               

with the sphere pinned directly outside the cylinder, for as long as there are exactly               

two pinned spheres. A collision with that sphere happens when the circulation is             

finished, and when detected, the colliding sphere gets pinned as well (thus,            

increasing the number of pinned spheres to three). All spheres that are part of the               

circumference are indicated via an orange material. 

 

As mentioned before, obtaining the circle’s/cylinder’s circumference and being able          

to transform it into a straight line afterwards is the vital component of the simulation,               

as it cannot be achieved by the straightedge-and-compass approach. This has been            

implemented and it works as intended. We tried to implement further steps in order              

to show the complete task of squaring the circle, but due to time constraints, we did                

not get the next to work (which would be rolling back the string and pulling it out into                  

a straight line). We definitely would have liked to fully implement the simulation, but              

within the frame of this thesis, it was neither possible nor greatly necessary.             

Nevertheless, we hope that this simulation is of value for further research of strong              

spatial cognition topics and will be continued to be worked on by other programmers. 
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In this chapter, we have presented the whole modeling and implementation process            

for the three simulations. We have illustrated each separate step of the process,             

starting with the endeavour to model the rope in Blender and importing it to Unity3D.               

After explaining why this approach was abandoned, we explicated the key to the             

implementation via Unity3D: The Joint component. There are five different types of            

Joints available, which we all briefly described, and we reasoned why the            

Configurable Joint is most suited for the intended simulations. Thereafter, we started            

the report on the implementation process. We discussed how we implemented the            

basic rope, which problems we encountered and which criteria the rope met. After             

configuring the basic rope, the most difficult work was done and we could focus on               

the setup of the simulations. Unfortunately, due to the individual rope parts pulling             

apart, tying a knot is not possible and we could not get a satisfying end result of the                  

entangled knot simulation. However, the rope parts pulling apart is not a big problem              

for the other two simulations. We illustrated how we set up the map simulation and               

which behaviour needed to be implemented in order for it to work properly. In the               

end, the map simulation is working as intended and its functionalities can be applied              

to any map constructed equally to our example map. The squaring circle simulation             

and its methods were delineated in the end of this chapter. The criteria we wanted to                

meet and the most important step in the squaring circle process could be             

implemented, and thus, the end result of that simulation is satisfying. The end results              

of the three simulations will be depicted and discussed in the following chapter. 
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5 Results [NICKELMANN + RAHMAN] 
In this chapter we are presenting our outcomes of the thesis. The examination of the               

spatial cognitive problems is following the order in which we proceeded to implement             

them. The results to the entangled knot problem will be displayed first, followed by              

the shortest path problem and ceased by the squaring circle problem. This is             

because the problems are considerably equal in their relevance, so that we do not              

need to distinguish the results based on that. Despite this fact, the simulations we              

would like to present have similar substructures. Thereby, some outcomes of prior            

examined problems were already incorporated in the simulation of the next problem.            

In this case, the entangled knot problem and the shortest path problem share their              

rope substructure, the latter problem inherits the rope design from the former            

problem. 

 

Due to the fact that this thesis is following an explorative viewpoint, the results will               

not only be presented as the final simulations. Additionally, we are documenting the             

different stages of the simulations and the design process. These can be found in              

the documentation chapter, as well as visualised in a demovideo and are of equal              

importance as the end results.The length of the demovideo is one minute and fifty              

seconds and shows a shortened screenshot video, which was directly captured from            

the screen. Furthermore the figures in this chapter are mainly taken from this video              

to illustrate our work in this setting. Moreover, that chapter will incorporate all             

important solutions, that were considered or dismissed. The description of the design            

process might be of interest for further works. Thereby presenting the           

thought-process as well as the milestones that lead up to the final outcome. 

 

The spatial cognition problems we are featuring are from different levels of difficulty.             

We like to note at this point, that in this thesis, the difficulty level is measured by the                  

total of the different components. For example, a simulation that requires more and             

complex components is the squaring circle problem, whereas the simulation of the            

shortest path problem is depending on fewer components to be solved. Thus we are              
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presenting different states of simulations, according to the needs of the spatial            

problem. Some states are solving the entire spatial problem requiring a complete            

simulation, while others only need partial simulation to be solved, before they e.g.             

receive further geometrical treatment. 

 

5.1 Entangled Knot Simulation [RAHMAN]  
As this spatial cognitive problem evolves around a knot, the aim of the simulation              

was the detangling of a knot. The process of detangling required several movement             

concepts and features, that needed to be implemented. For this reason we focussed             

on designing a rope that can be manipulated by a cognitive agent. Main mobility              

features to detangle the knot, like pulling , pushing or dragging the rope, were our              

highest priorities and are further described in our methods. This simulation consists            

of two alternating objects, one shaped as a capsule and the other shaped as sphere               

(see figure 1). The objects, except for the first sphere, are connected by configurable              

joints to form the manipulable rope.  

