
Three Dimensional Visualization Of Code
Changes In Various Parallel Branches Of

Software Repositories In SEE

October 13, 2022

In Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science

1. Examiner Daniel Steinhauer 2. Examiner
Prof. Dr. Rainer Koschke Dr. René Weller

I declare that this thesis has been composed solely by myself and that it has not been submitted,
in whole or in part, in any previous application for a degree. Except where stated otherwise by
reference or acknowledgment, the work presented is entirely my own.

Daniel Steinhauer

Contents

1 Introduction 5
1.1 Abstract . 5
1.2 Current Situation . 5

1.2.1 Limitations of SEE . 5
1.3 Aims of This Project . 6

2 Background 7
2.1 Version Control Systems . 7

2.1.1 Basics . 7
2.1.2 Types of VCS . 8

2.2 Unity Game Engine . 8
2.3 Code Cities . 9
2.4 Code Smells . 9
2.5 SEE . 10
2.6 GXL . 12
2.7 LibVCS4j . 14
2.8 How Does This Work Blend In? . 14

3 Design 17
3.1 General Design . 17

3.1.1 Visualizing Changes From Multiple Branches 20
3.1.2 Renaming Files . 20

3.2 Arborext . 21
3.2.1 Requirements . 21
3.2.2 Concepts . 22

3.3 SEE Extension . 25
3.3.1 Requirements . 25
3.3.2 Concepts . 27

4 Implementation 29
4.1 Arborext . 29

4.1.1 Usage of Version Control Systems 33
4.1.2 GXL Export . 43

4.2 SEE Extension . 51
4.2.1 Colors of Branches . 63

5 Evaluation 65
5.1 Design of the Study . 65

5.1.1 Hypothesis to Examine . 65
5.1.2 The SEE Executable . 66
5.1.3 The Tasks and Questions . 66
5.1.4 Execution . 67

3

Contents

5.2 Results and Discussion . 67

6 Conclusion And Outlook 69
6.1 Conclusion . 69
6.2 Outlook . 69

Bibliography 71

4

1 Introduction

1.1 Abstract

As software projects grow in size they get increasingly complex and convoluted.
The more convoluted a project gets the harder it gets for new developers to grasp
an oversight of the project. The more complex a project gets, the more likely it is
to contain critical bugs which are difficult to find.

Smart visual depictions of the entire project with its history can be of great use
for developers to familiarize themselves with the code, its evolvement over time
and maybe to reduce complexity a bit.

1.2 Current Situation

At the University of Bremen a code visualisation solution called “SEE” has been
developed, that generates three dimensional code cities for large software projects
where different code metrics like the lines of code or the McCabe number can be
put on display in a smart way.

1.2.1 Limitations of SEE

Felix Gaebler created a tool for his thesis that is able to extract the history of
software repositories and enrich GXL files with additional data like code quality,
potential code smells, etc. SEE can then visualize this.

This solution can only follow one branch, however. Keeping track of the changes
that happen simultaneously in multiple branches of a large project by several

5

1 Introduction

developers is still not feasible with SEE.

1.3 Aims of This Project

The aim of this project is to develop a feature for SEE, that extracts the git,
subversion or mercurial history of a publicly available git/subversion/mercurial
repository and visualizes the code changes and their respective developers in mul-
tiple branches over the course of a specified period of time.

Since SEE can only import projects in the Graph eXchange Language (GXL) this
feature needs to be split into two parts. An extraction software that creates GXL
files from a given git/subversion/mercurial repository and an extension for SEE,
that illustrates these.

6

2 Background

2.1 Version Control Systems

2.1.1 Basics

A Version Control System is a software that keeps track of changes in a source
code repository. That is to say, it organizes a history of snippets of code changes
which include the author the exact date and time and the modified lines of code in
the source code files. The snippets are sometimes called commits. Every commit
is uniquely identified by its hash value, which is basically a checksum over its data.
Furthermore the hash value of the parent commit (its predecessor in the history)
is stored in the commit so that a chain of commits can be created that leads to
the current state of the repository.

It is possible for several commits to have the same parent. In this case the history
of the repository splits into several - this is often called branching. Branching is
crucial for the development of big software projects in order for different features
(maybe even developed by different authors) to be implemented independently
without interfering with other code changes (by other developers).

