

Department 3: Mathematics and Computer Sciences

BACHELOR THESIS (B.Sc.)

Spatial Manipulation of Ropes:
Simulation and Visualisation

Henrik Axel Nickelmann
Digital Media (Media Computer Science)

Angabin Rahman
Digital Media (Media Computer Science)

Filed on January 6th, 2020

First Examiner: Dr. Thomas Barkowsky
Second Examiner: Prof. Dr. Ing. Udo Frese

Offizielle Erklärungen von
Nachname: Nickelmann Vorname: Henrik Axel

Eigenständigkeitserklärung
Ich versichere, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als
die angegebenen Quellen und Hilfsmittel verwendet habe.
Alle Teile meiner Arbeit, die wortwörtlich oder dem Sinn nach anderen Werken entnommen
sind, wurden unter Angabe der Quelle kenntlich gemacht. Gleiches gilt auch für
Zeichnungen, Skizzen, bildliche Darstellungen sowie für Quellen aus dem Internet.
Die Arbeit wurde in gleicher oder ähnlicher Form noch nicht als Prüfungsleistung eingereicht.
Die elektronische Fassung der Arbeit stimmt mit der gedruckten Version überein.
Mir ist bewusst, dass wahrheitswidrige Angaben als Täuschung behandelt werden.

Erklärung zur Veröffentlichung von Bachelor- oder Masterarbeiten
Die Abschlussarbeit wird zwei Jahre nach Studienabschluss dem Archiv der Universität
Bremen zur dauerhaften Archivierung angeboten. Archiviert werden:

1. Masterarbeiten mit lokalem oder regionalem Bezug sowie pro Studienfach und Studienjahr
10% aller Abschlussarbeiten

2. Bachelorarbeiten des jeweils ersten und letzten Bachelorabschlusses pro Studienfach u.
Jahr.

☐ Ich bin damit einverstanden, dass meine Abschlussarbeit im Universitätsarchiv für
wissenschaftliche Zwecke von Dritten eingesehen werden darf.
☐ Ich bin damit einverstanden, dass meine Abschlussarbeit nach 30 Jahren (gem. §7
Abs. 2 BremArchivG) im Universitätsarchiv für wissenschaftliche Zwecke von Dritten
eingesehen werden darf.
☐ Ich bin nicht damit einverstanden, dass meine Abschlussarbeit im
Universitätsarchiv für wissenschaftliche Zwecke von Dritten eingesehen werden darf.

_____________________________ _____________________________
Datum, Ort Unterschrift

Offizielle Erklärungen von
Nachname: Rahman Vorname: Angabin

Eigenständigkeitserklärung
Ich versichere, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als
die angegebenen Quellen und Hilfsmittel verwendet habe.
Alle Teile meiner Arbeit, die wortwörtlich oder dem Sinn nach anderen Werken entnommen
sind, wurden unter Angabe der Quelle kenntlich gemacht. Gleiches gilt auch für
Zeichnungen, Skizzen, bildliche Darstellungen sowie für Quellen aus dem Internet.
Die Arbeit wurde in gleicher oder ähnlicher Form noch nicht als Prüfungsleistung eingereicht.
Die elektronische Fassung der Arbeit stimmt mit der gedruckten Version überein.
Mir ist bewusst, dass wahrheitswidrige Angaben als Täuschung behandelt werden.

Erklärung zur Veröffentlichung von Bachelor- oder Masterarbeiten
Die Abschlussarbeit wird zwei Jahre nach Studienabschluss dem Archiv der Universität
Bremen zur dauerhaften Archivierung angeboten. Archiviert werden:

1. Masterarbeiten mit lokalem oder regionalem Bezug sowie pro Studienfach und Studienjahr
10% aller Abschlussarbeiten

2. Bachelorarbeiten des jeweils ersten und letzten Bachelorabschlusses pro Studienfach u.
Jahr.

☐ Ich bin damit einverstanden, dass meine Abschlussarbeit im Universitätsarchiv für
wissenschaftliche Zwecke von Dritten eingesehen werden darf.
☐ Ich bin damit einverstanden, dass meine Abschlussarbeit nach 30 Jahren (gem. §7
Abs. 2 BremArchivG) im Universitätsarchiv für wissenschaftliche Zwecke von Dritten
eingesehen werden darf.
☐ Ich bin nicht damit einverstanden, dass meine Abschlussarbeit im
Universitätsarchiv für wissenschaftliche Zwecke von Dritten eingesehen werden darf.

_____________________________ _____________________________
Datum, Ort Unterschrift

Abstract

Reasoning about and acting in spatial environments is an important part of everyday

life and also plays a key role in many scientific research areas. Spatial Cognition

research deals with specifically these issues and contributes its findings to other

research areas like cultural studies, study of medicine or linguistics.

The following thesis is making a contribution to spatial cognition research, with the

aim to fill a niche. Examining three spatial-cognitive problems based on ropes, this

work is able to provide a manipulable digital simulation of each problem. The

problems addressed are tying and untying knots , finding the shortest path between

two waypoints on a route network map and transforming a circle into a square with

the same surface area . Within the frame of this thesis, these spatial problems are

implemented without an extensive use of algorithms and complicated computations.

The simulations focus on the direct manipulation of spatial objects in the spatial

environment, imitating the human cognitive approach. This work contributes to the

notion that cognitive, artificially intelligent agents can act in and reason about space

and spatial objects similarly to humans and animals.

Table of Contents

1 Introduction [NICKELMANN & RAHMAN] 1
1.1 Background of Spatial Cognition Research [NICKELMANN] 4

1.1.1 Cognitive Agent [RAHMAN] 5
1.1.2 Spatial Problems [NICKELMANN] 6
 Entangled Knot Problem [NICKELMANN + RAHMAN] 6
 Shortest Path Problem [NICKELMANN + RAHMAN] 7
 Squaring Circle Problem [NICKELMANN] 9

1.2 Methodical Approach [RAHMAN] 13
1.3 Chapter Overview [RAHMAN] 15

2 Current State of Spatial Cognition Research and Game Engines
[NICKELMANN & RAHMAN] 17

2.1 Spatial Cognition Research and Transdisciplinary Domains
[NICKELMANN] 17

2.1.1 Research Topics of Spatial Cognition Research
[NICKELMANN] 18
2.1.2 Transdisciplinarity of Spatial Cognition Research
[NICKELMANN] 19

2.2 Strong Spatial Cognition Research and the State of Rope-Based
Simulations [NICKELMANN] 20
2.3 Introduction to Game Engines [RAHMAN] 22

3 Tool Selection: Game Engines [RAHMAN] 27
3.1 CryEngine [RAHMAN] 30
3.2 Unreal Engine 4 [RAHMAN] 31
3.3 Unity3D [RAHMAN] 33
3.4 Comparison: CryEngine, UnrealEngine 4 and Unity3D
[RAHMAN] 34

4 Modeling and Implementation [NICKELMANN] 41
4.1 First Attempt at Modeling the Rope: Blender [NICKELMANN] 41
4.2 The Joint Component in Unity and Joint Types [NICKELMANN] 43
4.3 Constructing the Basic Rope and Implementing the Entangled
Knot Simulation in Unity3D [NICKELMANN] 45

4.4 Building the Shortest Path Simulation [NICKELMANN] 51
4.5 Implementing the Squaring Circle Simulation [NICKELMANN] 54

5 Results [NICKELMANN + RAHMAN] 57
5.1 Entangled Knot Simulation [RAHMAN] 58
5.2 Shortest Path Simulation [RAHMAN] 63
5.3 Squaring Circle Simulation [RAHMAN + NICKELMANN] 66
5.4 Demo Video [RAHMAN] 70

6 Discussion and Conclusion [NICKELMANN + RAHMAN] 73
6.1 Entangled Knot Problem [RAHMAN] 74
6.2 Shortest Path Problem [RAHMAN] 76
6.3 Squaring Circle Problem [NICKELMANN] 78
6.4 Reached Goals & Outlook [NICKELMANN] 81

7 Literature 82

8 Appendix 87

1 Introduction [NICKELMANN & RAHMAN]

Humans and animals move, act and solve tasks in a spatial environment at all times.

Largely intuitively, they do so by processing information about their environment,

building a conceptual representation of this information and drawing conclusions for

their actions from the representation. Autonomous robots also move and act in an

environment and reason about spatial information, but mostly in a different way -

they sense their environment and build an accurate representation of spatial

information, calculating consequences for their actions via algorithmic reasoning.

They only use information they can directly obtain from their environment.

In both cases, the nexus of spatial information processing, representation of spatial

knowledge and spatial behaviour is referred to as Spatial Cognition , which is

consolidated in a scientific discipline. The branch called Strong Spatial Cognition

engages to convey the spatial behaviour of humans and animals to robots, aiming to

evade complicated algorithms and to replace them with easier, more direct

approaches oriented around the direct manipulation of physical objects. Initiated by

the cognitive systems group (CoSy) at the University of Bremen , this subfield is 1

novel and its objects of research not very common-place yet.

Inspired by the approaches from the work by CoSy and coming from a background

of Digital Media, we were motivated to explore this particular field of research and

introduce a digital viewpoint to the existing methods. The aim is to build a simulation

to three particular spatial cognitive problems and, by that, provide existing

approaches with more efficiency. Furthermore, the simulations are following the

ideas of Strong Spatial Cognition, as described above, as well as further

specifications that we set as criteria . The goal is to mimic a realistic cable behaviour,

wherefore the requirements include options for the manipulation of the objects and

an accurate transformation of the objects according to the manipulation by an agent.

1 https://cosy.informatik.uni-bremen.de/index.html , retrieved December 22, 2019.

1

https://cosy.informatik.uni-bremen.de/index.html

To ensure a realistic environment and intuitive visuals, the simulation is implemented

in a 3D environment instead of a 2D environment. This is due to the fact that the

implementation of a 3D-object allows a 2D usage, however, this is not possible the

other way around. As we required a 3D-object for our first examined problem the

entangled knot problem, we decided to use the resulting objects for the other

problems. Moreover this work is focussed around the functionality of the simulation

and therefore neglects any visual embellishments of the simulation.

In the beginning of our research, we focused on finding similar approaches in prior

works in this research area. However, we were astonished to find that this was a

niche and therefore not very well covered at that point. Motivated to contribute novel

approaches to this area and inspire future applications, this thesis engages to work

on an explorative approach. This approach is aiming to introduce a digital factor by

implementing a simulation to the spatial cognitive problems and expand existing

boundaries of this field of research.

During our primary examination for existing simulations, we found several

simulations created with game engines (further explained in chapter 2.3), specifically

with Unity3D by Unity Technologies, which were not fulfilling our criteria. The 2

simulations were able to fulfil most behavioural attributes, but were unable to

manipulate to the extent of solving the spatial cognitive problems or did not consider

ideas of Strong Spatial Cognition. Due to the fact that this thesis is notably inspired

by the approaches of CoSy group, our criteria for the simulations are derived from

their existing models. This thesis can be viewed as the explorative work to instantiate

a digital version of the prior work. Therefore our criteria are quite preset and only

needed further consideration in the digital implementation.The criteria we set at the

beginning of our work were based on the specifications of the spatial problems we

were examining.

This work intends to implement simulations that each depict a specific spatial

problem, to offer novel and less algorithm-based ways of tackling these problems as

2 https://unity.com/de, retrieved December 01, 2019.

2

https://unity.com/de

a cognitive agent, and to outline why the simulations are of value for future spatial

cognition research. Hence, the following chapters of this introduction will provide an

overview of the scientific field of Spatial Cognition and outline the structure of the

thesis. Key terms like cognitive agent and spatial task/ spatial problem are described

so that the chapters on the theoretical background, the documentation and the

conclusion can be followed and understood. Afterwards, the methods utilized to

implement the simulations and the thesis as a whole are depicted. Closing the

introduction is an overview of each following chapter.

3

1.1 Background of Spatial Cognition Research [NICKELMANN]

Spatial Cognition is a broad term referring to what information a cognitive agent can

have about space, like distances or directions, and how to process that information

(Vasilyeva and Lourenco 2012). The term cognitive agent includes humans, animals

and autonomous robots, who form a full cognitive system together with their bodies

and their environment. In classical information processing there is a division between

the brain or the AI (Artificial Intelligence) system and the perception of a spatial

problem, the agent’s actions, its body and the environment. Information is abstracted

from the real-world problem and translated into a knowledge representation, existing

within the brain or AI system to perform spatial reasoning. However, in a full

cognitive system , this distinction is dropped in favor of a contiguous system, of which

the spatial problem itself is a part of. This has the advantage of bypassing the

abstraction of spatial relations and being able to simulate them, and spatial

interactions, through motion models (Freksa et al. 2017a).

Cognitive agents solve spatial problems, or spatial tasks , either by a combination of

knowledge representation and algorithms (in the case of AI), or without conscious

knowledge processing (in the case of humans or animals). The subfield Strong

Spatial Cognition deals with problems regarding the direct use of spatial and

temporal structures by AI, considering embodiment and preserving all properties of

the environment, while neglecting abstracted knowledge representations and

algorithmic reasoning. The goals are to (1) generate less CPU-intensive models for

AI, so that it can act more efficiently, and to (2) more accurately model cognitive

processes and their dynamics, complexity and scalability (Dreyfus 1978, Freksa

2015, Freksa et al. 2017a).

4

1.1.1 Cognitive Agent [RAHMAN]

The word ‘agent’ in correlation to the computer world, may be allocated to many

entities. Here it is mainly referred to computational agents, specifically ‘cognitive

agents’. In the following segment we are analysing and examining the role of an

cognitive agent and its role in our thesis.

It might be advisable to recollect the term ‘cognitive concepts’ as well as the

‘intentional stance’ at this point. People often use cognitive concepts to understand

how others behave. To understand the complex role of these agents we need to

examine the challenges they are facing. Although computational agents outperform

the human agents in many aspects, such as accuracy, iterating problems and

gathering data, they are still behind in other aspects. Not only can a cognitive agent

not take over all human processes, but it is vastly limited to a specific set of tasks.

Yet as humans we tend to assign these agents with cognitive concepts, such as

beliefs, knowledge, desires and intentions. Although it is commonly known that the

agents are programmed. Most computational processes merely mimic the human

capabilities. Even with the involvement of deep learning the agents are bound to

have a programmed starting point, specifically implemented handling of situations

and technical restrictions. The smarter the agents get, the higher we raise our

expectations and the more we ascribe them intention to their action. It is a common

phrase in our daily work to say ‘He doesn’t like me today.’ or ‘It always does the

opposite of what I want’, referring to the computational assistant/agent. By claiming

that it can act differently or chooses not to function when used by a specific person,

we assign a human behaviour to a pre-programmed agent.

A cognitive agent has yet to learn to imitate the irrational human instinct; although,

this being the most unstable and inexplicable feature of the human mind, it is

indispensable. This feature allows us to take actions faster, omitting long and

cumbersome algorithmic comparisons. In fact, it allows us to drive the car, without

rationally examining the other drivers next steps. Furthermore, it enables us to

estimate our surroundings, is the key in our problem-solving and continuously saves

5

us from potential danger. In our thesis we are designing a simulation of different

spatial problems. The goal is to benefit from the human approach to solve problems

and enhance these in the processes of cognitive agents.Thus trying to ensure a

faster and more intuitive operation.

1.1.2 Spatial Problems [NICKELMANN]

Spatial problems, or spatial tasks, are specific configurations of a spatial

environment or a spatial structure which necessitate a cognitive agent to act in

certain ways to find a novel solution to that problem or to achieve a known goal. In

this thesis, we are demonstrating three digital simulations, each corresponding to a

different spatial problem a cognitive agent might encounter at one point.

Entangled Knot Problem [NICKELMANN + RAHMAN]

There are many domains in which tying or untying a knot can occur - from the daily

lacing of shoes, to untangling earbuds, to the many forms of medical sutures. The

necessity to apply knot-tying in many different areas attaches importance to the

implementation of a digital simulation for knot-tying, considering the increasing

incorporation of digital devices in home, agents and the overall notion of the Internet

of Things (IoT). Apart from the importance of a knot and the ability to tie or untie one

in our everyday lives, the most remarkable thing is the fact that this simple intuitive

process, as seen in draft 1, is hard to recreate. What seems quite trivial and easily

done - by toddlers even - strains the scientists to this date.