 

In this simulation we designed the first sphere to be slightly different from the other               

spheres, which is now designed to be followed. As seen from figure 1, in the               

beginning of the simulation a rope was created and arranged horizontally.           

Furthermore a set amount of objects were instantiated, to resemble the           

characteristics of a middle length cable. Thereby referring to the experiment of            

detangling headphone cables, which inspired this simulation. 
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Figure 1: Simulated rope, formed by capsules and spheres (grey).  
The simulation is shown in its resting and untangled state. 

 
 
The original idea behind this was to reproduce a multi-knot, consisting of random             

and different types of knots. This reproduction was the first step to engage a              

cognitive agent to use the human approach of solving the knot. In order to              

understand the human approach, we tried to pre-tie the knot, which is supposed to              

be solved. As soon as we were able to form a loop (see figure 2), without jittering or                  

breaking effects, we continued our pursue to form a knot.  
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Figure 2: Forming of a loop with the rope, using the provided navigation by Unity3D. The simulation  
is shown in its active state. 

 
 

The first sphere was initially kinematic, which lead to breakage, when paired with a              

kinematic last sphere. Also, the general prefab of sphere was equipped with two             

joints and was programmed to orientate itself to the previous sphere. However, the             

first sphere was not assigned to any sphere, therefore it automatically orientated            

towards the middle sphere. This conflict was omitted by designing a new prefab to              

instantiate the first sphere. Furthermore, this prefab was designed without a joint,            

which previously caused the jittering.  

 

However we faced more difficulties to maintain a stable rope without losing its ability              

to be flexible. Although the rope was able to be manipulated into a loose knot (see                

figure 3), it was not able to form any tighter knots. At this point all manipulations were                 

executed by Unity’s controller, which allowed a movement in all three axis directions. 
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Figure 3: Forming of a loose knot with the rope, using the provided navigation by Unity3D. The  
simulation is shown in its active state 

. 
 
As soon as we attempted to form multiple or tighter knots, the rope would break. This                

behaviour was caused by the gaps between the capsules and spheres. These gaps             

ensured the flexibility of the rope, however, when strongly pulled they would let these              

objects slip through. Efforts to make the gaps smaller, thus tighter, were            

unsuccessful. Tightening the gaps caused by the joints would make the rope stiff and              

less manipulable. To the extent that a loop was not formable at one point. Figure 4                

shows the tightest knot that could be formed with this simulation, without causing the              

prior mentioned disturbances in the simulation. 
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Figure 4: Tying a knot with the rope, by pulling at the opposing two ends of the rope.Tightest knot  
constellation possible to achieve, before it breaks. The simulation is shown in its active state. 

 
 
Further attempts to evade the gaps, besides a decreasing distance between the            

objects, was to use a mesh combiner. The theory was to combine the objects into               

one mesh and thus mimic a cable, omitting any breakage caused by gaps. This idea               

is yet to be effectively implemented. Due to time limitations, we were unable to find               

further approaches, after our first attempts did not succeed. 

The result of the entangled knot problem, in the context of the thesis, is a simulation                

of a flexible rope, that is able to be manipulated by a cognitive agent. All objects that                 

are a component of the rope, are designed to mimic the character traits, that allows               

the simulation to behave accordingly, when pushed or pulled. 

  

 

 

 

62 



 
 

5.2 Shortest Path Simulation [RAHMAN] 
The aim of this simulation was the detection of the shortest path between two points.               

By stretching at two waypoints, the most stretched edge indicates the shortest path.  

The waypoints are representing potential starting and target points on a map, thus             

imitating a navigational route (see figure 5). The construct is designed similar to a              

graph, with varied weighted nodes and different length edges. 

 

 
Figure 5: Simulated rope forming a net. Components of the rope are waypoints (red), as well as  
capsules and spheres (black). The simulation is shown in its resting state. 

 
 
The rope, that we designed previously to simulate the knot function, was added to              

this simulation. In addition to the existing rope, another object category was added.             

We called these objects waypoints. This object category is introduced to connect            

multiple ropes. Since they obtain more specific attributes for movement, the           

cognitive- agent is able to have more control during the simulation. In contrast to              

these manipuble waypoints, the rope cannot be directly manipulated by the cognitive            
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agent. To clearly differentiate between objects of the rope and the actual waypoints,             

different colours were used. While the capsules and spheres of the rope were black,              

the waypoints were hued red. A colour change from red to green indicates the              

selection of a point (see figure 6).  