The (re-)unification of two branches into a single one is called merging. The
chains of code changes are combined, which can sometimes lead to so called merge
conflicts. A merge conflict occurs when the same lines of code have been changed in
both branches differently; a developer has to resolve these merge conflicts manually.
[15]

7

2 Background

2.1.2 Types of VCS

Nowadays there are two major categories of VCSs: The centralized and the de-
centralized ones. Centralized VCSs like Subversion manage the repository in a
central place and all clients only have a local copy (of parts) of the repository.
Whenever a user (a client) wants to contribute his/her code changes he/she con-
nects to the central instance. [12]

Decentralized VCSs like git don’t need a central instance. Every user has a com-
plete copy of the repository on his/her local hard drive and can make commits
completely independent of anyone else. Even though it is possible (and nowadays
usual) to setup a central repository where everyone synchronizes his/her reposi-
tories with, it is not mandatory and totally possible to only exchange commits as
little files via other means like E-Mail. [15]

A third type of VCS is Mercurial, which uses a hybrid way. [22]

2.2 Unity Game Engine

Most modern day games or projects involving three dimensional modelling are
developed with so called game engines. A game engine is basically a software
that allows for quickly setting up scenes of three dimensional objects and scripting
interactions between them. This can then be exported as an executable file where
things like the physics and rendering of 3D objects is done by the code of the
engine.

One of the most famous game engines out there is Unity which is developed by
Unity Technologies. Unity is free of charge for personal or academic use, but for
commercial use a license has to be bought. [1]

In one of the main developer’s (David Helgason) own words a game engine is “a
toolset used to build games and it’s the technology that executes the graphics, the
audio, the physics, the interactions, the networking. Everything you see and hear
on the screen is powered by this code that has to be super-optimized because it’s
moving so much data and throwing so many pixels on the screen.” [2]

8

2.3 Code Cities

Figure 2.1: An empty scene in the Unity Game Engine

2.3 Code Cities

The three dimensional visualization of a software project is sometimes called a Code
City, because the depiction of files, classes or even functions as blocks resembles
the image of a modern city a bit. SEE (see 2.5) uses this a lot.

2.4 Code Smells

The usage of a coding pattern that is technically legal, but strongly discouraged
by style guides for making the code base confusing, unnecessarily complex or error
prone are called Code Smells. There are several platforms and programs out there
that identify those code smells in a code base in order to help the developers keep
their code clean and maintainable. The most famous one is called SonarQube.
[3]

SEE (see 2.5) has the capability to load data about code smells in your software
project and visualize them in its code city.

9

2 Background

Figure 2.2: SEE supports multiple users inspecting code cities in various different
styles. Snapshot from [16]

2.5 SEE

SEE [4] is a software visualization project developed at the University of Bremen,
which originated from the Bauhaus project initially developed by Rainer Koschke
and Erhard Ploedereder. [20]

SEE has network capabilities in that it allows for several players to connect to a
central hub (server) and visually examine and discuss the same software repository
over a network in a virtual reality environment. [16]

There are various different ways of visualizing the code city with a high degree of
customizability. [17] Having a GXL file (see 2.6) containing important parts of the
repository at a given state of development like files, classes, methods, etc as nodes
alongside some metrics like the lines of code (LOC) or the McCabe Complexity
it is possible to configure which metric should be represented in what way in the
visualization (like height, width, length of a building). [18]

Thanks to the work of Florian Garbade it is also possible to dynamically load in
several GXL files in series and play a smooth evolution animation which shows the
development of the repository over time. [14][19]

This was later extended by Felix Gaebler with a tool that can scrape data from
a repository on the internet under version control using the LibVCS4j library (see

10

2.5 SEE

Figure 2.3: The evolution of a software project. Snapshot from [19].

Figure 2.4: SEE can also animate function calls. Snapshot from [16].

11

2 Background

2.7) by Marcel Steinbeck and enriching it with data about the source code like
code smells. He also improved SEE to visualize this external data in the code city.
[13]

2.6 GXL

The Graph eXchange Language is an XML based format which is used to rep-
resent software architectures as a graph. Many visualization and reengineering
tools (like SEE) use this format to share data. Often there is a kind of extrac-
tor tool which parses a software repository and generates GXL files from it. The
reengineering tool then reads these GXL files. [5]

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE gx l SYSTEM "http://www.gupro.de/GXL/gxl-1.0.

↪→ dtd">
3 <gxl xmlns :x l ink="http://www.w3.org/1999/xlink">
4 <graph id="CodeFacts" edge ids="true">
5 <node id="N1">
6 <type x l i n k : h r e f="Method"/>
7 <a t t r name="Source.Name">
8 <s t r i n g>m1</ s t r i n g>
9 </ a t t r>

10 <a t t r name="Linkage.Name">
11 <s t r i n g>p1 . c1 .m1</ s t r i n g>
12 </ a t t r>
13 <a t t r name="Metric.Number_Of_Calling_Routines">
14 <i n t>1</ i n t>
15 </ a t t r>
16 <a t t r name="Metric.Number_Of_Called_Routines">
17 <i n t>1</ i n t>
18 </ a t t r>
19 <a t t r name="Metric.Lines.LOC">
20 <i n t>5</ i n t>
21 </ a t t r>
22 <a t t r name="Metric.McCabe_Complexity">
23 <i n t>1</ i n t>
24 </ a t t r>
25 </node>
26 <node id="N3">