The formalisation of this process that combines cognitive and spatial understanding

has been implemented by relying on the heavy use of algorithms (Phillips et al. 2002,

6

Brown et al. 2004, Wang et al. 2005, Mayer et al. 2008), especially for the medical

domain. There has not yet been an significant effort made to implement such a

simulation with strong spatial cognition in mind, which we would like to change in the

course of our thesis. The final outcome of this work is aiming to provide a simulation

that is based upon the strong spatial cognition. Furthermore draft 1 is providing us

the guideline to follow along in our digital approach.

Draft 1: Untying of a headphone cable executed by a human agent displaying the intuitive process (that
is omitting heavy algorithmic formulations). This draft has been used as inspiration and set the criteria

to the destined digital simulation attributes and functionality

Currently cognitive AI agents are able to tie or untie knots by algorithmic processing,

however, a direct manipulation of a spatial cognitive problem would be useful and

increase the overall performance. Also, we argue that it would lead to more flexibility

as the AI is acting in a more exploratory manner and can better react to a changing

spatial environment. Thus, a digital simulation of knot (un)tying that is focussed on

the direct manipulation of spatio-temporal configurations would prove very useful and

would be a valuable contribution to strong spatial cognition research.

Shortest Path Problem [NICKELMANN + RAHMAN]

The second problem that is examined in this thesis belongs to the category of

navigation. This field has experienced strong endorsement not only from the

automobile industry but has been of general interest and continues to search for

more efficient ways to improve the navigational process. It is also of interest for

7

Spatial Cognition research; for example, Uttal (2000) outlines how the use of maps

influences the development of spatial cognition in children and vice versa.

In the frame of this work these facts are taken into consideration, leading us to the

approach to find the shortest path, a problem that was worked on by the CoSy

group. The approach is following the idea of graph theory, which is finding the

shortest path between two nodes (Dewdney 1988). Building upon the

non-algorithmic strings-and-pins approach, the CoSy group went on by printing out a

3D net that imitates a road network on a map (Freksa 2015, Freksa et al. 2016). This

analog approach was designed to be manually pulled apart by an agent and detect

the shortest path by visually distinguishing the most stretched path between two

points (see draft 2).

Draft 2: Pulling of a reduced map, printed out by a 3D printer. The displayed process is used to
determine the shortest path between two points by cognitive AI or human agents. This draft has been
used as inspiration and set the criteria to the destined digital simulation attributes and functionality

Pulling apart two points of a net to find the shortest path between two points is a very

natural and overall simple solution to this cognitive spatial problem (Freksa 2015).

This might not be a very intuitive solution if you confront a cognitive agent with a

strings-and-pins route network and simply ask them to find the shortest path

between two given points. However, once established, it takes minimal efforts and

requires very little movement by the cognitive agents - they are now able to

manipulate a spatial configuration to find out certain spatial information. If a map is

large-scaled, with many different roads and waypoints, it would take a lot of

computations to find the shortest path between two given points. However, if you can

8

simply pull at those points, the effort is reduced drastically. Although the existing

approach by CoSy is already covering many points, the simulation resulting from this

thesis will further reduce the usage of resources as e.g. the net printout is no longer

required. This next step to implement a simulation of a string-based map to be used

by AI agents is only sensible, so that it can find the shortest path between two points

way more efficiently. Thereby the simulation can pick up on the simplicity of the

process and still withdraw the translation of this process into the real world.

Squaring Circle Problem [NICKELMANN]

The squaring circle problem is a common problem in geometry which has kept

mathematicians busy for centuries, and cannot be solved by classical,

straightedge-and-compass approaches (Schubert 1891, Hobson 1913, Seidenberg

1962, Engels 1977, Saraswathi 1999, Dani 2012, Crabtree 2016). The task is to

transform a circle into a square with the same surface area. Interestingly, the strings

and pins approach was already used in Ancient Egypt and Ancient India, dating back

to around 800 to 600 BC in India as described in the Sulvasutra records (Dani 2012,

Crabtree 2016). Additionally, in both cultures, approximations for Pi were already

pretty accurate, considering the time period in which they were calculated - in

Ancient India, the approximation was the square root of ten, or 3,1622 (Dani 2012),

whereas in Ancient Egypt, it was 3,1605 (Engels 1977). Due to the prevalence of the

straightedge-and-compass approach ever since the days of Ancient Greek

mathematics (Crabtree 2016), the task of squaring a circle was thought to be

impossible, and in the late 1800s, it was pronounced as such (Schubert 1891).

However, it turns out to be solvable if you change your utilized tools. With strings and

pins, and without any mathematical computations, you can accurately transform a

circle into a square with the same surface area (Crabtree 2016). This approach has

several advantages: First, strings retain some mobility even after they are pinned

down to indicate a line, whereas pencil marks do not, giving the option of floating

pins to represent variables, for example. Second, with multiple pins, you can easily

describe ellipses and other more complex geometric figures, as you can slide the

9

pins along strings. Third, with one end of a string being fixed at the center of a circle,

you can describe not only all points on the circumference line, but all points on the

surface area of the circle. Most importantly though, with strings and pins, it is

possible to directly transform the circle’s circumference to a straight line, as strings

are deformable - this is not possible with straightedge and compass (Freksa et al.

2016).

The simulation of this problem is most suitable for demonstrating that spatial

problems can be solved without much algorithmic reasoning or complicated

mathematical computations. It is implemented in such a way as to mimic a

strings-and-pins approach to this problem (Freksa et al. 2016). Naturally, it is a great

fit for strong spatial cognition research, as the strings-and-pins approach does not

rely on any algorithms, but instead uses the properties of spatial objects (strings and

pins) to transform the area of a circle into a square with the same surface area .

Draft 3: Ordinary strings and pins as the utilized tools to tackle the problem of squaring the circle (left);

Setting an arbitrary radius for the circle (right)

The squaring circle problem can be solved conveniently by the strings-and-pins

approach (Freksa et al. 2016). By using ordinary strings and pins (Draft 3, left), you

can indicate any distance in a two-dimensional plane, and thus, indicate a radius

(with arbitrary length) of a circle (Draft 3, right).

10

Draft 4: Marking the whole circumference of a circle (left);

Pinning down the string on the circumference (right)

Next you can pin the string down at any point that is the same length away from the

center as the previously established radius (Draft 4, left). By doing that, you can

create the circumference of the corresponding circle, the marks left by the pinning

indicating said circumference. Alternatively, you can tie a pencil to the floating end of

the string and draw out the circumference line. Afterwards, you pull out the string

from the center, pinning it down on the circumference. That point marks one end of

the circumference’s length. After pinning down the string along the previously left

marks (Draft 4, right) or the pencil-drawn circumference line, the entire circumference

(Draft 5, left) can be discerned and further utilized.

Draft 5: The whole radius plus circumference marked and able to be transformed back into a straight line

(left); The half circumference to be used for the following steps in the solution process (right)

11

At this point, you have solved the problem of extrapolating the circumference of any

circle, which cannot be solved by the classical straightedge-and-compass approach

(Freksa et al. 2016). This circumference can now be rolled out into a straight line,

which can be halved afterwards (Draft 5, right) so that you can use the half

circumference in the later steps of the solution process.

The strings-and-pins approach illustrates that geometric problems can be solved by

using the properties of spatial objects instead of mathematical computations. With

the more common straightedge-and-compass approach, you are not able to solve

the squaring circle problem, as you cannot accurately extrapolate the circle’s

circumference. The goal of simulating this approach digitally is to show that digital

solutions to spatial problems focusing on the direct manipulation of spatial objects

can be more efficient than common, algorithm-heavy digital solutions. Furthermore,

the underlying process of solving the problem is more similar to natural and human

approaches. Thus, cognitive AI agents acting based on such a simulation will lead to

them acting more like a human, and, in the end, to them interacting better with

cognitive human agents.

The subsequent steps after ascertaining the circle’s circumference will not be

included in the simulation, as the main goal is to show that the strings-and-pins

approach can solve problems classical approaches cannot solve. To use this

simulation in a cognitive AI system would necessitate the implementation of the

absent steps, however, implementing them is not too difficult, but it would go beyond

the scope of this thesis.

12

1.2 Methodical Approach [RAHMAN]

This thesis is investigating a suitable approach to simulate three spatial cognitive

problems, as mentioned above. The interesting and significant facts about these

problems are that most of them are solved by humans intuitively. This intuitive

behaviour, without algorithmic formalising, is what is aimed at in our work. In order to

find an alternative to algorithmic-based solutions we are aiming to implement a

spatio-cognitive method for a cognitive agent in AI. The overall aim is to explore this

particular field of research and finally build a simulation to prove that there is a way

to solve these cognitive problems by an cognitive agent more efficiently and less

ressource-bound. Current methods and approaches in this field use 3D printouts, to

implement the idea of Strong Spatial Cognition . For the simulation we set the goal to

make it a manipulable demonstration of the three spatial cognitive problems. The

visual appeal of the simulation is not in the focus of this work and is therefore mostly

kept simple. This is done consciously to signal the importance of the functionality

and the main focus of this simulation. Therefore we continue to directly explore the

possibilities to simulate the spatial cognitive problems and evaluate possible tools to

use for the simulation. Evidently, the character of the research, as well as the

preparation, are significantly different from a hypothesis-based thesis.

We set the goal to model the components, assemble and visualise the rope, before

we go on to simulate the rope with characteristic behaviour. The ultimate aim is to

have a rope that is working according to our criteria and is able to be spatially

manipulated by an agent. An explorative approach appeared to be the most suitable

way to research this matter. In the beginning we started to collect information on this

topic and find potential programs that would be able to simulate a rope. During this

part of the research we also assembled our first design ideas. Furthermore, we

undertook several paper-designed approaches to test out which attributes and

specifications we need to implement in our simulation. Even though some programs

were able to simulate a rope, they often did not match our criteria for fulfilling the

spatial cognition tasks.

13

The idea to this thesis emerged during a discussion of prior approaches to research

ways to solve spatial-cognitive tasks with computational cognitive agents. The

research group CoSy of the Bremen University were already profoundly researching

in the area. Apart from a manifold of studies to look deeper in this area of expertise,

we got interested in a few rope-based approaches/experiments. These approaches

significantly stood out, due to their simplified ways to solve the spatial problems.

Besides the fact that they could replace lengthy algorithmic solutions, they

demonstrated the intelligent and intuitive solving techniques of a human agent. The

aim is to make an computational cognitive agent use and benefit from these solving

techniques.

At that point, all these approaches were printed in a 3D printer model and then

actually used in the real world. So to some extent this approach is fulfilling its task

already. The cognitive agent is able to solve the spatial task with the human

technique. Now the next step is to omit bringing the 2D into the real world.

Introducing a simulation might be beneficial to that. Our idea is, as previously

mentioned, to simulate and thereby visualise this whole process.Thus we are not

only increasing the speed of this process, but also enhancing the overall efficiency,

by skipping the entire 2D-3D translation procedure. The manipulations of the rope,

such as undoing knots, forming a loop, finding the shortest paths or measuring the

length of a circle (in order to transform it into a square with the same surface area),

are all combined in the simulation. Likewise delivered in the real world, they are now

all part of the simulation. As we are examining more than one rope-based

manipulation, we are confident to research this as a team of two. Since all of these

spatial problems are rope based, thus quite similar to approach, we decided to work

on ‘all’ of them. It serves the purpose not to neglect one experiment in favour of the

other, or entirely dispose of one subtopic. By forming a team, we hope to give

sufficient attention to each subtopic and generate a competent visualisation of spatial

cognitive tasks in a short amount of time.

14

1.3 Chapter Overview [RAHMAN]

The first chapter Introduction of this thesis is stating our intention and motivation to

pursue our work. It further introduced the term Cognitive Agent and illustrates the

Spatial Problems, before focussing on three particular spatial cognitive problems

assessed in this work. The problems described are the entangled knot problem, the

shortest path and the squaring circle. This chapter closes with the detailed

description of the Methodical Approach that is used to examine the spatio-cognitive

problems and the Chapter Overview , to provide the structural composition of this

thesis.

The second chapter Current State of Spatial Cognition research and Game Engines ,

is a informing about the current state of the art and relevance of this thesis to the

contemporary developments in this research domain. Furthermore, a rough overview

as well as definitions that are relevant to our work, are provided. This is to allow an

easy understanding and access to this work, even for readers that are entirely new

to this topic. This chapter is introducing game engines as a tool of choice, thereby

initiating the third chapter.

The third chapter Game Engines is introducing and comparing three game engines,

by emphasizing on their qualities and attributes that are required for the solution of

the spatial cognitive problems examined. The compared game engines are

CryEngine by Crytek, Unreal Engine 4 by Epic Games and finally Unity3D by Unity

Technologies. By this comparison we intend to provide the technical facts and

thought processes that helped us to choose our tool for our purpose.

In the following fourth chapter Modelling and Implementation, we are giving an

overview of all methods used and functions implemented. We are giving an insight of

the modelling process and the implementation process that were required to

construct our simulations. Besides a detailed documentation of the functions used

during the implementation, it further provides images to accompany the different

15

stages of the simulations. The idea is to be transparent about our methods and thus

enable or inspire further work in this field.

In chapter five we provide the results that we produced in the scope of this thesis. All

three simulations, as well as the demovideo that we produced, are separately stated

and illustrated with pictures from the simulations. This chapter will describe the

entangled knot problem, the shortest path problem, as well as the squaring circle

problem elaborately. The demovideo is described with a precise minutes disclosure

to exactly describe the visual display to the audience.

Finally this thesis is closed by the last and sixth chapter Discussion and Conclusion.

This last chapter of this thesis comprises a discussion of the final simulations and the

conclusion of where this thesis can be placed. Subsequently, that chapter states the

reached goals and limitations of the work. An outlook on possible future applications

and encouragements for immediate research directions in this field is closing the

thesis.

16

2 Current State of Spatial Cognition Research and
Game Engines [NICKELMANN & RAHMAN]

This chapter gives an overview over the topics of spatial cognition research and

transdisciplinary research. There are many research areas interested in aspects of

spatial cognition and many scientists included findings of spatial cognition research

in their studies. Afterwards, the subfield of strong spatial cognition is introduced.

Strong spatial cognition is a novel research area birthed by the CoSy group at the

University of Bremen. Many interesting ideas and approaches to topics of general

spatial cognition research are advanced and refined. In the context of strong spatial

cognition research, the CoSy group focuses on cognitive agents acting directly in a

spatial environment and with spatial objects, detached from extensive algorithm use.

Afterwards, a general introduction to game engines is closing this chapter, including

some criteria for choosing a game engine for the simulations. A description of the

most commonly used game engines as well as a comparison and a justification for

the game engine chosen for the implementation is given in the following Chapter 3.

2.1 Spatial Cognition Research and Transdisciplinary Domains
[NICKELMANN]
Spatial cognition research deals with questions regarding the interaction of cognitive

agents with spatial structures: How do cognitive agents reason about the spatial

environment and spatial objects? How do they translate their knowledge about the

spatial structures into actions? Or why do they behave differently than other

cognitive agents? It is a very broad and manifold research field with a lot of possible

research topics and questions. Those topics and questions can be applied in many

situations and improve our understanding of the world around us. For example,

spatial problem-solving skills are of great importance in many technological or

engineering domains, in all forms of sport and, especially since the emergence of

Augmented and Virtual Reality, in many digital domains as well.

17

2.1.1 Research Topics of Spatial Cognition Research [NICKELMANN]

A common research topic of spatial cognition research is the question of how

cognitive agents reason about spatial structures and spatial relations (Byrne and

Johnson-Laird 1989, Buckley et al. 2019). Researching this topic would not only

involve which logical inferences cognitive agents make about spatial relations, but

also on what basis. Are there general principles underlying the thought about spatial

configurations? If so, is it possible to express them as formulas?

Another research topic related to spatial reasoning is spatial problem solving (Freksa

et al. 2017a & 2017b, Buckley et al. 2019). Spatial problem solving also includes the

actual real-world spatial structure of what is reasoned about (or a spatial

representation of it), focusing on finding possible solutions to a spatial problem.