 

 
Figure 6: The selected waypoint is green, while selected ones still red. The simulation is shown in its  
alert state; stretching will start as soon as the second waypoint is selected. 

 
 
A selection can be carried out by mouse click. Once two waypoints are selected,              

there is no other opportunity to select another point. This is what we call the alert                

phase of the simulation, which is occupied with the stretching. While the first             

waypoint is selected, it is simultaneously pinned down to its initial position. The             

stretching is then triggered by the selection of the second point.  

 

The mechanism of the second point, as described in the methods chapter, allows it              

to move in the opposite direction. Once it reached the ultimate position of utmost              
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stretching, meaning the function OnJointBreak() would reach a certain threshold (see           

figure 7), it is stopped.  

 

 
Figure 7: Two selected waypoints (green), while the first selected point is pinned, the second moves  
opposite, thus triggering a stretch. The simulation is shown in its active state. 

 
 

At this current state of the simulation it is not possible to induce a route with multiple                 

stops. However, this simulation is able to stretch at an two waypoints, regardless of              

how many edges are attached to it. Furthermore it is able to perform a full stretch by                 

itself, without causing a deformation of the rope or damaging breakage. The            

detection of the shortest way, in the context of the thesis, is possible with this               

simulation. 
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5.3 Squaring Circle Simulation [RAHMAN + NICKELMANN] 
In order to simulate this spatial cognitive problem entirely, it had to be broken down               

into several minor components. Therefore we started off by simulating the most            

interesting component, which measures the circumference of the circle/cylinder with          

a rope. While this part of the problem requires a simulation, the other components              

could be carried out by geometrical operations and are thus neglected in our             

examination. The function of this rope stems from the rope design implemented in             

the entangled knot problem. However, we chose to create a rope made of spheres              

only this time.  

 

 
Figure 8: The grey cylinder is the measuring object; red spheres are the rope; here the first sphere is  
marked green by a cognitive agent. The simulation is shown in its active state. 
 

 

As a result of the objects form, which was a cylinder in this case, we decided that this                  

rope type was more accurate and more suitable in this circumference process. To             

make sure the rope stopped after once performing the circumference, we worked            
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with collision detection (see SCCollision, in our methods chapter). As seen in figure             

8, the first object of the rope is instantiated in the center of the cylinder.  

 

At this point of the simulation, the cognitive agent/user is required to select the              

immediate sphere that is situated outside the cylinder, as well as the first sphere.              

This is not only to make sure we capture the radius, but also the start of the                 

automated measuring (see figure 9).  

 

 

 
Figure 9: The grey cylinder is the measuring object; red spheres are the rope; green spheres mark  
the radius separately.The simulation is shown in its active state, while rope is wrapping around the  
circle.  

 
 

To separately mark the selected and thus pinned spheres, they are coloured green             

(see figure 9). This selection and marking is meant to be performed by a cognitive               

agent. The selection of the second sphere, acts as trigger to start a counterclockwise              
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rotation of the rope. Once the rope is wrapped around the cylinder, it is resulting in a                 

full circumference (see figure 10). 

 

 
Figure 10: The simulation is shown in its active state, while rope is wrapping around the circle. This  
is automatically triggered by the second green sphere selection. 

 
 

The rope stops upon the second collision with the first sphere of the rope, that is                

situated immediately outside the cylinder. To indicate this full circumference to the            

cognitive agent, we coloured this rope section orange (see figure 11).  

 

68 



 
 

 
Figure 11: The orange coloured section of the rope is the measurement of the circumference  
                  of the circle.  
 

 
This component of the simulation of the squaring circle problem is able to perform              

the circumference of the given cylinder and visually indicate the used rope section.             

Further steps can be carried out by geometrical operations. 

 

In this chapter, the end results of the three implemented simulations were            

demonstrated. The implemented functionalities were explained, as well as how to           

interact with the simulations. We depicted the outcome simulations by screenshots           

and roughly explained how they work (visit the Appendix to see the full code of the                

three simulations).  

 

In the following, concluding chapter, we reflect on the implementation process as a             

whole and discuss which of the previously set criteria (in regards to spatial cognition)              

we met. We also state which problems arose during the implementation process and             
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which ones we could not fix within the time frame of this thesis. Additionally, we               

comment on why these simulations are of value for (strong) spatial cognition            

research and give an outlook on future research, hoping that our work will help other               

researchers and programmers. 

 

5.4 Demo Video [RAHMAN] 

Finally we would like to point to our link , which provides the full demovideo of the                35

resulting simulations from this thesis. This demovideo was especially designed for           

the 14th International Conference on Spatial Information Theory (COSIT), which was           

held in Regensburg, Germany from the 9-13 of September 2019. Prof. Dr. Christian             

Freksa, from the CoSy group of the University of Bremen and participant in that              

conference, decided to present this new viewpoint on the examined problems in            

Strong Spatial Cognition in this thesis.  