12

2.6 GXL

27 <type x l i n k : h r e f="Class"/>
28 <a t t r name="Source.Name">
29 <s t r i n g>c1</ s t r i n g>
30 </ a t t r>
31 <a t t r name="Linkage.Name">
32 <s t r i n g>p1 . c1</ s t r i n g>
33 </ a t t r>
34 <a t t r name="Metric.Number_Of_Calling_Routines">
35 <i n t>1</ i n t>
36 </ a t t r>
37 <a t t r name="Metric.Number_Of_Called_Routines">
38 <i n t>1</ i n t>
39 </ a t t r>
40 <a t t r name="Metric.Lines.LOC">
41 <i n t>1</ i n t>
42 </ a t t r>
43 <a t t r name="Metric.McCabe_Complexity">
44 <i n t>1</ i n t>
45 </ a t t r>
46 </node>
47 <edge id="E1" from="N1" to="N3">
48 <type x l i n k : h r e f="Belongs_To"/>
49 </edge>
50 </graph>
51 </ gx l>

Listing 2.1: A simplified example of a GXL file. Taken from [6]

SEE uses its own dialect of GXL which is described in detail on their private GitHub
Wiki. [6]

In short: Every source file is represented as a node which contains attributes like
its name, the number of calling routines, the number of called routines, the lines of
code (LOC) or the McCabe Complexity. Relations between nodes are represented
as edges.

Listing 2.1 is an excerpt from [5] which illustrates what a GXL file might look
like.

13

2 Background

Figure 2.5: An UML class diagram of LibVCS4j taken from [7]

2.7 LibVCS4j

LibVCS4j is a Java library for interacting with the version history of several dif-
ferent Version Control Systems written by Marcel Steinbeck.[7]

Figure 2.5 is taken from [7] and illustrates the architecture of the library. It allows
for iterating over revision ranges which follow a path in the history and squash all
merged side paths into one commit. This however turns out to be problematic for
this project’s approach. More on that later.

2.8 How Does This Work Blend In?

Gaebler’s scraping tool focuses on the visualization of code quality over time. Due
to the aforementioned limitation of LibVCS4j he cannot visualize the parallel work

14

2.8 How Does This Work Blend In?

of several developers at different branches over the same time.

This is what this project is supposed to accomplish.

15

3 Design

3.1 General Design

For this animation every source file in the repository is represented by a block (a
building). Normally every file for SEE has attributes like the McCabe Complexity
and the number of routine calls, but since determining these is out of the scope of
this project, these values will be set to constant values. The lines of code (LOC)
however can and will be calculated by this tool and is therefore included.

In this project we only care about source files and authors. Therefore all extracted
nodes are of types File, Contribution or Developer. The contributing developers
are represented as nodes as well.

Every change to a source file is visualized as a ring around its corresponding block.
A coherent batch of lines of code is called a contribution.

Every contribution is represented as a node containing a reference to its source
file. The first and the last line of code as well as the branch id and other commit
metadata are provided as attributes in the contribution.

An example for a GXL file containing these datasets can be seen in Listing 3.1.
1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <!DOCTYPE gx l SYSTEM "http://www.gupro.de/GXL/gxl-1.0.

↪→ dtd">
3 <gxl xmlns :x l ink="http://www.w3.org/1999/xlink">
4 <graph edge ids="true" id="CodeFacts">
5 <node id="D1">
6 <type x l i n k : h r e f="Developer"/>
7 <a t t r name="Linkage.Name">
8 <s t r i n g>D1</ s t r i n g>
9 </ a t t r>

17

3 Design

10 <a t t r name="Source.Name">
11 <s t r i n g>Al i c e</ s t r i n g>
12 </ a t t r>
13 <a t t r name="Developer.Name">
14 <s t r i n g>Al i c e</ s t r i n g>
15 </ a t t r>
16 </node>
17 <node id="F1">
18 <type x l i n k : h r e f="File"/>
19 <a t t r name="Source.Name">
20 <s t r i n g>README.md</ s t r i n g>
21 </ a t t r>
22 <a t t r name="Linkage.Name">
23 <s t r i n g>F1</ s t r i n g>
24 </ a t t r>
25 <a t t r name="Metric.

↪→ Number_Of_Calling_Routines">
26 <i n t>0</ i n t>
27 </ a t t r>
28 <a t t r name="Metric.