Common spatial problems are finding a shortest path on a route map, detecting if an

object is in front of or behind another object, or mundane activities like opening

doors, driving a car or throwing a basketball. As spatial problems and tasks are

around all of us all the time, applying the findings of research on spatial problem

solving has a great potential for developing new approaches to these problems and

finding novel, more efficient ones that can improve our daily lives.

Representations of spatial knowledge in a cognitive agent’s brain (or network of

sensors and actuators) are also of interest to spatial cognition researchers (Kuipers

1978, Uttal 2000, Tomai 2004). This subdomain deals with conceptual

representations of perceived spatial information and how that representation is built

within the agent’s mind. For example, a cognitive map is an abstracted, but coherent

model of the large-scale environment surrounding a cognitive agent, guiding them

when navigating through said environment. It is a representation constructed via

observing and filtering key aspects of the spatial environment. A mental step-by-step

route description is also a representation of spatial knowledge, utilizing

commemorated actions instead of a mental picture. There are many different

representations of spatial knowledge - examining them can provide novel and

practical approaches to spatial tasks.

18

These are only some topics spatial cognition research deals with. It is a very broad

field that commonly thinks outside its own box, providing its findings to other

research areas and importing knowledge from them. Thus, spatial cognition

researchers often engage in transdisciplinary research, developing and expanding

the field of spatial cognition research itself. To signify this, a sample of

transdisciplinary research approaches is given in the following subchapter.

2.1.2 Transdisciplinarity of Spatial Cognition Research [NICKELMANN]

Spatial cognition research has a lot of interest in other related research fields.

Researchers not only deal with questions regarding spatial cognition itself, but

branch off into other research areas like biology, sociology or mathematics. What

follows is an overview over related literature and research to give a better

understanding of what spatial cognition research can contribute to other domains.

Burgess (2008) summarizes advances in the field of Cognitive Neuroscience and

how they relate to Spatial Cognition, focusing on spatial memory and knowledge

representation (for example egocentric versus allocentric representations). He also

addresses how the activities of neural networks evoke corresponding spatial

behaviour. Sinha and Jensen de López (2000) write about combining both cognitive

linguistics and socio-cultural approaches to language and cognition to develop a

broader picture of both research areas. They argue that this transdisciplinary

approach can yield a better understanding of the embodiment of culture and spatial

cognition and can extend it beyond the human body. Haun et al. (2011) also write on

the influence of culture on spatial cognition, focusing on the expression of spatial

relations via language. They found that both preference of spatial strategies and

competence to apply them vary across cultures and that this variation stays

consistent with increased complexity in spatial arrangement.

Other research investigates: The role of hand gestures in spatial cognition and how it

influences expression of, communication and reasoning about spatial information

(Alibali 2005); cognitive space as non-metric, topological space and how it can

extend the findings of spatial configuration analysis on how people move in different

19

locations (Penn 2003); or how spatial ability impacts the capacity for and the

approach to spatial problem solving (Buckley et al. 2019).

We already mentioned the research of the CoSy group at the University of Bremen in

the introduction to Chapter 2. They carry out research in a previously uncharted

research territory, called strong spatial cognition . It deals with topics of spatial

cognition and tries to expand the notion of cognitive AI agents being able to handle

spatial information and derive actions from it in a manner akin to human or animal

agents. This means that the aim of their research is to develop approaches which

allow direct manipulation of spatial configurations and diminish use of algorithms and

computations. As the three simulations we are working on are implemented with the

same goal in mind, the following subchapter will provide an insight into the novel

research area of strong spatial cognition. Furthermore, it transitions towards

illustrating the current use of ropes for digital simulations and the rationale for why

they do not fit the criteria for strong spatial cognition and our simulations as they are

intended.

2.2 Strong Spatial Cognition Research and the State of

Rope-Based Simulations [NICKELMANN]

Strong spatial cognition research reflects upon the role of AI in usual spatial

cognition research and on how to use spatial cognition methods to develop better AI.

Nebel and Freksa (2011) outline artificial cognitive systems and their strengths and

weaknesses compared to natural cognitive systems. They argue that artificial

cognitive systems are “excellent candidates to assist human cognizers and to

complement their weaknesses” (Nebel and Freksa 2011). Freksa (2015) also

illustrates some spatial tasks which are of use for AI agents when implemented as a

computer simulation. These tasks include determining which object is in front of

another object, performing spatial operations without detailed knowledge about the

operation or the environment, or interpretation of road or street maps. He also writes

about the idea of representing these maps via strings and pins which enables pulling

at two points of the string map to find out the shortest path between those two points,

20

which is the most stretched. This approach is an easy and reproducible solution to

the shortest path problem and has not been tried out yet as a digital simulation to be

used by artificial cognitive agents without conscious, algorithm-based knowledge

processing. In general, there are many rope-based spatial tasks which offer different

solutions to spatial problems than tasks not using ropes. For example, it is not

possible to construct a square from a circle with the same surface area as the circle

by using the common geometric tools like a straightedge and a compass. It is,

however, possible to do this with strings and pins. Freksa et al. (2016) write about

the advantages the strings-and-pins approach has over the

straightedge-and-compass approach. It can be the basis for a digital simulation of

the squaring circle problem.

We already mentioned that there has not yet been an attempt to implement a digital

version of the shortest path problem or the squaring circle problem via the

strings-and-pins approach. However, Brown et al. (2004) worked on a knot-tying

simulator where users can “grasp and smoothly manipulate a virtual rope and [...] tie

arbitrary knots” (Brown et al. 2004). They focus on how to overcome common

problems in regards to contact detection and contact management, and illustrate

how their simulator could be of use for domains like surgical suturing, sailing or rock

climbing. Their work is of great value for these domains, but in our case, we want to

use methods which are not reliant on an extensive use of algorithms - the main goal

of our work is to develop simulations which work towards cognitive AI agents making

direct use of spatial and temporal information while, more or less, neglecting

algorithmic reasoning and artificial knowledge representations. The goal of Brown et

al. was to develop a realistic application for said domains and to enhance a human

agent’s ability to perform in these areas, regardless of whether or not many

algorithms were used within the simulation.

There are other researchers working on these kinds of simulations, like Phillips et al.

(2002), who also worked on simulated knot-tying with the goal of application in the

medical field in mind, or Wang et al. (2005), who implemented a virtual reality

training simulation for laparoscopic surgery. Mayer et al. (2008) even developed an

21

AI system using recurrent neural networks to perform knot-tying for heart surgeries.

While most of these are novel ideas and are of great value for their respective field of

research, the work of Mayer et al. even being a cognitive AI system, they all rely on

heavy use of algorithms. There has not been a knot-tying simulation focusing on the

direct use of spatial or temporal structures developed yet, which is why our work is a

valuable contribution to the field of (strong) spatial cognition research.

We have so far outlined the core of spatial cognition research, given an overview of

related research areas and what is researched at the intersection with spatial

cognition. Furthermore, we have given a glimpse of the novel field of strong spatial

cognition research. We purposefully aim to make a valuable contribution to spatial

cognition research, particularly to strong spatial cognition, and to explore the borders

we have previously illustrated. We argue that our rope-based simulations fill a niche

and are an important approach to answer research questions and tackle problems

not yet or fully explored. We intend to implement simulations that each depict a

specific spatial problem, offer novel and less algorithm-based ways of tackling these

problems as a cognitive agent, and to outline why they are of value for future spatial

cognition research in the closing chapters of this thesis. What follows next is an

overview over the current state of game engines, as they are digital environments

that fit very well to our approach of implementing the simulations.

2.3 Introduction to Game Engines [RAHMAN]

A game engine is a software, designed to be a framework, in which a developer can

build for different platforms, such as mobile devices, desktop computers or consoles.

It typically consists of several essential parts, e.g. a rendering engine, a physics

engine and collision detection. The benefits from game engines can basically be

derived from the fact that it offers a much simpler approach to develop games rather

than doing it from scratch. They contain presets of objects and functions, so that the

developer doesn’t have to figure out each parameter for every pixel in the scene.

This allows even less experienced developers to produce high quality software. Most

game engines allow a cross platform performance, which lifts the constraints to any

22

certain platform. This also allows the integration of objects that have been processed

in other graphic software programs, e.g in blender , to the game engine. To give an 3

overview of existing game engines and to understand our criteria and the resulting

choice, it is necessary to give a brief introduction to current game engines.

The existing engine options are already very competent and accommodate a fair

amount of presets to build a game. Despite that, the development of an engine is

rather complex and laborious. Even the allure and the advantages of a customized

game engine, don’t appeal in comparison to the extent of the complexity. Therefore,

it is generally recommended to avoid writing the software for an engine from scratch.

Although it is definitely one of many options.To find the most suitable tool, we took a

closer look at three game engines. Apart from their technical aspects, we also looked

for the support by the systems community and the most intuitive workspace that

would allow us to quickly pick up it's functionality and learn about new options after

updates. To find a program that was not only technically strong, but also supportive

in their community was important to us. Thereby we ensured to have the opportunity

to discuss any on-going problems along the way and to research any functions we

were unsure of using.

Besides our own criteria, there are several suggestions of significant features to look

out for, when choosing an engine, on gaming forums and websites. Not only do they

suggest to take in account the capabilities of your computer’s hardware, but also to

look out for the compatibility of the game engine and the operating system of the

computer. Furthermore there are engines that are specifically designed for particular

game genres, which often allow developers to create games without the use of code

- which might come in handy when the developer is fairly new or entirely

inexperienced. It is also crucial to consider the targeted platform, where the game or

software is supposed to be run on, otherwise the game might end up having

difficulties to port on different platforms. Subsequently the skills and preferences of

the developer do determine the engine choice. If the developer’s own experience is

limited or outdated, it is safe to research current features and reviews give by more

3 Blender: https://www.blender.org/download/releases/2-80/

23

experienced game developers. It is most likely to find recent and accurate

proposition and information online, rather than in books or outdated publications.

In some cases engines have an integrated visual editor, allowing you to manipulate

any objects in the engine directly. Alternatively, the engines do not come with an

editor, which means the developer has to import manipulated objects from other

programs. The perspective plays another great role, as only some engines are able

to do both 2D and 3D. In fact the engines that are able to provide 3D features are

more likely to be more complicated and turn out to have more challenging learning

curves.

Before we get into a direct comparison of thee engines, it might be beneficial to

understand the context of where and when game engines came into existence or

when they reached their height of significance. Prior to the concept of game engines,

each game had to be hard-coded as an individual entity. Engineered mostly around

the display and memory constraints that inhibited elaborated designs, due to its

heavy data usage. Even when platforms increased their accomodation capabilities,

the games were substantially detached - which made it infeasible to create an

engine that facilitates more than one game. This resulted in games, that not only

were limited in their graphics data, but also small in level numbers and bound to be

hard-coded. In the 1980s games and their creation began to become exceedingly

popular, which promoted the release of various 2D game developing systems. These

game developing systems were referred to as ‘construction kits’. Such as ‘Pinball

construction set’ (1983), Adventure construction set’ (1984) or ‘Arcade game

construction kit’ (1988). The first true 3D game engine was XnGine, released by

Bethesda in 1995. However this engine suffered from stability issues and bugs on

Windows 95. In the scope of this thesis we are focussing on three game engines

that were derived from the above mentioned evolution.

Game engines like CryEngine , Unreal or Unity3D are mostly derived from a

preceding game. Developed in 2002, Crytek published CryEngine to facilitate their

first-person shooter game FarCry. Likewise Epic Games, was released the Unreal

24

Engine to facilitate the first-person shooter game Unreal in 1988. Unity , the game 4

engine published by Unity Technologies, however, was released as a Mac OS

exclusive game engine in 2005. However all engines mentioned support multiple

platforms nowadays and thus can be categorized as cross platform game engines. 5

This chapter outlined the scope of spatial cognition research and gave insight into

transdisciplinary research areas. The objects of general spatial cognition research

were discussed and the relevance of spatial cognition research for other research

areas highlighted. The novel research area of strong spatial cognition, developed by

the CoSy group at the University of Bremen, was explicated, while the value of our

work within that novel research area was stated. Additionally, the characteristics and

advantages of game engines were presented, leading into a more detailed analysis

of specific game engines in the following chapter. Building upon the introduction of

these game engines, a comparison of them and, ultimately, the reasoning for the

game engine of choice conclude the next chapter.

4 Kissner, Michael: Writing a Game Engine from Scratch (2015), last accessed on 21.10.19:
https://www.gamasutra.com/blogs/MichaelKissner/20151027/257369/Writing_a_Game_Engi
ne_from_Scratch__Part_1_Messaging.php

5How Unity3D become a game development beast (2013), last accessed on 21.10.19:
https://insights.dice.com/2013/06/03/how-unity3d-become-a-game-development-beast/

25

26

3 Tool Selection: Game Engines [RAHMAN]
To examine the cognitive spatial problems mentioned above, it is essential to use the

appropriate tools. The right tool will not only allow us to simulate the spatial task in

the most effective way, but also yield the best possible performance and outcome.

This chapter introduces the most commonly used game engines and works towards

a comparison of them. Concluding from that comparison, the choice of the game

engine used for the simulations closes this chapter

Our simulation requires a 3D environment to ensure an intuitive real-world design to

solve the cognitive spatial problem by the cognitive agents. The idea is to implement

a manipulable rope that acts according to our defined physical and geometrical

properties, to resemble the behaviour of a cable.

As the rope needs to be flexible, the individual objects that assemble the rope are

crucial. After trying out different shapes of objects, we decided to stick to capsules

and spheres. This is due to the fact, that these geometrical instances ensure the

highest angular motion, out of all other geometrical shapes we had on hand.

Although the goal is to mimic a realistic cable behaviour, we decided to omit

implementing any effects that emerge gravity. This is because the main task is to

solve the actual spatial problem, which is not dependent by the force of gravity.

Nevertheless, during some initial designing of the simulation we came to know, that

the implementation of gravity was in fact hindering the simulation at this point. The

rope’s maneuvering was heavily affected by this force, making it extremely

challenging and almost impossible to form or pull through a loop. However, this

ability needed to be provided, given that we are aiming to resolve a knot.

During our research we found several attempts of rope designs that were based on

rectangular objects. In our opinion this shape was not very suitable. For our work we

intended to go for a shape, that not only provides flexibility, but also ensures stability

in our rope design. The aim was to omit gaps and breakage, without giving in to the

27

ropes default elasticity. This is one of the reasons why we chose to go for two types

of objects to instantiate the rope. Initially we undertook endeavours to design a rope

solely on one geometrical shape. As a result of a rope based on sphere-shaped

objects only, we observed a severe lack of stability. Similarly unsuccessful was rope

based on capsules-shaped objects only, as it showed a deficiency of flexibility,

derived by its shape.

Furthermore some pre-made rope sets were purchasable in the game engines asset

store. However, those rope designs failed to work on certain platforms or were

unable to form a knot. Oftentimes the vendors of such rope sets declared many

options to manipulate the rope behaviour, raising our hopes. Unfortunately many of

them lacked crucial functions, which led to their negligence in their entirety in our

further approach.

One of the most promising systems we found along the way, was an asset called Obi

Rope . This asset was ready for purchase in the asset store of Unity and provided by

Obi, a virtual methods studio. Obi claims to be the first CPU-based realtime physics 6

framework that facilitates unified particle physics for Unity. At this point we have not

come across a software that specifically evolved its expertise around ropes. So, with

the prospect of not having to do everything from scratch, we decided to take a

deeper look into the offered features. As the process of constructing a physics

simulation entirely on our own might excel our efficiency and time limit, thus

predetermining the quality of the final outcome .

Before purchasing we decided to research more about the advertised features and

compare them with the overall experience of the community. Besides the Obi Rope,

this provider had other virtual methods with different functions and types of particle

physics, which they unified in one framework. Namely the Obi Cloth , Obi Fluid, Obi

Softbody and lastly Obi Rope, which was particularly our matter of interest. This

asset claims to create realistic ropes and chains, giving the developer the absolute

6 http://obi.virtualmethodstudio.com/

28

control over their look. Furthermore it offers advanced editor tools, a two-way

interaction with rigidbodies and claims to support all collider types. Apart from that, it

features a multithreaded solver as well as extensible modular architecture and

frequent updates/support. So all in all it sounded quite promising and the overall

reviews from the community were positive and mostly high-rated.