 

This demovideo is backed with descriptive keypoints. Thereby we aim to illustrate            

the process to the viewer, while providing a narrative to the visual input. In this video                

each examined spatial cognitive problem separately demonstrates the active         

process to find a solution via an cognitive agent. The naming of the problems is               

slightly different, as they are introduced by their working title. The length of the video               

is one minute and fifty seconds, illustrating a shortened and partially sped up video,              

which was directly captured from the screen. Moreover, the order of the shown             

problems is not of any particular order, however, can be reasoned by the argument              

of the sufficiency of the simulation and the dramaturgy.  

 
The introductory screen (0:00 - 0:04) contains the name of the thesis and the name               

of the thesis composers. It is followed by the capture of the Shortest Path Problem               

(0:04 - 0:15), which contains the route network and the information comprised in             

bullet points. The information provided describes the aim, the visual objects, the            

problem that is examined and possible future applications. Moreover, the bullet           

35 link to the demovideo: https://drive.google.com/open?id=1UhN5Jr77k_qMSCEvs2RIbLGdF6TGoNj- 
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points are fading away after a short time, so that the viewer is not distracted and the                 

observation of the simulation is not confined by the writings.  

 

The actual demonstration of the Shortest Path Problem simulation (0:16 - 0:37)            

shows three possible options to manipulate the route net. In the first part (0:16 -               

0:20), the selection of the waypoints is specified by the colour change from red to               

green. The stretching, in order to allocate the shortest path, is demonstrated in             

option 1 (0:20 - 0:22), option 2 (0:27 - .0:30) and option 3 (0:32 - 0:35). This is to use                    

multiple examples to make an impression of this quick action and instill the fact that               

it is possible to freely choose any two waypoints in this simulation.  

 

Furthermore, the entangled knot problem is introduced (0:40 - 1:13) and is supplied             

with bullet points that are explaining key elements, current problems and aims of the              

simulation (0:40 - 0:48). Meanwhile, the laid out rope is getting manipulated into a              

knot. In this next frame (0:51 - 1:05) we chose to incorporate another angle, bringing               

the viewer closer to the rope and thus be able to observe the manipulation. The first                

knot is created (1:05 - 1:10) by pulling at the end of the rope. Within this simulation                 

the rope is only able to uphold a certain level of tightness, before it’s objects slip                

through the gaps can be viewed (1:11 - 1:13).  

 

On the first screen of the simulation to the Squaring Circle Problem, a round object               

(grey) and a rope (red) is visible (1:14 - 1:16), accompanied by bullet point of               

information. The information states the aims, functions and other specific attributes,           

as well as problems that we were facing at that point of our work on this spatial                 

cognitive problem. Considering to implement the visual from the last simulation, the            

selection of the points is marked by a change of colours (1:18 - 1:28). The selection                

of the second object of the rope is further triggering the circumference. It also              

enables orange-colouring of the section of the rope that is involved in this process              

(1:28 - 1:43), when the rope collides with it. The next step is only hinted in this                 

simulation and implies the step of the unwrapping of the rope (1:43 - 1:50). 
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We aim to illustrate the process to the viewer with the video of all three simulations,                

while providing a narrative to the visual input. In this video each examined spatial              

cognitive problem separately demonstrates the active process to find a solution via            

an cognitive agent. An active process like a simulation, is more detailed and             

accurate in its depiction as a video and the provided instruction to the video.              

Therefore we encourage to follow the provided link to gain a deeper understanding             

of the simulation process.  
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6 Discussion and Conclusion [NICKELMANN + RAHMAN] 

 
The findings of this thesis demonstrate that the simulation of spatial cognitive            

problems like an entangled knot, the shortest path and the squaring circle problem,             

are not only possible but harbour great potential. In the context of our work we are                

able to provide three working simulations of the above mentioned spatial cognitive            

problems. In contrast to existing approaches, it offers a solution without having to             

use any secondary tools or methods using 3D printouts, but is aimed to be directly               

integrated. Furthermore, this simulation incorporates the ideas of Strong Spatial          

Cognition , thereby mimicking the intuitive methods of a human to approach the            

problems.  

 

Not only are these simulations faster, but they are also more moderate with resource              

usage. The simplistic design of the simulation was purposefully chosen to foster a             

decrease of the CPU usage as well as the resources used for secondary tools              36 37

and memory capacity. One of the key aims of this work was to find a way to establish                  

a method that combines a higher efficiency with a solution-orientated simulation to            

each problem. Besides the factor of efficiency, the visual aspect granted by a             

simulation, was crucial. In earlier approaches this part was analog, but nevertheless            

the key element to an alternative solution-finding process to a algorithmic           

rationalisation. It is this visual implementation that allows manipulation by cognitive           

agents, that differs this work from others and enables a direct integration of the              

internal system of a cognitive agent used in AI. 