↪→ Number_Of_Called_Routines">
29 <i n t>0</ i n t>
30 </ a t t r>
31 <a t t r name="Metric.McCabe_Complexity">
32 <i n t>1</ i n t>
33 </ a t t r>
34 <a t t r name="Metric.Lines.LOC">
35 <i n t>5</ i n t>
36 </ a t t r>
37 </node>
38 <node id="C1">
39 <type x l i n k : h r e f="Contribution"/>
40 <a t t r name="Linkage.Name">
41 <s t r i n g>C1</ s t r i n g>
42 </ a t t r>
43 <a t t r name="Source.Name">
44 <s t r i n g>C1</ s t r i n g>
45 </ a t t r>
46 <a t t r name="Metric.Lines.FirstLine">
47 <i n t>1</ i n t>

18

3.1 General Design

48 </ a t t r>
49 <a t t r name="Metric.Lines.LastLine">
50 <i n t>5</ i n t>
51 </ a t t r>
52 <a t t r name="Metric.Lines.LOC">
53 <i n t>5</ i n t>
54 </ a t t r>
55 <a t t r name="Contribution.FileId">
56 <s t r i n g>F1</ s t r i n g>
57 </ a t t r>
58 <a t t r name="Info.CommitId">
59 <s t r i n g>

↪→ c60b76ded9c5c02e4eb61851e4a0f895c278f0d5
↪→ </ s t r i n g>

60 </ a t t r>
61 <a t t r name="Info.CommitAuthor">
62 <s t r i n g>Al i c e</ s t r i n g>
63 </ a t t r>
64 <a t t r name="Info.CommitMessage">
65 <s t r i n g>I n i t i a l commit .</ s t r i n g>
66 </ a t t r>
67 <a t t r name="Info.CommitTimestamp">
68 <s t r i n g>Thu Mar 24 00 : 3 2 : 3 6 CET 2022</

↪→ s t r i n g>
69 </ a t t r>
70 <a t t r name="Info.Branch">
71 <i n t>1</ i n t>
72 </ a t t r>
73 </node>
74 <edge from="D1" id="E1" to="C1">
75 <type x l i n k : h r e f="Call"/>
76 </edge>
77 </graph>
78 </ gx l>

Listing 3.1: Example of a very simple GXL file.

19

3 Design

3.1.1 Visualizing Changes From Multiple Branches

This project’s approach differs quite a lot from other approaches to turn commits
into a code city because other projects only visualize the state of the project at
the time of the commit. But this project aims to show parallel developments
at different branches at the same time. Hence the code city has to resemble an
accumulation of all changes to the project regardless of the working branch.

For example: Alice adds a new file foo.java on the master branch. A little later
Bob who is still working the the development branch and hasn’t seen foo.java
yet, adds a file bar.java on his branch. So both files exist only on their branches
and do not exist on other ones. But for visualization purposes we need to show
both files in a unified code city with both Alice and Bob working on their respective
files.

3.1.2 Renaming Files

A major source for confusion and conflict among developers is the renaming and
moving of source files.

Consider the following scenario: On the master branch Alice is renaming main.c
to old_main.c. Shortly afterwards she is creating a new file called main.c. Un-
beknownst to this Bob is editing main.c on the development branch in the mean
time.

In order to adequately illustrate this mess every file has a list of other names it is
known by across the project so that Alice’s contributions to the new main.c will
overlay with Bob’s. This is meant to be a hint to these developers that there is
something they need to talk about.

Since the main focus of this project is on depicting potential conflicts a deletion
of lines is also depicted as a ring around a source file overlapping with the lines
it deleted. The LOC of the source file however is reduced. This is to hint for
potential merge conflicts due to a deletion.

20

3.2 Arborext

Figure 3.1: Two branches in parallel

3.2 Arborext

3.2.1 Requirements

arborext is a Java CLI application that can be given the version control system
and a uri to an online software repository and generates GXL files for every commit
from it containing information about the branch, the contribution size and the
author.

While it was initially intended to use libvcs4j as its backend this turned out to
be not feasible due its different approach towards the version history. (See 2.7 on
page 14).

The type of version control system can be specified via a -p flag. The source of
the repository (i.e. its uri) needs to be provided vie the -s command line flag.

A GXL is generated for every single commit which contains an unique identifier of
the branch, it’s author’s name, all the files in the repository at that point across
all branches as well as the line numbers of this commit’s contributions.

21

3 Design

Figure 3.2: A UML class diagram of arborext

Since the focus of this visualization lies on the state of a software project across
branches at a given point in time, the commits (and GXL files) are ordered by
commit date. This means that the order of commits in Figure 3.1 is ABDC.

A deletion of lines (or files) will count as a contribution as well in order to show
potential conflicts.

arborext may require the version control system tools git, svn and hg to be
installed.

3.2.2 Concepts

Figure 3.2 illustrates the basic structure of arborext.

The class Commit represents a commit in the version history. It’s anatomy is very
similar to the Commit class in Steinbeck’s LibVCS4j, but it has the additional
attributes branchId and contributions. The branchId is a unique identifier for
this commit’s specific branch. More on that later. contributions is a list of this
commit’s contributions for files.

22

3.2 Arborext

The class Contribution represents a single block of code added or deleted in a
file. A commit can consist of several contributions.

The class SourceFile represents a file in the repository. Since a file can be renamed
within the course of development, it has a list of valid names. It also has a list of
contributions attached to this file.