The visual method Obi Rope creates rope geometry by generating procedural

smooth mesh using splines. Furthermore it uses tangent space updating and normal

map support. This comes in handy as the developer is not busy thinking about

creating these physics but can concentrate on the actual design of the objects

purpose. It also allows a change of rope length at runtime, as well as the design of

tearable or cuttable ropes and closed loops. The integrated modular solver helps to

keep performance issues at bay, as it can be specifically tuned down to suit the

constraints that your rope needs. For instance, constraints for bending and per

particle pin manipulation, allow an individual rope behaviour. Obi Rope further

features an in-editor simulation preview, as well as other advanced tools such as a

particle editor. This particle editor enables an easy application of tools like

paintbrush, property smoothing and effortless brush selection. To further simplify the

design process it allows the developer to save ropes mid-simulation and instantiate

them warm-started. Although it supports all standard Unity colliders, it more

importantly provides automatic camera culling, which means that non-visible ropes

do not update their simulation.

Upon further examination, however, minor but essential problems started to reveal

themselves. First of all, there were the problems of system crashes on mobile

devices and iOS. Technically, these could have been easily neglected for our further

approach. Unfortunately, it was secondly also lacking content support. Most

importantly it was unable to tie a knot with the ropes provided in the framework.

Although Obi mentioned updates to ensure the elimination of bugs like that, the

inability to tie a knot was not solved to this date. Therefore we stopped further

research in this direction, discarded the idea to purchase this asset and decided to

29

concentrate on building a rope directly. This way we hoped to ensure that the rope

met all our criteria to the best way possible.

The aim is to tackle the spatial problems with the intuitive problem solving of humans

rather than the lengthy algorithmic approach used by AI robots. Therefore the object

needs to be partially agent-based, so that the agents can move and select the

individual objects during a simulation process. In order to guarantee a smooth

simulation we chose to allow an agent-based selection only to certain objects,

leaving the elements that form the actual rope not-selectable (see Shortest Path

Problem). This allows us to give the agent a regulated control, without unnecessary

and misleading selections of other objects.

To sum up, this thesis is using a game engine to create the suitable environment and

the specific objects for the simulation of three spatial cognition problems.There are

several game engines that are competent and notably potent for this task.

3.1 CryEngine [RAHMAN]
The first engine we want to introduce is Crytek’s game engine CryEngine. This

German brand published modified versions of CryEngine successfully to the game

development world. The present version is CryEngine V. This version was released

in 2016 and simultaneously inaugurated a licence model to access full functions. The

editor in CryEngine is one of the most striking features of this engine. In comparison

to editors of other companies like Unreal, it adds objects to the world space rather

than eliminating existing objects from a equipped world space. Enabling the

development of scenic landscapes and leaving the impressive real-world feel to each

player. A impeccable graphics system featuring detailed objects of nature and

weather scenarios, is what made this engine, build by Crytek, outperform other

engines. Equally distinct is their licence system, that does not come with a royalty

fee but a reasonable monthly fee.

30

CryEngine was mainly designed to make games for consoles. Far Cry was the first 7

game developed by Crytek and fostered with CryEngine1, while it was published by

Ubisoft on the Microsoft Windows platform. Besides further extensions of Far Cry,

they managed to make more popular games like Crysis (2011) and SNOW (2017).

CryEngine also released their source code, making it a source-available commercial

software.

They state on their website “With CRYENGINE, we have a simple goal: to create the

most powerful game engine in the industry, and to give creators all across the globe

the tools to harness this power to create world-class gaming experiences, no matter

their budget or team size.” Early on CryEngine has been licenced by Ubisoft, only to 8

develop an in-house version called Dunia Engine, later in 2015 Amazon licenced

CryEngine as well and modified it with several extensions running it under the name

Amazon Lumberyard - free of charge.

3.2 Unreal Engine 4 [RAHMAN]

Equally considerable was the game engine provided by Epic games. This American

brand, founded by Tim Sweeney, released their engine in 1998. Sweeney wrote 90

percent of the first Unreal Engine and thereby introduced a powerful engine to 9

gaming industry, almost single-handedly. In the beginning it ran off of UnrealScript. It

is now written in C++ and uses Blueprint Visual Scripting technology, which allows

the developer to interact within the editor in a node-based interface to create

gameplay elements. This enables the full intuitive potential of arranging concepts 10

virtually, a feature that is usually reserved for programmers only. The most current

7 Unreal Engine vs CryENGINE: Best Game Engines (2015), last accessed 14.09.19:
https://www.pluralsight.com/blog/film-games/unity-udk-cryengine-game-engine-choose

8https://www.cryengine.com/features, last accessed 14.09.19

9 An Epic Interview With Tim Sweeney (2012), last accessed 14.09.19:
https://www.gamesindustry.biz/articles/2012-03-13-an-epic-interview-with-tim-sweeney

10 https://docs.unrealengine.com/en-US/Engine/Blueprints/index.html , last accessed 14.09.19

31

version, Unreal Engine 4, was released in September 2019. The engine is licenced

as free, the developers, however, pay royalties as soon as the commercial revenue

amount crosses a certain threshold. This licence system allows a large number of

new developers to interact and develop within this engine, without having to commit

or heavily invest at first. In 2014 more than 400 games were created with this engine,

which led to its crowning as the most successful game engine by Guinness world

records in the same year. Not only has it managed to keep its high position in the

gaming industry over the years, but it also created another poster child: Fortnite.

Epic is perking the cross-platform trend with Unreal Engine using Fortnite. This 11

aspect naturally engaged our interest, as we were considering to develop a

cross-platform software eventually. However, it is unable to develop games for the

past generation hardware, which might lead to problems in an overall coverage or a

stronger focus on mobile and PC platforms. Moreover the engine allows texture and

material artists to create effects from the beginning, which is useful depending on the

importance of the texture in the project. As this engine is incredibly powerful visually,

it usually requires equally powerful hardware to utilize the engine’s full potential. So

that the overall capacity and capability of the hardware used during the thesis

needed to be considered, in order to avoid an overload. Another noticeable fact is

that Unreal Engine 4 is limited in its compatibility with git, which is very unfortunate if

it is the tool of choice as version control system.

Besides the fact that UnrealEngine has a built-in beginner solution with Blueprint

Visuals, it is able to export cross-platform including consoles. Moreover it possesses

outstanding next-gen graphics, good online resources and is literally free to use until

the game makes profit. Yet it is heavy and demanding on performance, has a more

challenging learning curve compared to Unity and also obtains a less plenitude of

assets in its marketplace.

11 Tim Sweeney wants Unreal to power the cross-platform revolution (2018), last accessed on
20.09.19:https://www.engadget.com/2018/03/21/tim-sweeney-cross-platform-fortnite-epic-unreal-engi
ne-real-time-gdc/

32

3.3 Unity3D [RAHMAN]
Lastly, the third engine option we were to consider was Unity3D developed by Unity

Technologies. Although this game engine was initially published as a Mac OS

exclusive in 2005, one of its most prominent features today is its ability to work

cross-platform. As a result of this, games can be easily ported onto Android, iOS and

other platforms, making it a great engine for the development of mobile games.

Unity3D is considered as one of the best game engines out there as the engine

offers its users a wide range of tools and features that are easily accessible even if

you are not as tech-savvy. Unity’s simplicity may be one of its greatest selling 12

points.

In addition tools can be acquired via the asset store, a platform which provides

assets and environments that are generated by the community. Furthermore Unity is

approaching spatial computing. Competitors like Epic Games and their Unreal

engine are focusing more heavily on desktop gaming, but an area where Unity is

increasingly focusing its efforts is in the AR/VR space. When it comes to making 13

virtual or augmented reality content, there are no companies with technology as

far-reaching as Unity. Moreover Unity has no real modeling or building features, 14

besides some basic shapes, inside the editor. The lack of this feature can be easily

bypassed by acquiring assets from the asset library.

Despite this, it supports various file formats that are common among 3D games,

thereby enabling and simplifying crucial integration. Unity3D predominantly uses C#

or JavaScript, which are considered to be the preferred languages for new

developers, as they are very similar. Thus, this engine preserves the hardware

capacity with its light and quick interface, omitting major pressure on the CPU.

Similar to the other engines, Unity3D is free of charge for personal usage. However,

they introduced a license subscription model in 2016. Its current version, Unity 5,

12 CryEngine vs Unreal vs Unity: Select the Best Game Engine (2018):
https://medium.com/@thinkwik/cryengine-vs-unreal-vs-unity-select-the-best-game-engine-eaca64c60
e3e
13 With new realities to build, Unity positioned to become tech giant (2017) , last accessed on
26.019.19:https://techcrunch.com/2017/05/25/with-new-realities-to-build-unity-positioned-to-become-t
ech-giant/
14 Unity Technologies: Most Innovative Company (w.D) , last accessed 27.09.19:
https://www.fastcompany.com/company/unity-technologies

33

https://epicgames.com/

was released with a high number of graphical improvements, like Physically Based

Shading and real-time Global Illumination besides many more. “It's evident they are

joining the next-gen game engine war between UE4 and CryENGINE and with 64-bit

support and WebGL Unity 5 offers some excellent features that make it a strong

contender among the game engines ” 15

To sum it up, Unity has one of the richest asset stores in the gaming world. There

are plenty of resources and tutorials, besides online platforms to facilitate the

developer and grant a connection to the online community. This engine is also free

to use until a certain revenue is reached. Nevertheless, it can be quite overwhelming

for beginners and visual coding can only be instantiated by paid plugins. Although

this engine is fairly popular with indie developers it’s said to be self-centred, meaning

that Unity users are said to be limited with their acquired skills to this program only.

3.4 Comparison: CryEngine, UnrealEngine 4 and Unity3D [RAHMAN]

In order to compare the game engines with each other and examine how well they

meet our criteria, we are forming the following categories. These categories are then

ranked in ascending order of priority. Therefore the categories are divided in:

learning curve, graphics, language, community, licence model and special features.

The general data and technical information are gathered objectively . However, the

ranking of the criteria does depend on and states solely the personal preferences of

the developer. Equally, the hardware capabilities, the goals of the project as well as

the existing skills of programming are determined here.

15 Unity Technologies: Most Innovative Company (w.D) , last accessed 27.09.19:
https://www.fastcompany.com/company/unity-technologies

34

As it is commonly known,game engines tend to take up quite some space and can

get heavy on your graphic card. Subsequently, it was crucial to undertake trial runs

with our existing hardware, to make sure the game engine was not exceeding our

technical competences. Followed by a rough testing of the software and its

competence to execute the ideas we planned for the simulation. Fortunately all three

engines provided a trial version to test on. Moreover, our team is not coming from a

typical gaming background. Besides general knowledge of playing games and thus

using game engines, there is no further expertise in using game engines. So we

considered it to be inadequate to go for a game engine with a steep learning curve,

given that we are limited in our time and resources. These factors determine the

prioritising and should therefore be considered, in order to generate a positive

outcome and to understand the following comparison.

Despite the fact that UnrealEngine was the first to be published in 1998, it was

quickly followed by CryEngine in 2002 and Unity3D in 2005. Nevertheless, the

chronological gap was quickly closed. Today all three are head to head, commonly

known and popular choices in the gaming community. In order to examine them

closer, we are extracting their features in the following categories mentioned before.

Learning curve

As time is a determining and limiting factor in this thesis, we are looking for an

engine that allows us to adapt quickly to its tools and functions. The ideal engine

would allow us to use our existing programming skills and integrate them in our new

project. Unreal is discussed to have a longer learning curve – especially when there

is no prior exposure or experience to game engines. Furthermore, its coding

language can be another challenging factor to get into the swing of things. On the

other hand CryEngine is designed as a add-on editor, which may also need more

time to get used to. So, these specific points are definitely worth thinking about while

looking for a tool for the thesis.

35

Graphics

While the Unreal Engine 4 is a game engine that provides auspicious graphics, -

which allows the scenes to be realistic and detailed to each particle - ,the CryEngine

has graphics similar to the capacity of Unreal Engine, but uses an add on editor.

As this thesis mainly revolves around ropes, the graphical aspect is not of particular

significance and can thus be neglected. The focus is mainly on the functionality and

attributes of the rope. This fact also leads to the exclusion of the other two game

engines, although they were graphically advanced. Another notable factor is the

cross platform integration of the Unity, that supports more than 25 platforms. Putting

it way ahead of its competitors, Unreal Engine and CryEngine.

Language

There is no ‘best’ programming language, however, there are various qualities that

differentiate a language from another. CryEngine and Unreal Engine 4 are both

written and coded in C++. Unlike Unity, which uses C# and JavaScript, C++ is

typically used for console applications, while C# is used for mobile, windows and

console applications. Also C++ can be run on any platform, however, C# is windows

specific. Besides the fact that C# was derived from C++, it is also said to be easier 16

for beginners, especially if there had been a prior exposure to Java. As this is the

case in our team, it might be a pivotal point to think about.

Licence model

Unity3D has different license models, that are divided in individual and business

packages. First, there is the ‘free’ model, which allows you to use the platform

without any further payment. This model applies as long as the revenue is below

$100.000/year. The ‘learn premium’ model requires you to subscribe and pay a

monthly fee. Thereby you are mainly entitled to learn from unity certified instructors,

besides other extra features. On the other hand business models run on higher

expenses, while assigning more functions. ‘Unity Plus’ and ‘Unity Pro’ are both

annual plans. Whereupon the plus model is limited to a revenue of $200.000/year,

16 C++ vs C# (w.D), last accessed on 30.09.19: https://www.geeksforgeeks.org/c-vs-c-sharp/

36

which the pro model is entirely freed from. However, there are changes planned for

the business models in the upcoming year 2020.

CryEngine announced a new 5% royalty-based model.The 5% threshold, which only

kicks in after $5,000 of revenue is raised when working with the latest version of the

engine, offers developer studios of all sizes the opportunity to achieve their vision

and means success stories will contribute directly to making the engine better for

everyone [16]. Until then you gain access by paying a monthly fee. Depending on the

project size and its targeted usage it may be a more suitable option to consider.

The licence model of Unreal is based on 5% royalties as soon as the revenue is

above 3.000$/quarter, however, anything below this amount will not be assessed.

Unreal Engine 4, the latest version of the game engine developed by Epic Games, is

now completely free for anyone to use, the company announced today.

Epic originally launched Unreal Engine 4 in March 2014 for "early adopters" with a

subscription model, charging $19 per month plus a royalty fee of 5 percent on sales.

Previous iterations of the Unreal Engine had been directed at large development

teams making big-budget games, with costly licensing fees associated with the

technology. Epic said at the time that it wanted to open up Unreal Engine 4 to a

wider audience. Unreal Engine 4 is now free to download, and all future updates will

also be free. Developers of commercially released games or applications will pay

Epic a 5 percent royalty on gross revenue above $3,000 per product, per quarter. 17

Community

The community makes a great difference when tackling a new project. Especially

new developers can find help and solutions to problems that occur along the way.

Oftentimes the game engine offers help on their website or they provide a platform to

interact with users in an open space. Besides helping beginners to overcome minor

hiccups, the community has the power to actively change and influence the engine’s

17 Epic makes Unreal Engine 4 free (2015):
https://www.polygon.com/2015/3/2/8134425/unreal-engine-4-free-epic-games

37

development. The companies have learned to follow trends and give solutions to

bugs that the community has claimed as a problem, over the years. A quick and

helpful response to questions by the community does not only show integrity of the

companies, but they also benefit from these ongoing suggestions of improvement. In

a way it adds to a company's reputation to pay attention and solicit discussions about

current problems and question. An active community platform can be interpreted as

a sign for a relevant engine and subsequently a responsible host. Out of the three

engines mentioned above, Unity3D is said to have a very well-established

community with great documentation.

Special features

Unlike Unity, which not only has an asset store, but also targets 27 platforms.