 

The translation of a spatial cognitive problem by an analog-intermediate step, which            

is then used by a cognitive agent in AI, only to be translated into a digital instruction,                 

causes avoidable complexity to the solution-finding process. The simulation         

developed within this thesis offers a direct solution in a virtual environment, while             

36CPU = central processing unit 
37The secondary tool in this particular case is the 3D-printer, used for the printout of the net of the 
shortest path problem. 
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considering the analog nature of human methods. These qualities make them overall            

more efficient to solve cognitive spatial problems in future applications.  

 

As previously mentioned, the visual appeal of the simulation was not the focus of this               

work, therefore the resulting simulation is kept in simple appearance. Additionally, to            

the relieve of the resource usage, this aids to our goal to keep the recreation and                

understanding of this work as a priority. The implementation of these simulations in             

a system of a cognitive agent used in AI, offers a great potential to evade               

complicated and lengthy algorithmic processes.  

 

In consideration of the significant difference of the examined spatial cognitive           

problems, each problem is separately addressed the upcoming section of the           

discussion and conclusion. Beginning with the entangled knot problem, followed by           

the shortest path problem and ultimately followed by the squaring circle problem. 

 

6.1 Entangled Knot Problem [RAHMAN] 

The first spatial problem we assessed was the entangled knot problem. The            

examination was initiated by the first-hand determination of the features of the            

entangled knot problem, in order to appoint attributes that we needed. For this             

purpose we used our primary model of a knot, shown in draft 1. The idea was to                 

create a rope that was not only flexible and manipulable but also able to uphold               

knots. With our simulation we overcame the limitations that we found in other             

simulations like e.g. in the above mentioned Obi-Ropes. Even though their product            

had excellent visual appeal and impressive fluidity in portrayed collisions, their           

purchasable rope- preset did not provide the ability to recreate a manipulable knot.  

 

Although we intended to create a simulation that was close to the existing solution,              

we did undertake some changes. We decided to ultimately ignore the aspect of             

gravity in the simulation. In the real world approach by CoSy, a cable of a               

headphone was used to form a multiple knot. This was to imitate the everyday              
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scenario of a tangled cable, regardless of how it ended up in the formation. The idea                

was to hand this knot to a cognitive agent and let that agent come up with a solution.                  

Thereby conducting a human approach to solve the knot, rather than a algorithmic             

based way. We were closely following the experiment and implemented attributes,           

that allowed a manipulation of the rope in the simulation in a similar way to how it                 

was handled in the real world approach. However the introduction of gravity caused             

problems in our digital version. Due to its own power, introducing gravity would             

cause a tear down of any loop that we formed beforehand. Therefore the rope would               

not withhold its shape, which made any further manipulation impossible. Simple yet            

essential operations like pulling or pushing the rope were hindered, which is why we              

took a step back and continued our simulation without adding gravity. Subsequently            

the simulation allowed a formation of a loop, followed by a manipulation of the rope               

to a knot. At this point we decided that the simulation of this spatial cognitive problem                

does not depend on gravity in order to work properly. Instead, we focused on the               

functionality of the simulation to imitate a tangled cable and the attributes for             

manipulation, as these were the key elements to this examination.  

 

As mentioned in the results chapter, the current simulation of the knot allows to              

create a knot to a certain tightness. Further tightening of the knot, beyond that              

certain threshold, leads to a slip through of the individual objects. During our             

development phase we considered two other concepts to overcome this problem. As            

previously mentioned, the wrapping concept as well as decreasing distance between           

the individual objects did not bring any satisfying solutions. With hindsight the            

approach to combine the meshes of the objects and thereby creating a wrap around              

the cable still seems to be the most possible concept. The current simulation             

suggests that once the ‘slip through’ problem gets solved in future works, it is              

possible for a cognitive agent to manipulate and thus work on this cognitive spatial              

problem. With the help of a simulation, such as the one developed within the scope               

of our thesis, a cognitive agent is already able to manipulate the rope. So the next                

step is the forming of a multiple knot, which further leads to the study of how the                 

human approach differs from an AI algorithm-based path.  
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As the work of the CoSy group suggests, the efficiency and most importantly the cut               

down of the load on the computing power is the overall aim. To achieve adequate               

results in digital approaches, further studies should take into account the differences            

in scale and functionality when it comes to convert a real world problem into a digital                

simulation - that again is used by an cognitive agent. We see great potential in the                

usage and implementation in further research about the improvement of AI cognitive            

agents and introducing them to use these human approaches. Using a digital            

simulation allows a seamless course of the process of solving a knot configuration,             

as it omits the extra translation and thereby reduces the resources that are required              

in this.   