Extractor is an abstract class which is responsible for extracting commits from
a version history. It has the method extractCommits which is responsible for
getting a complete list of commits from the version history and assigning branch
numbers for each of them. It therefore calls the abstract method getRawCommits
which has to be implemented by every derived class accordingly. These commits
lack any information about contributions to files though. This is why the method
enrichWithCommits needs to be called later on, which will add a list of instances
of Contribution to the commit. It will also change the branch number of merged
branches retroactively; this is why it has to be called in a second stage in the
algorithm. It is abstract as well, so every deriving class has to implement it in
their way.

GitExtractor, SVGExtractor, HGExtractor and DummyExtractor all derive from
Extractor. DummyExtractor’s only purpose is to produce dummy data for testing
and developing reasons. It has no purpose in production.

The GXLWriter class just contains one public static method writeCommitsInGXL
which gets a list of raw commits (i.e. without any information about file changes)
invokes the Extractor.enrichWithCommits method on them and writes the com-
mit data into a GXL file. During this process it maintains a list of instances of
Developer and outputs this list as GXL nodes into every GXL file.

Extraction of Commits

The extraction happens in three rounds. In the first round the algorithm just
fetches a list of all commits across all branches with their respective metadata
and stores it in a map structure with its commit id as the key. These commit
information contains basic metadata like the author, the comment, the data, the
parent id(-s).

In the second round every commit gets a list of its descendents (children) assigned.
This makes navigating much easier, later on. The list of commits is ordered by

23

3 Design

commit date then.

The third round is important to assign branch-ids.

The assignment of branch ids for every commit works like this: At first the
branchId of every commit is 0. There is a counter for new branch-ids. It starts of
with a list of commits that have no children; these are the current working ends
of currently active branches. For every of these commits it first looks at its first
parent. If its first parent has a branchId of 0, it goes down recursively. If its
branchId is different from 0, it assumes that this is a fork of an already visited
branch and assigns a new branchId. If a commit has more than one parent (i.e.
a merge commit) it treats every other parent commit except the first one as a
new starting point. That is to ensure that even merged branches get their own
branchId.

You may notice that this algorithm falls into an infinite loop if there is a ring
structure in the graph, but since commit histories are always meant to be trees
(i.e. there are no rings) this is not supposed to happen.

Generation of a Code City

The commits generated in the aforementioned algorithm still don’t have any con-
tributions, yet.

Every contribution has a flag that states whether it was newly created with this
commit or whether it is old. At the beginning of every enrichment of commits this
flag is set to false for all old contributions.

If the commit in question is a merge commit, it has no contributions. In this case
all its parent branches’ branchIds are set to this commits branchId. After a merge
we want all contributions to displayed in the same color.

If it is a normal commit, an instance of Contribution is created for every batch
of lines changes in a SourceFile. If a file is renamed the respective instance of
SourceFile gets an alias. This is to ensure that contributions to this file on other
branches that might still refer to this file by its old name still can be assigned to
the right SourceFile.

Whenever a contribution goes beyond its respective file’s LOC, the file’s LOC

24

3.3 SEE Extension

number is increased.

While iterating over the commits in this way a GXL file is created for every single
commit containing the file structure across all branches up to this point in time.
A set of instances of Developer is maintained as well.

This tool creates three types of nodes: Files, Contributions and Developers.
For contributions that are new with this commit, an edge is created connecting it
with its developer. (See: Listing 3.1 on page 17)

3.3 SEE Extension

3.3.1 Requirements

This extension allows SEE to read in GXL files from the extractor and create an
interactive animation that allows the user to pause and jump to every given time
in the project history. This visualization uses the following graphical representa-
tions:

• Every file in the project is represented by a block in the code city.

• Every developer is represented by a flying object which levitates above the
code city to the places he/she is working on.

• Every branch in the project is assigned a unique color.

• The code changes in a particular branch are represented by a glowing trans-
parent ring around the block. The ring has the same color as the branch of
its contribution. The height of this ring relative to the block height is equal
to the contributions to this file on this branch so far. The position(s) of the
ring(s) is/are relative to the position(s) of the code contribution in the file.

• A developer working on a particular file at a given time is represented by a
beam from the developer object to the file block in the color of the branch
pointing towards the contribution in the file. (Figure 3.3a)

• A merge of one branch into another is represented by a color change of the

25

3 Design

(a) Two developers working on two different
branches

(b) Merging of a branch

(c) Two developers making changes to the
same file from different branches

Figure 3.3: Concept of visualizing the git, subversion or mercurial history.

26

3.3 SEE Extension

contribution rings. (Figure 3.3b)

Potential merge conflicts can easily be spotted by looking for blocks with rings of
different colors around them. This means that there have been contributions to
the same file from different branches. In Figure 3.3c we can see a yellow and a
blue ring around the same block.

Since a developer can work on multiple branches and multiple developers can work
on the same branch, the flying object representing a developer is not associated
with a branch. Its color is only seen in the contribution rings and the working
beams. That is to say the colors of the developers and the colors of the code rings
/ working beams are completely unrelated.