Furthermore the store allows the developer to get more tools, sound and materials.

A characteristic feature of Unreal is its Blueprint Visuals. Its node-based interface

allows an easy handling of object-oriented classes. It was introduced with the

publishing of UnrealEngine 4. Cry Engine, however, is one of the few game engines

that works with a add on editor, which can be viewed as a plus or a problem,

depending on the developer preferences.

Considering these points of all three engines there are pros and cons for each.

Nevertheless, Unity3D appears to be most adequate for this thesis. This particular

game engine allows us to work in 2D and 3D. It has a wide range of tools and a large

online community to discuss problems and stay uptodate, which was one of our

prioritised features in an engine. The fact that it uses and runs on C# and JavaScript

is another plus point to us, as we are already familiar with these coding languages.

We are not planning to exceed the yearly revenue, which requires the developer to

pay a fee, with the current project. So that the factor of licensing can be neglected.

Furthermore the licence free version should be able to engage to the fullest with the

features featured by Unity. 18

18 Ranking (w.D), last accessed 06.10.19 :
https://www.gamedesigning.org/career/video-game-engines/

38

While it's not completely free like UE4 or Unity 5, it does not require any royalty fee,

so $9.90 is all you ever have to pay to Crytek. Consequently, there is no best game

engine. Choosing the right one really depends on the game being developed, the

developer’s preference and requirements.

In this chapter, an overview over specific, customary game engines was given -

CryEngine, Unreal Engine 4 and Unity3D. Afterwards, a detailed description of each

of them followed the comparison, considering aspects like the learning curve,

graphics and, most importantly, which game engine best realizes the criteria for the

three simulations. The conclusion is that Unity3D is the best fit for the simulations as

they are intended. In the following chapter, the whole modeling and implementation

process in Unity3D is described. It includes the overall process, why we chose

certain methods and ways of implementation, the criteria we met and problems that

arose during the implementation.

39

40

4 Modeling and Implementation [NICKELMANN]

This chapter outlines the modeling and implementation process of the three

simulations - the entangled knot, the detection of a shortest path on a route map and

the strings-and-pins approach to the squaring circle problem. The main tool we used

for the simulations, Unity3D, is described in Chapter 3 of this thesis. In this chapter,

the modeling tool we first wanted to use for constructing the basic rope model,

Blender, is explicated. Subsequently, the vital component of all three simulations, the

Joint component of Unity3D, is elucidated, as well as how it serves to model the

basic ropes. Proceeding from this foundation, the three simulations are illustrated in

three consecutive subchapters. For each simulation, the implementation process, the

final implemented behaviour, the goals achieved and the problems encountered are

described.

4.1 First Attempt at Modeling the Rope: Blender [NICKELMANN]

Blender is a 3D modeling program providing the functionality for all steps of the 19 20

3D pipeline - modeling, animation, rendering et cetera. The key animation feature of

Blender is the bone structure. A skeleton is constructed for each 3D model which

defines the object’s movement via weight matrices. They control the influence of

each joint on certain mesh vertices. This process is called Rigging and Skinning. A

model can then be imported into Unity3D, having its movement behaviour already

implemented. In Unity3D, only small adjustments are then necessary, besides the

implementation of the specific simulation setups. The reason for using Blender to

model the rope is that the positions of the mesh vertices are calculated at run-time,

so less memory is needed for the rope movement. Additionally, there are more

possibilities for deforming the rope, which is crucial for the simulation . It also allows 21

19 blender.org
20 Editing Bones - Blender Manual. (w.D.). Accessed on October 3rd 2019, at:
https://docs.blender.org/manual/en/latest/animation/armatures/bones/editing/bones.html
21 Blender 3D: Noob to Pro/Bones. (w.D.). Accessed on October 3rd 2019, at:
https://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Bones

41

us to use any model we want for the rope, as the underlying bone structure turns

invisible during rendering. Admittedly, the run-time movement evaluation

necessitates more calculations being made - as we want to implement simulations in

line with the goals of strong spatial cognition research (see Chapter 2.2), this is a

poor tradeoff. Higher memory consumption is less of a contradiction to these goals

than more computations are, which is the main factor to be avoided. Besides, the

import into Unity3D did not work properly, as the rope deformed in ways it should not

have - the part above each bone rolled up and formed a half-loop (see Image 1).

Image 1: On collision, the rope models imported from Blender behaved strangely, deforming the mesh to
look like a half-loop.

As we encountered the Joint component in Unity3D around that time and had not

fixed the import problems yet, we decided to abandon this approach and model the

rope as well as implement its behaviour in Unity3D. The game engine provides all

the features we need to fulfil the criteria, the Joint component being the key to the

implementation of the three simulations. Using the Joint component instead of the

bone structure of Blender also reduces the amount of computations necessary, as

the object meshes need not be deformed for the object’s motion.

42

4.2 The Joint Component in Unity and Joint Types [NICKELMANN]

“[The] Joint component connects a Rigidbody to another Rigidbody or a fixed point in

space” . They apply forces to the Rigidbodies that move them along, or rotate them 22

around, each of the three axes in 3D space, as well as limit their movement. Their

properties are adjusted easily via the Inspector window of Unity3D, and can also be

accessed in a script via GameObject.GetComponent<Joint>().property (where

GameObject is the game object the Joint component is attached to, and property is a

placeholder for the Joint property to be changed, like connectedBody or breakForce).

In Unity3D, there are five different types of Joints. They cause different object motion

behaviour by exerting different forces and limiting the movement more or less than

other Joints. What follows is a short description of the different Joints accessible in

Unity3D to explain why we used the ConfigurableJoint in the end. Note that the

evaluation of each Joint type is based on its usefulness for the Entangled Knot

Simulation, as it was the first simulation we implemented, intending to use the

underlying rope model for the other two simulations.

The Fixed Joint is used to make the connected Rigidbody directly follow the 23

movement of the Rigidbody the Joint is attached to, akin to parenting in an object

hierarchy. This is not useful for the intended simulation, as, for example, moving any

link of the rope upwards would lead to each other link following the upwards

movement - there would be no rotation possible. Likewise, rotating a link of the rope

would lead to each other link rotating accordingly. The rope would always be in a

straight line if the links were connected via Fixed Joints.

22 Unity - Manual: Joints. (w.D.). Accessed on October 4th 2019, at:
https://docs.unity3d.com/Manual/Joints.html
23 Unity - Manual: Fixed Joint. (w.D.). Accessed on October 4th 2019, at:
https://docs.unity3d.com/Manual/class-FixedJoint.html

43

The Spring Joint is useful if you want the connecting Joint between two 24

Rigidbodies to be elastic. The game object the Spring Joint is attached to oscillates if

a force is applied to the connected Rigidbody. A damper can be used to slow down

this oscillation. This is also not useful for the intended simulations, as we do not want

any link of the rope to oscillate at all; we want the link to be flexible, but also always

connected to each other gapless.

The Hinge Joint rotates the object it is attached to at a predefined anchor point in 25

local space around a predefined axis, like an actual hinge. As you can only choose

one axis to rotate around, the Hinge Joint is not fit for the intended simulations. For

entangling and detangling a knot in 3D space, rotation around each of the three axes

is necessary. The rope should be able to be pulled and pushed in any direction, at

any part of it, which naturally leads to it being rotated around more than a single axis.

The Character Joint combines the Hinge and the Spring Joint - there is a swing 26

axis around which the joint swings when a force is applied to the connected

Rigidbody. Similarly, there is a twist axis, which the joint is rotated around when a

force is applied. The Character Joint is not used in the simulations as it does not

allow for the velocity of the Joints to be changed. This is necessary as the links of

the rope should have the maximum velocity possible to reach the target position as

fast as possible. In other words, the links need to follow each other immediately.

However, when the rope is not being manipulated, the velocity should immediately

be set to zero. This is only possible with the Configurable Joint.

24 Unity - Manual: Spring Joint. (w.D.). Accessed on October 4th 2019, at:
https://docs.unity3d.com/Manual/class-SpringJoint.html
25 Unity - Manual: Hinge Joint. (w.D.). Accessed on October 4th 2019, at:
https://docs.unity3d.com/Manual/class-HingeJoint.html
26 Unity - Manual: Character Joint. (w.D.). Accessed on October 4th 2019, at:
https://docs.unity3d.com/Manual/class-CharacterJoint.html

44

The Configurable Joint combines the functionalities of all other Joints and thus is 27

the most customizable of the Joints. It is used in the simulations as you can precisely

define or lock movement along and rotation around all axes, and also change the

velocity of the rope links. The velocity definitely needed to be changeable as

movement and rotation need to stop immediately after pulling or pushing the rope,

while being as high as possible during the rope manipulation. Combined with its very

high customizability, we decided to use Configurable Joints for the rope model.

4.3 Constructing the Basic Rope and Implementing the

Entangled Knot Simulation in Unity3D [NICKELMANN]

The goal for constructing the rope is to create the different rope parts from a script

while setting as many properties as possible via prefabs. Creating the parts from a

script saves a lot of time because you do not have to place each object, adjust its

properties and link its Joint to the corresponding Rigidbody. This also provides the

option to adjust the length of the rope easily.

First, we tested the behaviour of the Configurable Joints on a rope we manually

created. As this was our first time using the Joint component of Unity3D, we had

some problems initially. In order to best describe the explorative process of creating

the rope and to help people avoiding these mistakes if they want to work on these or

similar simulations, we depict the problems we encountered as detailed as possible.

Furthermore, we used two different object types for the rope - spheres and capsules

- as we thought mimicking the bone structure used by Blender would be beneficial

for the implementation. In the end, the choice of objects makes no difference as long

as the colliders are set up properly. For this reason, we recommend using objects

with round ends connected to each other, as to not collide with neighbouring objects

during motion or rotation.

27 Unity - Manual: Configurable Joint. (w.D.). Accessed on October 4th 2019, at:
https://docs.unity3d.com/Manual/class-ConfigurableJoint.html

45

Furthermore we decided to omit implementing any effects that emerge gravity. This

goes by the explanation that the main task is to solve the actual spatial problem,

which is not dependent on the force of gravity. During the initial designing of the

rope, we came to know that the implementation of gravity was in fact hindering the

simulation at this point. The rope’s maneuvering was heavily affected by this force,

making it extremely challenging/ impossible to form or pull through a loop, and thus,

testing the rope behaviour. However, this ability needed to be provided (which it is in

Unity3D), given that we are aiming to resolve a knot in 3D space in a realistic

manner.

We started by creating multiple spheres and capsules seamlessly connected to each

other, with the first and last object being a sphere. Each object was given a Collider

adjusted to its size, a Rigidbody and a Configurable Joint. After scaling, moving and

rotating the objects into a line, we began testing how the different Joint properties

worked in order to create the base rope model. As Unity3D provides you with the

option to move objects along or rotate them around one of the three axes in the

Scene view, which is enough to fit our criteria, we decided not to implement any

additional control options for users. The first mistake we made was giving each rope

object two Joints instead of one, except for the first and last sphere, which we both

gave one Joint. We thought that a Joint only affects one of the links it connects, and

only affects it if the corresponding connected body is moved or rotated (the

connection between two objects, thus, needing two joints). We quickly discovered

this to be a problem as there was heavy jittering when colliders were enabled (which

was necessary so the rope would not move through itself). There was additional

unwanted behaviour of the rope, some parts were moving when they should not

have, and vice versa. At that point, we realized that we needed to remove duplicate

joints.

The next problem was that the movement was very slow and still caused jittering.

This was because we did not set any link to be kinematic, so that it would affect the

physics of each connected object and likewise would not be affected by them. As we

were still in the testing phase and did not write any scripts, we decided to make the

46

leftmost sphere kinematic and test the behaviour of the rope by manipulating that

sphere (if we wanted, we could quickly make other spheres kinematic). It is

important, however, that only one link is kinematic at one time. Otherwise, the rope

would be stretched between two kinematic objects as those objects only move when

they are directly pulled or pushed by a user. In the end, we want to write a script that

always switches the kinematic object to be the one currently manipulated by the

user.

At that point, jittering was still a problem, but at least the rope moved as fast as it

should. However, the movement did not stop after pushing or pulling has been

completed. We decided to write our first script, called Movement (see Appendix,

Image A1 for the complete final script). Its only purpose is to set the velocity and

angularVelocity of the rigidbodies to zero every frame. This does not inhibit the user

from moving or rotating the rope. The movement resulting from the user

manipulating objects in the Scene view directly via the given tools is caused by

continuous force application; resetting it merely prevents it from going above a

certain limit and the object from moving after the user has stopped moving it. This is

necessary to do every frame as the user might stop moving or rotating the rope at

any time, and the rope should not continue moving or rotating afterwards.

The rope finally behaved as we wanted it to in regards to movement, but the jittering

was still conspicuous.

We thought that this would be a good time to start scripting in general, as we could

not stop the jittering with just the Joint properties displayed in the inspector window.

We created our main script CreateLinks (see Appendix, Image A2 to A5 for the

complete final script). Its purpose is to seamlessly create the sphere and capsule

links, connect them properly via Configurable Joints, and attach other scripts to

them. We also converted the spheres and capsules into prefabs, with an additional

prefab for the first sphere as it has no Joint. With that, we only need to adjust two

Configurable Joints, one for all the spheres except the first one and one for all

capsules.

47

Image 2: The Inspector window for the

Configurable Joint component.

In order to attain the desirable motion

behaviour for the rope, you first have to

lock the X, Y and Z motion, as otherwise,

moving a single object would not affect

any other object at all. The Angular X, Y

and Z motion need to stay free as the

rope would remain completely stiff

otherwise. After that, you have to reset

the anchor points around each Joint is

oriented. For the sphere’s Joints, this is x

= -0.5 to place it on its left side, for the

capsules it is y = 1 as they are rotated by

90 degrees around the Z axis. By

changing these Joint attributes on the

prefabs, the motion behaviour is already

very close to fulfil the criteria for the

simulation.

The script CreateLinks instantiates prefabs of the spheres and capsules

alternatingly, the first sphere not being connected to any rigidbody but the other

objects being connected to the rigidbody of the previously instantiated object via

Joints. Afterwards, each object is assigned the Movement script and is set to not

being kinematic (except for the first sphere, again). The last object to be instantiated

is again a sphere. As the instantiation happens as a loop, users can easily change

the number of loops in the script to change the number of links, and by that the

overall length, of the rope.

At this point, the only problem left was the jittering of the rope. After some research

on the internet , we discovered the property inertiaTensor. In Unity3D, it is a 28 29 30 31

28 What is inertia Tensor for Dummies? (2014). Accessed on October 27th at:

48

Vector3 that describes how much torque is needed to rotate an object around an

axis (torque being equivalent to the force you need to move an object, but for

rotation). The higher the values, the harder it gets to rotate an object around a

certain axis. If the inertiaTensor is not set manually, it is “calculated automatically

from all colliders attached to the rigidbody” . After some experimentation on 32

whether this could stop the jittering, we discovered that we needed to set the values

way higher than those that were automatically calculated. This stopped the jittering

completely, which in hindsight was probably caused by the links rotating too quickly

but being stopped each frame. This was mitigated by setting the inertiaTensor via

script to values that make it harder for objects to rotate (the value was set in the

CreateLinks script during the instantiation).This does not inhibit the user from

rotating any object. If anything, the overall manipulation of the rope is working

smooth and as intended to fit the criteria for the simulation.

Next, we wanted to enable pulling and pushing the rope at any part of it, not just the

first sphere. To achieve this, you have to make any object that the user currently

manipulates kinematic and each other object not kinematic. In the end, we created

the KinematicController script (see Appendix, Image A6 to A7 for the complete final

script), which sets the first sphere instantiated as the active (kinematic) sphere

immediately after instantiation. In the next step, the object currently being

manipulated by the user is assigned as the active object and made kinematic via the

assignment of Selection.activeGameObject to a placeholder. The previously active

object (which was saved in a second placeholder after it was made active) is made

non-kinematic. The newly activated object is likewise saved in the placeholder for the

previously activated object. The script now works and enables users to pull at and

push every part of the rope along the three axes with the motion tools contained in

https://forum.unity.com/threads/what-is-inertia-tensor-for-dummies.235919/
29 Calculus 3: Tensors (13 of 45) What is the Inertia Tensor? (2018). Accessed on October 27th at:
https://www.youtube.com/watch?v=Ch-VTxTIt0E
30 Moment of Inertia Tensor (2011). Accessed on October 27th at:
http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node64.html
31 Unity - Joint tearing under larger force (2015). Accessed on October 27th at:
https://gamedev.stackexchange.com/questions/99245/unity-joint-tearing-under-larger-force
32 Unity - Scripting API: Rigidbody.inertiaTensor. (w.D.). Accessed on October 27th, at:
https://docs.unity3d.com/ScriptReference/Rigidbody-inertiaTensor.html

49

Unity3D. The rope is now behaving exactly as we wanted it to, meeting every criteria

we set in the beginning of our work - almost.