  

6.2 Shortest Path Problem [RAHMAN] 

Since the rope, designed during the simulation of the entangled knot problem, turned             

out to serve all our criteria, we decided to use it as a base in our next simulation: the 

shortest path problem. In the context of this cognitive spatial problem, the fact that              

the rope objects slip through, is irrelevant. Decidedly we let this simulation inherit the              

previous rope design, when we were certain about the fact it would not hinder the               

performance of this simulation. This is because the shortest path problem requires            

different specifications in a simulation that do not depend on that level of flexibility.              

The operation that causes the rope to break is not part of this simulation. Even               

though the rope objects that are integrated in the map are designed as 3D objects,               

most of its manipulation is displayed in a 2D view to resemble a map from the                

birdsview. Due to the fact that the shortest path is revealed by stretching, we decided               

to design the simulation on a plane to preclude unnecessary rotations and            

deformation that would falsify the end result. All in all this approach is different from               

the current mechanical handling, which is using a 3D print-out of a net that              

resembles the paths on a map, without involving a plane. However the digital             

approach required a base to enable the stretching and provide a clear background to              

the scene to work with.  
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This simulation was more complex and thus challenging to create than the previous             

one. Not only did it require flexibility and stability while being manipulated, but we              

also wanted to introduce seemingly automated operations. By automated operations          

we mean the stretch that is triggered by the selection of the second waypoint. We               

preferred this way of designing the stretch, because of two reasons. First, we didn’t              

want to involve a cognitive agent in this particular part to avoid any error e.g. over                

stretching. Secondly we decided to discharge and relieve the agent at this point, by              

opting for the automation of this part of the simulation.  

 

The newly introduced object of this simulation was the waypoint. As mentioned in the              

previous chapter, this object is designed to have more functions implemented in its             

code. This is due to the fact that, after several attempts to find other solutions, this                

object type made it possible to generate a stretch. This stretch is performed without              

causing breakage. Furthermore our simulation allows the cognitive agent to select           

whatever point they want to manipulate. It was important to us to generate a object               

that has a simple and effective code-design; since the overall goal was to simplify              

the process and omit major strain on the computing power.  

 

In addition, we decided to illustrate the selection of the waypoints by a change of               

colour, this is to allow the cognitive agent to receive an instant feedback. Due to the                

fact that currently only two points can be selected, we believe that an introduction of               

a visual feedback encourages a higher accuracy in the selection. The design of the              

current simulation would otherwise not be as intelligible to a cognitive user. Given             

the fact that the selection of the second waypoint endorses the stretch performance             

and simultaneously pins the first waypoint, it also restricts any further selection.            

Therefore we were considering to adopt any sort of feedback to make the selection              

stand out and avoid any confusion.  

 

As previously mentioned, the current simulation grants the selection of two           

waypoints, imitating one point of departure and one point of arrival on a navigational              

route. Considering the aspect of navigation, which is the most suitable field of             

research to place this simulation in, we see more potential. The addition to multiple              
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stops, indicating a stopover e.g like buying flowers before visiting a friend, might be              

of interest and provides further detail to the problem of the shortest path. 

 

Running such a simulation in the background of an AI navigational application should             

increase its performance significantly. Some refinements to factor in like, for           

example, traffic congestion would still be necessary, but this could be achieved by             

weighing some route parts differently, making them more or less stretchable et            

cetera. In short, a string map functions as an easy and intuitive solution to the               

shortest path problem and is very useful in the broad domain of wayfinding. It offers               

opportunities for adaptations, and thus, a digital simulation of the string map is a              

meaningful contribution to the field of strong spatial cognition.  

 

In our understanding, there are several further implementations and projects that can            

be continued from this work.  

 

6.3 Squaring Circle Problem [NICKELMANN] 

For the simulation of this cognitive spatial problem, we also decided to use the rope               

from the entangled knot simulation as the basis, as it fulfills all the criteria we set.                

The problem of the rope objects slipping through small gaps in the rope is not of                

relevance here as the rope will never collide with itself in a way that such a situation                 

could occur. Similarly to the shortest path simulation, despite the objects being 3D             

objects, the simulation is basically a 2D simulation as the underlying squaring circle             

problem is a two-dimensional spatial problem. To reduce the workload, we decided            

to implement it with Unity3D; doing so does not inhibit the simulation in any way.               