Disclaimer: The code cities in Figure 3.3 are only depictions of the concept. They
are not meant to look exactly like the final solution.
Unlike shown in Figure 3.3 the beams representing a developer working on a specific
block are pointed directly at the contribution ring.

3.3.2 Concepts

SEE uses node factories to create nodes found in GXL files. This project introduces
two additional nodes: a Developer node and a Contribution node.

The method for the rendering of the graph GraphRenderer.DrawGraph needs to
be adjusted.

27

4 Implementation

4.1 Arborext

Arborext is a Java project build with the Maven build system. [8] So creating an
executable .jar file is as easy as

$ mvn package

This will compile the source code, run the tests and package everything together
in one .jar file.

Using the maven-assembly-plugin allows for bundling all dependencies together
in one .jar file.

The main routine evaluating the given parameters and calling the subroutines is
shown in 4.1

1 /**
2 * Copyright (C) 2022 Daniel Steinhauer
3 *
4 * Licensed under the Apache License, Version 2.0 (the

↪→ "License");
5 * you may not use this file except in compliance with

↪→ the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE -2.0
9 *

10 * Unless required by applicable law or agreed to in
↪→ writing, software

29

4 Implementation

11 * distributed under the License is distributed on an "
↪→ AS IS" BASIS,

12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
↪→ express or implied.

13 * See the License for the specific language governing
↪→ permissions and

14 * limitations under the License.
15 */
16
17 package de . uni_bremen . s ee . a rborext ;
18
19 import java . u t i l . L i s t ;
20 import java . i o . IOException ;
21 import javax . xml . pa r s e r s . Parse rConf igurat ionExcept ion ;
22 import javax . xml . trans form . TransformerException ;
23
24 import org . apache . commons . c l i . ∗ ;
25
26 /**
27 * The main application.
28 */
29 public class App
30 {
31 public stat ic void main (St r ing [] a rgs)
32 {
33 Extractor ext = null ;
34 Lis t <Commit> commits = null ;
35 St r ing path = "" ;
36
37 Options opt = new Options () ;
38 opt . addOption ("r" , "repository" , true , "The␣

↪→ repository␣URL␣to␣inspect.") ;
39 opt . addOption ("p" , "proto" , true , "The␣VCS␣to␣

↪→ use.␣Possible␣values␣are␣git,␣hg,␣svn,␣
↪→ dummy") ;

40 opt . addOption ("h" , "help" , false , "Show␣this␣
↪→ help␣dialog.") ;

41
42 HelpFormatter he lp = new HelpFormatter () ;
43 CommandLineParser par s e r = new Defau l tParse r ()

30

4.1 Arborext

↪→ ;
44 CommandLine cmd = null ;
45 try {
46 cmd = par s e r . parse (opt , a rgs) ;
47 } catch (ParseException exc) {
48 System . out . p r i n t l n ("ERROR:␣" + exc) ;
49 System . e x i t (1) ;
50 }
51
52 i f (cmd . hasOption ("h")) {
53 help . pr intHe lp ("arborext" , opt) ;
54 System . e x i t (0) ;
55 }
56
57 i f (cmd . hasOption ("r")) {
58 path = cmd . getOptionValue ("r") ;
59 } else {
60 System . out . p r i n t l n ("You␣need␣to␣specify␣a␣

↪→ repository␣with␣-r.") ;
61 he lp . pr intHe lp ("arborext" , opt) ;
62 System . e x i t (1) ;
63 }
64
65 St r ing vcsType = cmd . hasOption ("p") ? cmd .

↪→ getOptionValue ("p") : "git" ;
66 try {
67 i f (vcsType . equa l s ("git")) {
68 ext = new GitExtractor (path) ;
69 } else i f (vcsType . equa l s ("svn")) {
70 System . out . p r i n t l n ("SVN␣is␣currentyly␣

↪→ not␣supported.") ;
71 System . e x i t (0) ;
72 } else i f (vcsType . equa l s ("hg")) {
73 System . out . p r i n t l n ("Mercurial␣is␣

↪→ currentyly␣not␣supported.") ;
74 System . e x i t (0) ;
75 } else i f (vcsType . equa l s ("dummy")) {
76 ext = new DummyExtractor () ;
77 } else {
78 System . e r r . p r i n t l n ("ERROR:␣Unknwon␣

31

4 Implementation

↪→ protocol:␣" + vcsType) ;
79 System . e x i t (1) ;
80 }
81 } catch (Extract ionError exc) {
82 System . e r r . p r i n t l n ("ERROR:␣" + exc .

↪→ getMessage ()) ;
83 System . e x i t (1) ;
84 }
85
86 try {
87 commits = ext . extractCommits () ;
88 } catch (Extract ionError exc) {
89 System . e r r . p r i n t l n ("ERROR:␣" + exc .