There is one problem we have not been able to fix, and that no other programmer

has seemed to fix yet, likely because the situation it appears in is not of interest to

many people. The problem is that the individual rope objects pull slightly apart from

one another. In most simulations, this is not an issue as no other object should be

exactly at that gap and be small enough to squeeze through it with enough force.

Unfortunately, this is the case when you try to tie a knot. If you pull a knot too tight,

one object will eventually slip through a gap where the knot is tied, breaking it. The

elasticity of a Spring Joint, which is also inherent to the Configurable Joint, cannot be

fully disabled. Intuitively, we tried to change the values for the Spring and Damper

values of the Joint. However, setting the Damper value very high and the Spring

value to zero did not solve the problem. We also tested other velocities for the

objects or changing their force but still, the rope objects slipped through the gaps,

breaking the knot that way. We also tried other solutions like increasing the solver

iteration count in the project settings, changing the time step or increasing the

rigidbodies’ drag, but despite the knot being more stable, none worked out. The

problem is, regrettably, not solvable to our knowledge, inhibiting the simulation to

fulfil its intended purposes . 33 34

As time has become a concerning factor at that point, we decided to move on and

implement the other two simulations. The rope objects pulling slightly apart from

each other is not a problem for the shortest path simulation or the squaring circle

simulation as the objects will not be put tightly together in one place with great force.

We would have liked to solve the problem and have a fully functioning entangled

knot simulation, however, the other two simulations became our priority considering

the time frame left. They will be explicated in the following two subchapters.

33 Non-Springy Configurable Joint (2010). Accessed on November 30th at:
https://answers.unity.com/questions/14358/non-springy-configurable-joint.html
34 Joints sag with mass? What is the cause? Can it be eliminated? (2019). Accessed on November
30th at:
https://www.reddit.com/r/Unity3D/comments/dv3byh/joints_sag_with_mass_what_is_the_cause_can_i
t_be/

50

4.4 Building the Shortest Path Simulation [NICKELMANN]

Besides the entangled knot simulation, we also wanted to implement a map

simulation based on the shortest path problem (Freksa, 2015).

First, we planned how to construct the route network. We used bigger, red spheres

as the waypoints/nodes between which a shortest path can be detected. The routes

are made of the spheres and capsules we used for the entangled knot simulation. As

spheres and capsules are alternating in this simulation as well, but the node spheres

are connected to multiple capsules, we decided to give each capsule two joints to

connect them to each adjacent sphere.

The only script from the entangled knot simulation we could use was the Movement

script which limits the velocity of the links. We could not use the CreateLinks script

as we created the route network manually, and the kinematic property is handled

differently in this simulation, so we also could not use the KinematicController script.

Code 1: The variables of the MapBehaviour script (the starting and ending point game objects of the
path, a counter, a material to indicate the selected starting and ending point).

51

Code 2: Start of the Update() method. This allows for selecting the starting point of the path, which is the
object that is fixed in position.

Code 3: The rest of the Update() method, which allows for selecting the ending point of the path and
simulates the pulling apart of the map.

For the kinematic property, we wrote a script called MapBehaviour which is attached

to a game controller object. Its purpose is to pin down one of the node spheres (see

Code 2) and pull a different one straight away from it (see Code 3), which is done by

simply clicking the nodes (the first one being fixed in its position, the second one

being pulled away from it in a straight line). Between those nodes, the shortest path

52

will be detected automatically. The two selected nodes are made kinematic as they

should not be influenced by the movement of other links of the route network. They

are marked by being assigned a green material.

Code 4: The MapVariables script for game object and joint properties.

In addition to the MapBehaviour script, we wrote the MapVariables script attached to

each object which sets each Joint’s break force and each object’s inertia. We had to

experiment a little bit to find out the optimal value for the break force, in the end, we

settled at 30.000. If this value is exceeded, or in other words, the Joints are pulled

apart by a force greater than 30.000, the Joint breaks, indicating the shortest path

between the two selected nodes.

Code 5: The ShortestPathDetection script for stopping the motion after a joint breaks.

The last script we wrote was the ShortestPathDetection script attached to each

capsule, as they hold the Joints. When a Joint breaks, the function OnJointBreak() is

called, disabling the MapBehaviour script and stopping the traction of the previously

pulled node.

53

As we had already figured out the most difficult steps for implementing a simulation

based on the specific rope properties and rope behaviour we wanted to use,

implementing the shortest path simulation was not that difficult. What made it even

easier for us was the fact that this simulation is basically a 2D simulation, and

besides user input for selecting the two waypoints, each step is carried out by the

scripts and not the user.

4.5 Implementing the Squaring Circle Simulation [NICKELMANN]

In addition to the entangled knot simulation and the shortest path simulation, we

want to implement a simulation based on the strings-and-pins approach to the

squaring circle problem explicated in Chapter 1.1.2.

We have implemented the simulation up to the point where the circumference of the

circle is marked and the string should be unrolled, as this is the part which cannot be

solved by a straightedge-and-compass approach. A central script, called

SquaringCircles (see Appendix, Image A8 to A15 for the complete final script),

directs each step of the squaring circle process. There are different materials for the

cylinder, the spheres, pinned spheres and the spheres that are part of the

circumference. This is done in order to discern the pins and the different parts of the

string - the radius, the circumference et cetera. One array lists all spheres, another

one all pinned spheres; this is important for counting the pinned spheres as a certain

number of pinned spheres starts a certain part of the process. Two additional arrays

hold all spheres beyond those inside the cylinder and all spheres of the

circumference respectively.

The spheres are instantiated like they are in the entangled knot simulation. The only

difference, besides different scripts being attached, is that the method

CheckBounds() is called during instantiation. It checks whether or not a sphere is

54

created inside the cylinder (the first one is always instantiated at the center of the

cylinder) and if it is, assigns it to a layer which ignores collision with the sphere.

A user has to follow certain steps during the simulation of the squaring circle

process, or else it will not work properly. The first step is to pin the sphere at the

center of the cylinder (pinning works like in the shortest path simulation, besides the

object’s positions being frozen), and afterwards, they have to pin the first sphere

directly outside the cylinder. The script checks the number of pinned spheres every

frame. If that number is two, the part of the rope behind the sphere pinned directly

outside the cylinder is rotated counterclockwise around the cylinder. This is done to

measure the cylinder’s circumference.

At this point, a script called SCCollision (see Appendix, Image A16 for the complete

final script) comes into play, which is attached to each sphere. It checks for collision

with the sphere pinned directly outside the cylinder, for as long as there are exactly

two pinned spheres. A collision with that sphere happens when the circulation is

finished, and when detected, the colliding sphere gets pinned as well (thus,

increasing the number of pinned spheres to three). All spheres that are part of the

circumference are indicated via an orange material.

As mentioned before, obtaining the circle’s/cylinder’s circumference and being able

to transform it into a straight line afterwards is the vital component of the simulation,

as it cannot be achieved by the straightedge-and-compass approach. This has been

implemented and it works as intended. We tried to implement further steps in order

to show the complete task of squaring the circle, but due to time constraints, we did

not get the next to work (which would be rolling back the string and pulling it out into

a straight line). We definitely would have liked to fully implement the simulation, but

within the frame of this thesis, it was neither possible nor greatly necessary.

Nevertheless, we hope that this simulation is of value for further research of strong

spatial cognition topics and will be continued to be worked on by other programmers.

55

In this chapter, we have presented the whole modeling and implementation process

for the three simulations. We have illustrated each separate step of the process,

starting with the endeavour to model the rope in Blender and importing it to Unity3D.

After explaining why this approach was abandoned, we explicated the key to the

implementation via Unity3D: The Joint component. There are five different types of

Joints available, which we all briefly described, and we reasoned why the

Configurable Joint is most suited for the intended simulations. Thereafter, we started

the report on the implementation process. We discussed how we implemented the

basic rope, which problems we encountered and which criteria the rope met. After

configuring the basic rope, the most difficult work was done and we could focus on

the setup of the simulations. Unfortunately, due to the individual rope parts pulling

apart, tying a knot is not possible and we could not get a satisfying end result of the

entangled knot simulation. However, the rope parts pulling apart is not a big problem

for the other two simulations. We illustrated how we set up the map simulation and

which behaviour needed to be implemented in order for it to work properly. In the

end, the map simulation is working as intended and its functionalities can be applied

to any map constructed equally to our example map. The squaring circle simulation

and its methods were delineated in the end of this chapter. The criteria we wanted to

meet and the most important step in the squaring circle process could be

implemented, and thus, the end result of that simulation is satisfying. The end results

of the three simulations will be depicted and discussed in the following chapter.

56

5 Results [NICKELMANN + RAHMAN]
In this chapter we are presenting our outcomes of the thesis. The examination of the

spatial cognitive problems is following the order in which we proceeded to implement

them. The results to the entangled knot problem will be displayed first, followed by

the shortest path problem and ceased by the squaring circle problem. This is

because the problems are considerably equal in their relevance, so that we do not

need to distinguish the results based on that. Despite this fact, the simulations we

would like to present have similar substructures. Thereby, some outcomes of prior

examined problems were already incorporated in the simulation of the next problem.

In this case, the entangled knot problem and the shortest path problem share their

rope substructure, the latter problem inherits the rope design from the former

problem.

Due to the fact that this thesis is following an explorative viewpoint, the results will

not only be presented as the final simulations. Additionally, we are documenting the

different stages of the simulations and the design process. These can be found in

the documentation chapter, as well as visualised in a demovideo and are of equal

importance as the end results.The length of the demovideo is one minute and fifty

seconds and shows a shortened screenshot video, which was directly captured from

the screen. Furthermore the figures in this chapter are mainly taken from this video

to illustrate our work in this setting. Moreover, that chapter will incorporate all

important solutions, that were considered or dismissed. The description of the design

process might be of interest for further works. Thereby presenting the

thought-process as well as the milestones that lead up to the final outcome.

The spatial cognition problems we are featuring are from different levels of difficulty.

We like to note at this point, that in this thesis, the difficulty level is measured by the

total of the different components. For example, a simulation that requires more and

complex components is the squaring circle problem, whereas the simulation of the

shortest path problem is depending on fewer components to be solved. Thus we are

57

presenting different states of simulations, according to the needs of the spatial

problem. Some states are solving the entire spatial problem requiring a complete

simulation, while others only need partial simulation to be solved, before they e.g.

receive further geometrical treatment.

5.1 Entangled Knot Simulation [RAHMAN]
As this spatial cognitive problem evolves around a knot, the aim of the simulation

was the detangling of a knot. The process of detangling required several movement

concepts and features, that needed to be implemented. For this reason we focussed

on designing a rope that can be manipulated by a cognitive agent. Main mobility

features to detangle the knot, like pulling , pushing or dragging the rope, were our

highest priorities and are further described in our methods. This simulation consists

of two alternating objects, one shaped as a capsule and the other shaped as sphere

(see figure 1). The objects, except for the first sphere, are connected by configurable

joints to form the manipulable rope.

In this simulation we designed the first sphere to be slightly different from the other

spheres, which is now designed to be followed. As seen from figure 1, in the

beginning of the simulation a rope was created and arranged horizontally.

Furthermore a set amount of objects were instantiated, to resemble the

characteristics of a middle length cable. Thereby referring to the experiment of

detangling headphone cables, which inspired this simulation.

58

Figure 1: Simulated rope, formed by capsules and spheres (grey).
The simulation is shown in its resting and untangled state.

The original idea behind this was to reproduce a multi-knot, consisting of random

and different types of knots. This reproduction was the first step to engage a

cognitive agent to use the human approach of solving the knot. In order to

understand the human approach, we tried to pre-tie the knot, which is supposed to

be solved. As soon as we were able to form a loop (see figure 2), without jittering or

breaking effects, we continued our pursue to form a knot.

59

Figure 2: Forming of a loop with the rope, using the provided navigation by Unity3D. The simulation
is shown in its active state.

The first sphere was initially kinematic, which lead to breakage, when paired with a

kinematic last sphere. Also, the general prefab of sphere was equipped with two

joints and was programmed to orientate itself to the previous sphere. However, the

first sphere was not assigned to any sphere, therefore it automatically orientated

towards the middle sphere. This conflict was omitted by designing a new prefab to

instantiate the first sphere. Furthermore, this prefab was designed without a joint,

which previously caused the jittering.

However we faced more difficulties to maintain a stable rope without losing its ability

to be flexible. Although the rope was able to be manipulated into a loose knot (see

figure 3), it was not able to form any tighter knots. At this point all manipulations were

executed by Unity’s controller, which allowed a movement in all three axis directions.

60

Figure 3: Forming of a loose knot with the rope, using the provided navigation by Unity3D. The
simulation is shown in its active state

.

As soon as we attempted to form multiple or tighter knots, the rope would break. This

behaviour was caused by the gaps between the capsules and spheres. These gaps

ensured the flexibility of the rope, however, when strongly pulled they would let these

objects slip through. Efforts to make the gaps smaller, thus tighter, were

unsuccessful. Tightening the gaps caused by the joints would make the rope stiff and

less manipulable. To the extent that a loop was not formable at one point. Figure 4

shows the tightest knot that could be formed with this simulation, without causing the

prior mentioned disturbances in the simulation.

61

Figure 4: Tying a knot with the rope, by pulling at the opposing two ends of the rope.Tightest knot
constellation possible to achieve, before it breaks. The simulation is shown in its active state.

Further attempts to evade the gaps, besides a decreasing distance between the

objects, was to use a mesh combiner. The theory was to combine the objects into

one mesh and thus mimic a cable, omitting any breakage caused by gaps. This idea

is yet to be effectively implemented. Due to time limitations, we were unable to find

further approaches, after our first attempts did not succeed.

The result of the entangled knot problem, in the context of the thesis, is a simulation

of a flexible rope, that is able to be manipulated by a cognitive agent. All objects that

are a component of the rope, are designed to mimic the character traits, that allows

the simulation to behave accordingly, when pushed or pulled.

62

5.2 Shortest Path Simulation [RAHMAN]
The aim of this simulation was the detection of the shortest path between two points.

By stretching at two waypoints, the most stretched edge indicates the shortest path.

The waypoints are representing potential starting and target points on a map, thus

imitating a navigational route (see figure 5). The construct is designed similar to a

graph, with varied weighted nodes and different length edges.

Figure 5: Simulated rope forming a net. Components of the rope are waypoints (red), as well as
capsules and spheres (black). The simulation is shown in its resting state.

The rope, that we designed previously to simulate the knot function, was added to

this simulation. In addition to the existing rope, another object category was added.

We called these objects waypoints. This object category is introduced to connect

multiple ropes. Since they obtain more specific attributes for movement, the

cognitive- agent is able to have more control during the simulation. In contrast to

these manipuble waypoints, the rope cannot be directly manipulated by the cognitive

63

agent. To clearly differentiate between objects of the rope and the actual waypoints,

different colours were used. While the capsules and spheres of the rope were black,

the waypoints were hued red. A colour change from red to green indicates the

selection of a point (see figure 6).

Figure 6: The selected waypoint is green, while selected ones still red. The simulation is shown in its
alert state; stretching will start as soon as the second waypoint is selected.

A selection can be carried out by mouse click. Once two waypoints are selected,

there is no other opportunity to select another point. This is what we call the alert

phase of the simulation, which is occupied with the stretching. While the first

waypoint is selected, it is simultaneously pinned down to its initial position. The

stretching is then triggered by the selection of the second point.