Implementing the simulation in 2D might have even been harder as the cylinder             

(representing the circle) being in 3D helps to implement the step where an agent              

would pin the rope on the circle’s circumference. It is a bit tricky, but when you put all                  

spheres inside the cylinder in a layer ignoring the collision and all spheres outside              

the cylinder in a layer not ignoring the collision with the cylinder, you can easily both                

simulate pinning the rope at the center of the circle and also wrap it around the                
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cylinder, mimicking pinning the rope on the circle’s circumference. In this way, the             

simulation differs from the real-world problem. It is not possible to exactly pin down              

the rope on the outer line of the cylinder, you have to do it by letting the rope objects                   

collide with the cylinder’s envelope. However, this is a very small inaccuracy. Such             

small inaccuracies might also emerge from pinning down the rope on a circle’s             

circumference, regarding the real-world task.  

 

We implemented the simulation in such a way that users do not have to perform               

translation or rotation of objects themselves. The only thing they should know before             

starting the simulation is which spheres to click - the one at the cylinder’s center and                

the first sphere directly outside the cylinder. Having clicked the spheres in that order,              

the rope will wrap itself around the cylinder. The indication of the two clicked spheres               

and of the spheres making up the circumference also happens automatically. We            

tried implementing the option for the users to manually wrap the rope around the              

cylinder but it would not wrap around it very tightly, also, it takes way longer than the                 

automatic approach. The C# method we used, RotateAround (), was more suitable to            

achieve this. It is an easy method that does not rely on many additional              

computations, being in line with the criteria we set for the simulations. 

 

One more complicated aspect of the implementation is how the spheres are            

selected. As the cylinder is technically in front of the spheres, we had to utilize               

shaders for the red and green material that always render them on top. Additionally,              

when casting a ray from the camera to get the hit object, which should be a sphere,                 

we had to ignore the cylinder as well. We achieved this by using the bitwise negator                

“~”, making the cylinder the only object not being selectable by the user. All in all, the                 

simulation was complicated to set up in the beginning, but it now works as intended               

and is in line with the goals regarding strong spatial cognition. 

 

We should also mention that, when it came to examine the squaring circle problem,              

we decided to change the previous rope design slightly. We introduced a rope that is               

consisting of spheres only. As described in the methods chapter, we aimed to             

produce a rope that performs a full circumference on the cylinder and to indicate the               
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used rope length. Furthermore, we favoured the concept of using colour as an             

indicator as to when a full circumference is produced, as we wanted to get a               

universal feedback of the rope length. Therefore we used colour to indicate the rope              

section that was involved in the circumference. We preferred this procedure, as it             

allows to give an instant feedback to the cognitive agent. In addition to the visual               

feedback we were able to avoid a direct measurement, which would result in another              

number that becomes part of another algorithmic operation.  

 

Further work on this simulation should start by implementing the following steps of             

the squaring circle problem. We have stated that the detection of the circumference             

is the most important step as it cannot be solved by the common             

straightedge-and-compass approach. However, only having implemented that step        

does not let a cognitive agent transform the circle into a square. We would have liked                

to implement the corresponding steps as well, but due to the time frame of the               

thesis, this was unfortunately not possible. We believe this simulation to be a great              

starting point for other programmers to implement a full squaring circles simulation            

based on the strings-and-pins approach and hope that it will be utilized by cognitive              

AI systems in the future. 

 

Closing the gaps between the rope objects might also increase the accuracy of the              

circumference. We hope that this problem will be fixed in the future and that a               

non-springy Configurable Joint will be enabled by Unity3D, as that would also fix the              

problems for the entangled knot simulation. Additionally, as previously hinted at,           

finding a way to pin the spheres exactly on the circumference line of the cylinder               

would further improve the accuracy of the simulation. At that point, the accuracy of a               

digital simulation of the squaring circle problem would be higher than the accuracy of              

the real-world solution via the strings-and-pins approach. 

 

Our hope is for this simulation to be utilized by cognitive AI agents. The basic               

problem of squaring a circle is a common problem in geometry, and it being easily               

solvable by an AI agent without having to use the tools of strings and pins yourself                

would be very efficient. Furthermore, such a simulation would provide a great            
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opportunity for future research of the still novel research area of strong spatial             

cognition. Closing this chapter and the thesis overall will be a résumé of the goals we                

achieved with the work of this thesis and a compact outlook on future research and               

possible application areas. 

 

6.4 Reached Goals & Outlook [NICKELMANN] 

We have worked on three digital simulations of tasks associated with the scientific             

discipline of spatial cognition. Those three tasks are knot-tying and untying, finding            

the shortest path in a route network and transforming a circle into a square with the                

same surface area. Those tasks are each implemented in a digital simulation,            

showcasing specific approaches to these problems based on manipulable ropes. 