↪→ getMessage ()) ;
90 System . e x i t (1) ;
91 }
92
93 try {
94 System . out . p r i n t l n ("Writing␣to␣GXL␣files...

↪→ ") ;
95 GXLWriter . writeCommitsInGXL (commits , ext) ;
96 System . out . p r i n t l n ("Done.") ;
97 } catch (Parse rConf igurat ionExcept ion exc) {
98 System . e r r . p r i n t l n ("Parser␣error:␣" + exc .

↪→ getMessage ()) ;
99 System . e x i t (1) ;

100 } catch (TransformerException exc) {
101 System . e r r . p r i n t l n ("Transformer␣error:␣" +

↪→ exc . getMessage ()) ;
102 System . e x i t (1) ;
103 } catch (IOException exc) {
104 System . e r r . p r i n t l n ("IO␣error:␣" + exc .

↪→ getMessage ()) ;
105 System . e x i t (1) ;
106 } catch (Exception exc) {
107 System . e r r . p r i n t l n ("ERROR:␣" + exc .

↪→ getMessage ()) ;
108 System . e x i t (1) ;
109 }
110

32

4.1 Arborext

111 try {
112 System . out . p r i n t l n ("All␣done.␣Tidying␣up...

↪→ ") ;
113 ext . tidyUp () ;
114 } catch (IOException exc) {
115 System . e r r . p r i n t l n ("ERROR:␣Could␣not␣tidy␣

↪→ up:" + exc . getMessage ()) ;
116 System . e x i t (1) ;
117 }
118 }
119 }

Listing 4.1: The main routine of arborext.

For evaluating the command line parameters the Apache Commons CLI package
is used and bundled with this application. [9]

Furthermore the Apache Commons IO package is used and bundled with this
application to delete the temporary repository clone from the hard drive.[10]

Both packages are published under the terms of the Apache License version 2.0
just like this application is.

4.1.1 Usage of Version Control Systems

For the cloning of repositories, extraction of commits and file changes the respective
VCS tools (git, svn and hg) are called directly. Therefore they need to be installed.
The application will terminate with an error message if the required tool cannot
be found on the system.

Due to time constraints as well as the dwindling importance of other version control
systems besides git, only the git extractor was implemented so far, arborext can
easily extended to support other tools as well.

For cloning a git repository the command git clone <url> tmprepo is used.
Any further commands then change into the newly created tmprepo and execute
commands there.

A git commit history is extracted with the command git log –all –pretty=%H;%an;%ct;%P;%s.

33

4 Implementation

This will give an output similar to Listing 4.2.

The parameter %H stands for the commit’s hash, %an for the author’s name, %ct for
the unix timestamp of the commit, %P for parent’s hashes and %s for the commit
message. This format is easily machine readable.

1 c2717bfdbc501ce03a2 fb819 fd19 f1abaa91 f2 f0 ; Danie l
↪→ Ste inhauer ;1648078711 ;904
↪→ bad667912faed780d415b971c4ea1de75077a 9
↪→ c3c9d65b4353b715b745827c7cc9c f f36e11f26 ; Merge
↪→ branch ’gamma’

2 904 bad667912faed780d415b971c4ea1de75077a ; Danie l
↪→ Ste inhauer ;1648078698 ;
↪→ d3c356cece570b137638a659e5abb35524df35f7 6
↪→ ac6638a1c1c03873395548f61d7403ceb860940 ; Merge
↪→ branch ’ beta ’

3 9 c3c9d65b4353b715b745827c7cc9c f f36e11f26 ; Char les
↪→ ; 1648078612 ;
↪→ d3c356cece570b137638a659e5abb35524df35f7 ; Add to
↪→ alpha as we l l as to gamma.

4 d3c356cece570b137638a659e5abb35524df35f7 ; A l i c e
↪→ ; 1648078479 ;
↪→ c60b76ded9c5c02e4eb61851e4a0f895c278f0d5 ; Add two
↪→ alpha l i n e s .

5 6 ac6638a1c1c03873395548f61d7403ceb860940 ; Bob
↪→ ; 1648078448 ;
↪→ c60b76ded9c5c02e4eb61851e4a0f895c278f0d5 ; Add
↪→ th ree beta l i n e s .

6 c60b76ded9c5c02e4eb61851e4a0f895c278f0d5 ; A l i c e
↪→ ; 1 648078356 ; ; I n i t i a l commit .

Listing 4.2: A sample output of formatted git history.

The file changes from a git commit are identified with the command git show
<commit hash>. The output follows the established unified diff format. [11]

This output can then be parsed using regular expressions. The whole source code
for the git extraction is in Listing 4.3.

1 /**
2 * Copyright (C) 2022 Daniel Steinhauer
3 *

34

4.1 Arborext

4 * Licensed under the Apache License, Version 2.0 (the
↪→ "License");

5 * you may not use this file except in compliance with
↪→ the License.