The mechanism of the second point, as described in the methods chapter, allows it

to move in the opposite direction. Once it reached the ultimate position of utmost

64

stretching, meaning the function OnJointBreak() would reach a certain threshold (see

figure 7), it is stopped.

Figure 7: Two selected waypoints (green), while the first selected point is pinned, the second moves
opposite, thus triggering a stretch. The simulation is shown in its active state.

At this current state of the simulation it is not possible to induce a route with multiple

stops. However, this simulation is able to stretch at an two waypoints, regardless of

how many edges are attached to it. Furthermore it is able to perform a full stretch by

itself, without causing a deformation of the rope or damaging breakage. The

detection of the shortest way, in the context of the thesis, is possible with this

simulation.

65

5.3 Squaring Circle Simulation [RAHMAN + NICKELMANN]
In order to simulate this spatial cognitive problem entirely, it had to be broken down

into several minor components. Therefore we started off by simulating the most

interesting component, which measures the circumference of the circle/cylinder with

a rope. While this part of the problem requires a simulation, the other components

could be carried out by geometrical operations and are thus neglected in our

examination. The function of this rope stems from the rope design implemented in

the entangled knot problem. However, we chose to create a rope made of spheres

only this time.

Figure 8: The grey cylinder is the measuring object; red spheres are the rope; here the first sphere is
marked green by a cognitive agent. The simulation is shown in its active state.

As a result of the objects form, which was a cylinder in this case, we decided that this

rope type was more accurate and more suitable in this circumference process. To

make sure the rope stopped after once performing the circumference, we worked

66

with collision detection (see SCCollision, in our methods chapter). As seen in figure

8, the first object of the rope is instantiated in the center of the cylinder.

At this point of the simulation, the cognitive agent/user is required to select the

immediate sphere that is situated outside the cylinder, as well as the first sphere.

This is not only to make sure we capture the radius, but also the start of the

automated measuring (see figure 9).

Figure 9: The grey cylinder is the measuring object; red spheres are the rope; green spheres mark
the radius separately.The simulation is shown in its active state, while rope is wrapping around the
circle.

To separately mark the selected and thus pinned spheres, they are coloured green

(see figure 9). This selection and marking is meant to be performed by a cognitive

agent. The selection of the second sphere, acts as trigger to start a counterclockwise

67

rotation of the rope. Once the rope is wrapped around the cylinder, it is resulting in a

full circumference (see figure 10).

Figure 10: The simulation is shown in its active state, while rope is wrapping around the circle. This
is automatically triggered by the second green sphere selection.

The rope stops upon the second collision with the first sphere of the rope, that is

situated immediately outside the cylinder. To indicate this full circumference to the

cognitive agent, we coloured this rope section orange (see figure 11).

68

Figure 11: The orange coloured section of the rope is the measurement of the circumference
 of the circle.

This component of the simulation of the squaring circle problem is able to perform

the circumference of the given cylinder and visually indicate the used rope section.

Further steps can be carried out by geometrical operations.

In this chapter, the end results of the three implemented simulations were

demonstrated. The implemented functionalities were explained, as well as how to

interact with the simulations. We depicted the outcome simulations by screenshots

and roughly explained how they work (visit the Appendix to see the full code of the

three simulations).

In the following, concluding chapter, we reflect on the implementation process as a

whole and discuss which of the previously set criteria (in regards to spatial cognition)

we met. We also state which problems arose during the implementation process and

69

which ones we could not fix within the time frame of this thesis. Additionally, we

comment on why these simulations are of value for (strong) spatial cognition

research and give an outlook on future research, hoping that our work will help other

researchers and programmers.

5.4 Demo Video [RAHMAN]

Finally we would like to point to our link , which provides the full demovideo of the 35

resulting simulations from this thesis. This demovideo was especially designed for

the 14th International Conference on Spatial Information Theory (COSIT), which was

held in Regensburg, Germany from the 9-13 of September 2019. Prof. Dr. Christian

Freksa, from the CoSy group of the University of Bremen and participant in that

conference, decided to present this new viewpoint on the examined problems in

Strong Spatial Cognition in this thesis.

This demovideo is backed with descriptive keypoints. Thereby we aim to illustrate

the process to the viewer, while providing a narrative to the visual input. In this video

each examined spatial cognitive problem separately demonstrates the active

process to find a solution via an cognitive agent. The naming of the problems is

slightly different, as they are introduced by their working title. The length of the video

is one minute and fifty seconds, illustrating a shortened and partially sped up video,

which was directly captured from the screen. Moreover, the order of the shown

problems is not of any particular order, however, can be reasoned by the argument

of the sufficiency of the simulation and the dramaturgy.

The introductory screen (0:00 - 0:04) contains the name of the thesis and the name

of the thesis composers. It is followed by the capture of the Shortest Path Problem

(0:04 - 0:15), which contains the route network and the information comprised in

bullet points. The information provided describes the aim, the visual objects, the

problem that is examined and possible future applications. Moreover, the bullet

35 link to the demovideo: https://drive.google.com/open?id=1UhN5Jr77k_qMSCEvs2RIbLGdF6TGoNj-

70

https://drive.google.com/open?id=1UhN5Jr77k_qMSCEvs2RIbLGdF6TGoNj-

points are fading away after a short time, so that the viewer is not distracted and the

observation of the simulation is not confined by the writings.

The actual demonstration of the Shortest Path Problem simulation (0:16 - 0:37)

shows three possible options to manipulate the route net. In the first part (0:16 -

0:20), the selection of the waypoints is specified by the colour change from red to

green. The stretching, in order to allocate the shortest path, is demonstrated in

option 1 (0:20 - 0:22), option 2 (0:27 - .0:30) and option 3 (0:32 - 0:35). This is to use

multiple examples to make an impression of this quick action and instill the fact that

it is possible to freely choose any two waypoints in this simulation.

Furthermore, the entangled knot problem is introduced (0:40 - 1:13) and is supplied

with bullet points that are explaining key elements, current problems and aims of the

simulation (0:40 - 0:48). Meanwhile, the laid out rope is getting manipulated into a

knot. In this next frame (0:51 - 1:05) we chose to incorporate another angle, bringing

the viewer closer to the rope and thus be able to observe the manipulation. The first

knot is created (1:05 - 1:10) by pulling at the end of the rope. Within this simulation

the rope is only able to uphold a certain level of tightness, before it’s objects slip

through the gaps can be viewed (1:11 - 1:13).

On the first screen of the simulation to the Squaring Circle Problem, a round object

(grey) and a rope (red) is visible (1:14 - 1:16), accompanied by bullet point of

information. The information states the aims, functions and other specific attributes,

as well as problems that we were facing at that point of our work on this spatial

cognitive problem. Considering to implement the visual from the last simulation, the

selection of the points is marked by a change of colours (1:18 - 1:28). The selection

of the second object of the rope is further triggering the circumference. It also

enables orange-colouring of the section of the rope that is involved in this process

(1:28 - 1:43), when the rope collides with it. The next step is only hinted in this

simulation and implies the step of the unwrapping of the rope (1:43 - 1:50).

71

We aim to illustrate the process to the viewer with the video of all three simulations,

while providing a narrative to the visual input. In this video each examined spatial

cognitive problem separately demonstrates the active process to find a solution via

an cognitive agent. An active process like a simulation, is more detailed and

accurate in its depiction as a video and the provided instruction to the video.

Therefore we encourage to follow the provided link to gain a deeper understanding

of the simulation process.

72

6 Discussion and Conclusion [NICKELMANN + RAHMAN]

The findings of this thesis demonstrate that the simulation of spatial cognitive

problems like an entangled knot, the shortest path and the squaring circle problem,

are not only possible but harbour great potential. In the context of our work we are

able to provide three working simulations of the above mentioned spatial cognitive

problems. In contrast to existing approaches, it offers a solution without having to

use any secondary tools or methods using 3D printouts, but is aimed to be directly

integrated. Furthermore, this simulation incorporates the ideas of Strong Spatial

Cognition , thereby mimicking the intuitive methods of a human to approach the

problems.

Not only are these simulations faster, but they are also more moderate with resource

usage. The simplistic design of the simulation was purposefully chosen to foster a

decrease of the CPU usage as well as the resources used for secondary tools 36 37

and memory capacity. One of the key aims of this work was to find a way to establish

a method that combines a higher efficiency with a solution-orientated simulation to

each problem. Besides the factor of efficiency, the visual aspect granted by a

simulation, was crucial. In earlier approaches this part was analog, but nevertheless

the key element to an alternative solution-finding process to a algorithmic

rationalisation. It is this visual implementation that allows manipulation by cognitive

agents, that differs this work from others and enables a direct integration of the

internal system of a cognitive agent used in AI.

The translation of a spatial cognitive problem by an analog-intermediate step, which

is then used by a cognitive agent in AI, only to be translated into a digital instruction,

causes avoidable complexity to the solution-finding process. The simulation

developed within this thesis offers a direct solution in a virtual environment, while

36CPU = central processing unit
37The secondary tool in this particular case is the 3D-printer, used for the printout of the net of the
shortest path problem.

73

considering the analog nature of human methods. These qualities make them overall

more efficient to solve cognitive spatial problems in future applications.

As previously mentioned, the visual appeal of the simulation was not the focus of this

work, therefore the resulting simulation is kept in simple appearance. Additionally, to

the relieve of the resource usage, this aids to our goal to keep the recreation and

understanding of this work as a priority. The implementation of these simulations in

a system of a cognitive agent used in AI, offers a great potential to evade

complicated and lengthy algorithmic processes.

In consideration of the significant difference of the examined spatial cognitive

problems, each problem is separately addressed the upcoming section of the

discussion and conclusion. Beginning with the entangled knot problem, followed by

the shortest path problem and ultimately followed by the squaring circle problem.

6.1 Entangled Knot Problem [RAHMAN]

The first spatial problem we assessed was the entangled knot problem. The

examination was initiated by the first-hand determination of the features of the

entangled knot problem, in order to appoint attributes that we needed. For this

purpose we used our primary model of a knot, shown in draft 1. The idea was to

create a rope that was not only flexible and manipulable but also able to uphold

knots. With our simulation we overcame the limitations that we found in other

simulations like e.g. in the above mentioned Obi-Ropes. Even though their product

had excellent visual appeal and impressive fluidity in portrayed collisions, their

purchasable rope- preset did not provide the ability to recreate a manipulable knot.

Although we intended to create a simulation that was close to the existing solution,

we did undertake some changes. We decided to ultimately ignore the aspect of

gravity in the simulation. In the real world approach by CoSy, a cable of a

headphone was used to form a multiple knot. This was to imitate the everyday

74

scenario of a tangled cable, regardless of how it ended up in the formation. The idea

was to hand this knot to a cognitive agent and let that agent come up with a solution.

Thereby conducting a human approach to solve the knot, rather than a algorithmic

based way. We were closely following the experiment and implemented attributes,

that allowed a manipulation of the rope in the simulation in a similar way to how it

was handled in the real world approach. However the introduction of gravity caused

problems in our digital version. Due to its own power, introducing gravity would

cause a tear down of any loop that we formed beforehand. Therefore the rope would

not withhold its shape, which made any further manipulation impossible. Simple yet

essential operations like pulling or pushing the rope were hindered, which is why we

took a step back and continued our simulation without adding gravity. Subsequently

the simulation allowed a formation of a loop, followed by a manipulation of the rope

to a knot. At this point we decided that the simulation of this spatial cognitive problem

does not depend on gravity in order to work properly. Instead, we focused on the

functionality of the simulation to imitate a tangled cable and the attributes for

manipulation, as these were the key elements to this examination.

As mentioned in the results chapter, the current simulation of the knot allows to

create a knot to a certain tightness. Further tightening of the knot, beyond that

certain threshold, leads to a slip through of the individual objects. During our

development phase we considered two other concepts to overcome this problem. As

previously mentioned, the wrapping concept as well as decreasing distance between

the individual objects did not bring any satisfying solutions. With hindsight the

approach to combine the meshes of the objects and thereby creating a wrap around

the cable still seems to be the most possible concept. The current simulation

suggests that once the ‘slip through’ problem gets solved in future works, it is

possible for a cognitive agent to manipulate and thus work on this cognitive spatial

problem. With the help of a simulation, such as the one developed within the scope

of our thesis, a cognitive agent is already able to manipulate the rope. So the next

step is the forming of a multiple knot, which further leads to the study of how the

human approach differs from an AI algorithm-based path.

75

As the work of the CoSy group suggests, the efficiency and most importantly the cut

down of the load on the computing power is the overall aim. To achieve adequate

results in digital approaches, further studies should take into account the differences

in scale and functionality when it comes to convert a real world problem into a digital

simulation - that again is used by an cognitive agent. We see great potential in the

usage and implementation in further research about the improvement of AI cognitive

agents and introducing them to use these human approaches. Using a digital

simulation allows a seamless course of the process of solving a knot configuration,

as it omits the extra translation and thereby reduces the resources that are required

in this.

6.2 Shortest Path Problem [RAHMAN]

Since the rope, designed during the simulation of the entangled knot problem, turned

out to serve all our criteria, we decided to use it as a base in our next simulation: the

shortest path problem. In the context of this cognitive spatial problem, the fact that

the rope objects slip through, is irrelevant. Decidedly we let this simulation inherit the

previous rope design, when we were certain about the fact it would not hinder the

performance of this simulation. This is because the shortest path problem requires

different specifications in a simulation that do not depend on that level of flexibility.

The operation that causes the rope to break is not part of this simulation. Even

though the rope objects that are integrated in the map are designed as 3D objects,

most of its manipulation is displayed in a 2D view to resemble a map from the

birdsview. Due to the fact that the shortest path is revealed by stretching, we decided

to design the simulation on a plane to preclude unnecessary rotations and

deformation that would falsify the end result. All in all this approach is different from

the current mechanical handling, which is using a 3D print-out of a net that

resembles the paths on a map, without involving a plane. However the digital

approach required a base to enable the stretching and provide a clear background to

the scene to work with.

76

This simulation was more complex and thus challenging to create than the previous

one. Not only did it require flexibility and stability while being manipulated, but we

also wanted to introduce seemingly automated operations. By automated operations

we mean the stretch that is triggered by the selection of the second waypoint. We

preferred this way of designing the stretch, because of two reasons. First, we didn’t

want to involve a cognitive agent in this particular part to avoid any error e.g. over

stretching. Secondly we decided to discharge and relieve the agent at this point, by

opting for the automation of this part of the simulation.

The newly introduced object of this simulation was the waypoint. As mentioned in the

previous chapter, this object is designed to have more functions implemented in its

code. This is due to the fact that, after several attempts to find other solutions, this

object type made it possible to generate a stretch. This stretch is performed without

causing breakage. Furthermore our simulation allows the cognitive agent to select

whatever point they want to manipulate. It was important to us to generate a object

that has a simple and effective code-design; since the overall goal was to simplify

the process and omit major strain on the computing power.

In addition, we decided to illustrate the selection of the waypoints by a change of

colour, this is to allow the cognitive agent to receive an instant feedback. Due to the

fact that currently only two points can be selected, we believe that an introduction of

a visual feedback encourages a higher accuracy in the selection. The design of the

current simulation would otherwise not be as intelligible to a cognitive user. Given

the fact that the selection of the second waypoint endorses the stretch performance

and simultaneously pins the first waypoint, it also restricts any further selection.

Therefore we were considering to adopt any sort of feedback to make the selection

stand out and avoid any confusion.

As previously mentioned, the current simulation grants the selection of two

waypoints, imitating one point of departure and one point of arrival on a navigational

route. Considering the aspect of navigation, which is the most suitable field of

research to place this simulation in, we see more potential. The addition to multiple

77

stops, indicating a stopover e.g like buying flowers before visiting a friend, might be

of interest and provides further detail to the problem of the shortest path.

Running such a simulation in the background of an AI navigational application should

increase its performance significantly. Some refinements to factor in like, for

example, traffic congestion would still be necessary, but this could be achieved by

weighing some route parts differently, making them more or less stretchable et

cetera. In short, a string map functions as an easy and intuitive solution to the

shortest path problem and is very useful in the broad domain of wayfinding. It offers

opportunities for adaptations, and thus, a digital simulation of the string map is a

meaningful contribution to the field of strong spatial cognition.