 

As outlined in Chapter 2.2, these kinds of simulations put the focus on the direct use                

of spatial information instead of extensive use of algorithms and highlight a current             

gap in spatial cognition research and the application of its findings in cognitive AI              

systems. All other simulations dealing with knot-tying and untying put their focus on             

the domain they are to be applied in (which is most frequently a medical domain) and                

rely on many algorithms. Regarding the other two spatial problems, there has not             

even been an attempt to produce a digital simulation of them.  

 

Thus, our work is of value especially for research of the novel field of strong spatial                

cognition. We have implemented simulations for problems that have either not been            

digitally tackled by a non-algorithmic approach or have not been implemented at all.             

The goal in mind - reducing the number of computations and handling spatial             

structures directly - is not commonly found within the realm of software computing.             

We hope that our contribution can be a starting point for future research and that               

researchers and programmers alike can use these simulations and continue to work            

on them. The simulations meet every criteria we have set, all of them using few               

algorithms and encompassing the direct manipulation of spatial configurations. There          

are problems that need to be fixed if the entangled knot simulation is to be applied in                 
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a cognitive AI system, the gaps between the rope objects inhibiting agents from tying              

the knots tightly. For the squaring circle simulation, further steps need to be             

implemented to actually transform the circle into a square with the same surface             

area. The shortest path simulation can already be applied, however, writing a script             

that can discern the routes and waypoints and automatically produce a road map             

would drastically reduce the needed workload. The simulations work reliably and           

contain valid methods of tackling the spatial problems. All in all, we believe our work               

to entice further research and application of these simulations and hope we can raise              

awareness for the novel research area of strong spatial cognition and its possibilities. 

 

Pondering further research, we found that it is possible to implement simulations of             

spatial problems without using many algorithms. We hope to inspire programmers to            

try implementing such simulations as well, utilizing the game engines we have            

presented as they provide an excellent digital programming environment. They          

include many tools that are intuitive to use and directly show the output of the code,                

supporting the programming. Future research should be guided by the findings of            

spatial cognition and, hopefully, strong spatial cognition as well, as implementing           

simulations with those research areas in mind can produce intuitive, straightforward           

results that can be easily applied to cognitive AI systems.  

 

We hope that we have inspired researchers and programmers alike to delve into             

strong spatial cognition research and implement simulations with the aforementioned          

goals in mind. We are happy to contribute the three simulations of common spatial              

problems and believe our work to be of value. We are eager to observe the progress                

made in this domain and to revisit it in the future. 
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8 Appendix 
 

 
Image A1: The complete Movement script. 

 
 

 
Image A2: The first part of the CreateLinks script, showing the variables. 
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Image A3: The second part of the CreateLinks script, showing the first part of the loop within the Start() 

method, instantiating the rope objects. 
 
 

 
Image A4: The third part of the CreateLinks script, showing the end of the loop instantiating the objects. 

 
 

 
Image A5: The last part of the CreateLinks script, showing the last sphere being instantiated. 
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Image A6: The first part of the KinematicController script, showing the setup for the kinematic switch 

mechanic. 
 
 

 
Image A7: The second part of the KinematicController script, showing how the kinematic property is 

enabled and disabled immediately after change of active game objects. 
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Image A8: The first part of the variables for the SquaringCircles script, showing all Materials, 

GameObjects and placeholders, arrays and counters. 
 
 

 
Image A9: The last variables for the SquaringCircles script and the setup within the Start() method. 
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Image A10: SquaringCircles Start() method continued, showing the instantiation of the cylinder and the 

first sphere. 
 
 

 
Image A11: SquaringCircles Start() method continued, showing the instantiation of the other spheres and 

the call for the CheckBounds() method. 
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Image A12: The end of the Start() method of the SquaringCircles script, preparing the next loop, and the 
CheckBounds() method, checking whether a sphere is instantiated within the bounds of the cylinder or 

not. 
 
 

 
Image A13: The start of the Update() method of the SquaringCircles script, showing how the clicking of a 

sphere is detected and how it is “pinned down”. 
 
 
 

92 



 
 

 
Image A14: The SquaringCircles’ Update() method continued, showing how the rope is rolled around the 

cylinder. 
 
 

 
Image A15: The end of the Update() method of the SquaringCircles script, showing how the 

circumference of the cylinder is indicated by the rope. (Afterwards, there would be commented-out code, 
intended for the next steps for squaring the circle. We did not implement the further steps as the vital 

step in regards to strong spatial cognition has been implemented and due to the timeframe of this 
thesis.)  
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Image A16: The SCCollision script, handling all collisions between spheres. If a sphere collides with the 
second pinned sphere, it is also pinned down in order to indicate the cylinder’s circumference via the 

rope. 
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