In our understanding, there are several further implementations and projects that can

be continued from this work.

6.3 Squaring Circle Problem [NICKELMANN]

For the simulation of this cognitive spatial problem, we also decided to use the rope

from the entangled knot simulation as the basis, as it fulfills all the criteria we set.

The problem of the rope objects slipping through small gaps in the rope is not of

relevance here as the rope will never collide with itself in a way that such a situation

could occur. Similarly to the shortest path simulation, despite the objects being 3D

objects, the simulation is basically a 2D simulation as the underlying squaring circle

problem is a two-dimensional spatial problem. To reduce the workload, we decided

to implement it with Unity3D; doing so does not inhibit the simulation in any way.

Implementing the simulation in 2D might have even been harder as the cylinder

(representing the circle) being in 3D helps to implement the step where an agent

would pin the rope on the circle’s circumference. It is a bit tricky, but when you put all

spheres inside the cylinder in a layer ignoring the collision and all spheres outside

the cylinder in a layer not ignoring the collision with the cylinder, you can easily both

simulate pinning the rope at the center of the circle and also wrap it around the

78

cylinder, mimicking pinning the rope on the circle’s circumference. In this way, the

simulation differs from the real-world problem. It is not possible to exactly pin down

the rope on the outer line of the cylinder, you have to do it by letting the rope objects

collide with the cylinder’s envelope. However, this is a very small inaccuracy. Such

small inaccuracies might also emerge from pinning down the rope on a circle’s

circumference, regarding the real-world task.

We implemented the simulation in such a way that users do not have to perform

translation or rotation of objects themselves. The only thing they should know before

starting the simulation is which spheres to click - the one at the cylinder’s center and

the first sphere directly outside the cylinder. Having clicked the spheres in that order,

the rope will wrap itself around the cylinder. The indication of the two clicked spheres

and of the spheres making up the circumference also happens automatically. We

tried implementing the option for the users to manually wrap the rope around the

cylinder but it would not wrap around it very tightly, also, it takes way longer than the

automatic approach. The C# method we used, RotateAround (), was more suitable to

achieve this. It is an easy method that does not rely on many additional

computations, being in line with the criteria we set for the simulations.

One more complicated aspect of the implementation is how the spheres are

selected. As the cylinder is technically in front of the spheres, we had to utilize

shaders for the red and green material that always render them on top. Additionally,

when casting a ray from the camera to get the hit object, which should be a sphere,

we had to ignore the cylinder as well. We achieved this by using the bitwise negator

“~”, making the cylinder the only object not being selectable by the user. All in all, the

simulation was complicated to set up in the beginning, but it now works as intended

and is in line with the goals regarding strong spatial cognition.

We should also mention that, when it came to examine the squaring circle problem,

we decided to change the previous rope design slightly. We introduced a rope that is

consisting of spheres only. As described in the methods chapter, we aimed to

produce a rope that performs a full circumference on the cylinder and to indicate the

79

used rope length. Furthermore, we favoured the concept of using colour as an

indicator as to when a full circumference is produced, as we wanted to get a

universal feedback of the rope length. Therefore we used colour to indicate the rope

section that was involved in the circumference. We preferred this procedure, as it

allows to give an instant feedback to the cognitive agent. In addition to the visual

feedback we were able to avoid a direct measurement, which would result in another

number that becomes part of another algorithmic operation.

Further work on this simulation should start by implementing the following steps of

the squaring circle problem. We have stated that the detection of the circumference

is the most important step as it cannot be solved by the common

straightedge-and-compass approach. However, only having implemented that step

does not let a cognitive agent transform the circle into a square. We would have liked

to implement the corresponding steps as well, but due to the time frame of the

thesis, this was unfortunately not possible. We believe this simulation to be a great

starting point for other programmers to implement a full squaring circles simulation

based on the strings-and-pins approach and hope that it will be utilized by cognitive

AI systems in the future.

Closing the gaps between the rope objects might also increase the accuracy of the

circumference. We hope that this problem will be fixed in the future and that a

non-springy Configurable Joint will be enabled by Unity3D, as that would also fix the

problems for the entangled knot simulation. Additionally, as previously hinted at,

finding a way to pin the spheres exactly on the circumference line of the cylinder

would further improve the accuracy of the simulation. At that point, the accuracy of a

digital simulation of the squaring circle problem would be higher than the accuracy of

the real-world solution via the strings-and-pins approach.

Our hope is for this simulation to be utilized by cognitive AI agents. The basic

problem of squaring a circle is a common problem in geometry, and it being easily

solvable by an AI agent without having to use the tools of strings and pins yourself

would be very efficient. Furthermore, such a simulation would provide a great

80

opportunity for future research of the still novel research area of strong spatial

cognition. Closing this chapter and the thesis overall will be a résumé of the goals we

achieved with the work of this thesis and a compact outlook on future research and

possible application areas.

6.4 Reached Goals & Outlook [NICKELMANN]

We have worked on three digital simulations of tasks associated with the scientific

discipline of spatial cognition. Those three tasks are knot-tying and untying, finding

the shortest path in a route network and transforming a circle into a square with the

same surface area. Those tasks are each implemented in a digital simulation,

showcasing specific approaches to these problems based on manipulable ropes.

As outlined in Chapter 2.2, these kinds of simulations put the focus on the direct use

of spatial information instead of extensive use of algorithms and highlight a current

gap in spatial cognition research and the application of its findings in cognitive AI

systems. All other simulations dealing with knot-tying and untying put their focus on

the domain they are to be applied in (which is most frequently a medical domain) and

rely on many algorithms. Regarding the other two spatial problems, there has not

even been an attempt to produce a digital simulation of them.

Thus, our work is of value especially for research of the novel field of strong spatial

cognition. We have implemented simulations for problems that have either not been

digitally tackled by a non-algorithmic approach or have not been implemented at all.

The goal in mind - reducing the number of computations and handling spatial

structures directly - is not commonly found within the realm of software computing.

We hope that our contribution can be a starting point for future research and that

researchers and programmers alike can use these simulations and continue to work

on them. The simulations meet every criteria we have set, all of them using few

algorithms and encompassing the direct manipulation of spatial configurations. There

are problems that need to be fixed if the entangled knot simulation is to be applied in

81

a cognitive AI system, the gaps between the rope objects inhibiting agents from tying

the knots tightly. For the squaring circle simulation, further steps need to be

implemented to actually transform the circle into a square with the same surface

area. The shortest path simulation can already be applied, however, writing a script

that can discern the routes and waypoints and automatically produce a road map

would drastically reduce the needed workload. The simulations work reliably and

contain valid methods of tackling the spatial problems. All in all, we believe our work

to entice further research and application of these simulations and hope we can raise

awareness for the novel research area of strong spatial cognition and its possibilities.

Pondering further research, we found that it is possible to implement simulations of

spatial problems without using many algorithms. We hope to inspire programmers to

try implementing such simulations as well, utilizing the game engines we have

presented as they provide an excellent digital programming environment. They

include many tools that are intuitive to use and directly show the output of the code,

supporting the programming. Future research should be guided by the findings of

spatial cognition and, hopefully, strong spatial cognition as well, as implementing

simulations with those research areas in mind can produce intuitive, straightforward

results that can be easily applied to cognitive AI systems.

We hope that we have inspired researchers and programmers alike to delve into

strong spatial cognition research and implement simulations with the aforementioned

goals in mind. We are happy to contribute the three simulations of common spatial

problems and believe our work to be of value. We are eager to observe the progress

made in this domain and to revisit it in the future.

82

7 Literature
Alibali, Martha W. (2005): Gesture in Spatial Cognition: Expressing, Communicating,

and Thinking About Spatial Information. In: Spatial Cognition & Computation, 05 (5),

307-331.

Brown, Joel/Latombe, Jean-Claude/Montgomery, Kevin (2004): Real-time Knot-tying

Simulation. In: The Visual Computer, 04 (20), 165-179.

Buckley, Jeffrey/Seery, Niall/Canty, Donal (2019): Investigating the use of spatial

reasoning strategies in geometric problem solving. In: International Journal of

Technology and Design Education , 19 (29), 341-362.

Burgess, Neil (2008): Spatial cognition and the brain. In: Annals of the New York

Academy of Sciences , 08 (1124), 77-97.

Burgess, Neil (2006): Spatial memory: How egocentric and allocentric combine. In:

Trends in Cognitive Sciences , 06 (12), 551-557.

Byrne, Ruth M. J./Johnson-Laird, P. N. (1989): Spatial Reasoning. In: Journal of

Memory and Language , 89 (28), 564-575.

Crabtree, Jonathan (2016): Squaring the Circle - A Practical Approach. In: Vinculum ,

16 (53), 7-9.

Dani, Shrikrishna Gopalrao (2012): Ancient Indian Mathematics - A Conspectus. In:

Resonance, 12 (17), 236-246.

Dewdney, Alexander K. (1988): The Armchair Universe. An Exploration of Computer

Worlds. New York: W. H. Freeman and Company.

83

Dreyfus, Hubert L. (1978): What Computers can’t do: The Limits of Artificial

Intelligence (Revised Edition). New York: HarperCollins.

Engels, Hermann (1977): Quadrature of the Circle in Ancient Egypt. In: Historia

Mathematica , 77 (4), 137-140.

Falomir, Zoe/Olteteanu, Ana-Maria (2015): Logics based on qualitative descriptors

for scene understanding. In: Neurocomputing, 15 (161), 3-16.

Freksa, Christian (2015): Strong Spatial Cognition. In: Fabrikant, Sara Irina/Raubal,

Martin/Bertolotto, Michela/Davies, Clare/Freundschuh, Scott/Bell, Scott (eds.) COSIT

2015. Lecture Notes in Computer Science , 15 (9368), 65-86.

Freksa, Christian/Olteteanu, Ana-Maria/Barkowsky, Thomas/van de Ven,

Jasper/Schultheis, Holger (2017): Spatial Problem Solving in Spatial Structures. In:

Lecture Notes in Computer Science, 17 (10607), 18-29. (Cited as Freksa et al.

2017a)

Freksa, Christian/Barkowsky, Thomas/Dylla, Frank/Falomir, Zoe/Olteteanu,

Ana-Maria/van de Ven, Jasper (2017): Spatial Problem Solving and Cognition. In:

Zacks, Jeffrey M./Taylor, Holly A. (eds.) Representations in Mind and World. Essays

Inspired by Barbara Tversky (1st Edition) . New York: Routledge. (Cited as Freksa et

al. 2017b)

Freksa, Christian/Olteteanu, Ana-Maria/Ali, Ahmed Loai/Barkowsky, Thomas/van de

Ven, Jasper/Dylla, Frank/Falomir, Zoe (2016): Towards Spatial Reasoning with

Strings and Pins. In: Advances in Cognitive Systems, Poster Collection, 16 (4), 1-15.

Harmon, Brendan Alexander (2016): Embodied Spatial Thinking in Tangible

Computing. In: Tenth International Conference on Tangible Embedded and

Embodied Interaction 2016, 16 (10), 693-696.

84

Haun, Daniel B.M./Rapold, Christian J./Janzen, Gabriele/Levinson, Stephen C.

(2011): Plasticity of Human Spatial Cognition: Spatial Language and Cognition

Covary Across Cultures. In: Cognition, 11 (119), 70-80.

Hobson, Ernest William (1913): “Squaring the Circle” - A History of the Problem.

Cambridge: University Press.

Kuipers, Benjamin (1978): Modeling Spatial knowledge. In: Cognitive Science, 78

(2), 129-153.

Mayer, Hermann/Gomez, Faustino/Wierstra, Daan/Nagy, Istvan/Knoll,

Alois/Schmidhuber, Jürgen (2008): A System for Robotic Heart Surgery that Learns

to Tie Knots Using Recurrent Neural Networks. In: Advanced Robotics, 08 (22),

1521-1537.

Nebel, Bernhard/Freksa, Christian (2011): Ai Approaches to Cognitive Systems -

The Example of Spatial Cognition. In: Informatik-Spektrum, 11 (34), 462-468.

Penn, Alan (2003): Space Syntax and Spatial Cognition: Or why the Axial Line? In:

Environment and Behaviour, 03 (35), 30-65.

Phillips, Jeff/Ladd, Andrew/Kavraki, Lydia E. (2002): Simulated Knot Tying. In:

International Conference on Robotics and Automation , 02 (1), 841-846.

Saraswathi Amma, T. A. (1999): Geometry in Ancient and Medieval India. Delhi:

Motilal Banarsidass Publishers.

Schubert, Hermann (1891): The Squaring of the Circle: An Historical Sketch of the

Problem from the Earliest Times to the Present Day. In: The Monist, 1891 (1),

197-228.

85

Seidenberg, Abraham (1962): The Ritual Origin of Geometry. In: Archive for History

of Exact Sciences , 61 (1), 488-527.

Sinha, Chris/Jensen De López, Kristine (2000): Language, Culture and the

Embodiment of Spatial Cognition. In: Cognitive Linguistics , 00 (11), 17-41.

Thomas, Laura E./Lleras, Alejandro (2007): Moving eyes and moving thought: On

the spatial compatibility between eye movements and cognition. In: Psychonomic

Bulletin & Review , 07 (14), 663-668.

Tomai, Emmett/Forbus, Kenneth D./Usher, Jeffery (2004): Qualitative Spatial

Reasoning for Geometric Analogies. In: Proceedings of the 18th International

Qualitative Reasoning Workshop, Evanston, Illinois, USA , 04 (18).

Uttal, David H. (2000): Seeing the big picture: Map use and the development of

spatial cognition. In: Developmental Science, 00 (3), 247-264.

Vasilyeva, Marina/Lourenco, Stella F. (2012): Development of Spatial Cognition. In:

Wiley Interdisciplinary Reviews: Cognitive Science, 12 (3), 349-362.

Wang, F./Burdet, E./Vuillemin, R./Bleuler, H. (2005): Knot-tying with Visual and

Force Feedback for VR Laparoscopic Training. In: Annual International Conference

of the IEEE Engineering in Medicine and Biology , 05 (7), 5778-5781.

86

8 Appendix

Image A1: The complete Movement script.

Image A2: The first part of the CreateLinks script, showing the variables.

87

Image A3: The second part of the CreateLinks script, showing the first part of the loop within the Start()

method, instantiating the rope objects.

Image A4: The third part of the CreateLinks script, showing the end of the loop instantiating the objects.

Image A5: The last part of the CreateLinks script, showing the last sphere being instantiated.

88

Image A6: The first part of the KinematicController script, showing the setup for the kinematic switch

mechanic.

Image A7: The second part of the KinematicController script, showing how the kinematic property is

enabled and disabled immediately after change of active game objects.

89

Image A8: The first part of the variables for the SquaringCircles script, showing all Materials,

GameObjects and placeholders, arrays and counters.

Image A9: The last variables for the SquaringCircles script and the setup within the Start() method.

90

Image A10: SquaringCircles Start() method continued, showing the instantiation of the cylinder and the

first sphere.

Image A11: SquaringCircles Start() method continued, showing the instantiation of the other spheres and

the call for the CheckBounds() method.

91

Image A12: The end of the Start() method of the SquaringCircles script, preparing the next loop, and the
CheckBounds() method, checking whether a sphere is instantiated within the bounds of the cylinder or

not.

Image A13: The start of the Update() method of the SquaringCircles script, showing how the clicking of a

sphere is detected and how it is “pinned down”.

92

Image A14: The SquaringCircles’ Update() method continued, showing how the rope is rolled around the

cylinder.

Image A15: The end of the Update() method of the SquaringCircles script, showing how the

circumference of the cylinder is indicated by the rope. (Afterwards, there would be commented-out code,
intended for the next steps for squaring the circle. We did not implement the further steps as the vital

step in regards to strong spatial cognition has been implemented and due to the timeframe of this
thesis.)

93

Image A16: The SCCollision script, handling all collisions between spheres. If a sphere collides with the
second pinned sphere, it is also pinned down in order to indicate the cylinder’s circumference via the

rope.

94