6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE -2.0
9 *

10 * Unless required by applicable law or agreed to in
↪→ writing, software

11 * distributed under the License is distributed on an "
↪→ AS IS" BASIS,

12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
↪→ express or implied.

13 * See the License for the specific language governing
↪→ permissions and

14 * limitations under the License.
15 */
16
17 package de . uni_bremen . s ee . a rborext ;
18
19 import java . lang . Process ;
20 import java . lang . Proce s sBu i lde r ;
21 import java . lang . Inter ruptedExcept ion ;
22 import java . lang . S t r i ngBu i l d e r ;
23 import java . i o . BufferedReader ;
24 import java . i o . InputStreamReader ;
25 import java . i o . F i l e ;
26 import java . i o . IOException ;
27 import java . u t i l . L i s t ;
28 import java . u t i l . ArrayList ;
29 import java . u t i l . Date ;
30 import java . u t i l . regex . Pattern ;
31 import java . u t i l . regex . Matcher ;
32
33 import org . apache . commons . i o . F i l e U t i l s ;
34
35 /**
36 * An implementation of Extractor for git repositories.
37 *

35

4 Implementation

38 * Relies on git being installed on the local machine.
39 */
40 public class GitExtractor extends Extractor
41 {
42 public GitExtractor (f ina l St r ing r e p o s i t o r y) throws

↪→ Extract ionError
43 {
44 super (r e p o s i t o r y) ;
45
46 Proce s sBu i lde r v e r s i on = new Proce s sBu i lde r () ;
47 ve r s i on . command("git" , "--version") ;
48
49 try {
50 Process proc = ve r s i on . s t a r t () ;
51 int ex i tVa l = proc . waitFor () ;
52 i f (ex i tVa l != 0) {
53 throw new Extract ionError ("Git␣is␣not␣

↪→ installed.") ;
54 }
55 } catch (Inter ruptedExcept ion exc) {
56 throw new Extract ionError ("Git␣is␣not␣

↪→ installed.") ;
57 } catch (IOException exc) {
58 throw new Extract ionError ("Git␣is␣not␣

↪→ installed.") ;
59 }
60 }
61
62 @Override
63 protected void c l oneRepos i to ry () throws

↪→ Extract ionError
64 {
65 Proce s sBu i lde r c l on ing = new Proce s sBu i lde r () ;
66 c l on ing . command("git" , "clone" , this . repoUrl , "

↪→ tmprepo") ;
67
68 try {
69 Process proc = c l on ing . s t a r t () ;
70 S t r i ngBu i l d e r output = new St r i ngBu i l d e r () ;
71 BufferedReader reader = new BufferedReader (

36

4.1 Arborext

↪→ new InputStreamReader (proc .
↪→ getErrorStream ())) ;

72 St r ing l i n e ;
73 while ((l i n e = reader . readLine ()) != null)

↪→ {
74 output . append (l i n e + "\n") ;
75 }
76
77 int ex i tVa l = proc . waitFor () ;
78 i f (ex i tVa l != 0) {
79 throw new Extract ionError ("Could␣not␣

↪→ clone:\n" + output) ;
80 }
81 } catch (IOException exc) {
82 throw new Extract ionError ("ERROR:␣" + exc .

↪→ getMessage ()) ;
83 } catch (Inter ruptedExcept ion exc) {
84 throw new Extract ionError ("ERROR:␣Cloning␣

↪→ got␣interrupted:␣" + exc . getMessage ()
↪→) ;

85 }
86 }
87
88 @Override
89 protected List <Commit> getRawCommits () throws

↪→ Extract ionError
90 {
91 Proce s sBu i lde r l og = new Proce s sBu i lde r () ;
92 l og . command("git" , "log" , "--all" , "--pretty=%H

↪→ ;%an;%ct;%P;%s") ;
93 List <Str ing > logL ine s = new ArrayList<Str ing >

↪→ () ;
94 List <Commit> r e t = new ArrayList<Commit> () ;
95
96 try {
97 log . d i r e c t o r y (new F i l e ("tmprepo")) ;
98
99 Process proc = log . s t a r t () ;

100 BufferedReader reader = new BufferedReader (
↪→ new InputStreamReader (proc .

37

4 Implementation

↪→ getInputStream ())) ;
101 BufferedReader errorReader = new

↪→ BufferedReader (new InputStreamReader (
↪→ proc . getErrorStream ())) ;

102
103 St r ing l i n e ;
104 while ((l i n e = reader . readLine ()) != null)

↪→ {
105 l ogL ine s . add (l i n e) ;
106 }
107
108 St r ing e r r o r S t r i n g = "" ;
109 while ((l i n e = errorReader . readLine ()) !=

↪→ null) {
110 e r r o r S t r i n g += l i n e + "\n" ;
111 }
112
113 int ex i tVa l = proc . waitFor () ;
114 i f (ex i tVa l != 0) {
115 throw new Extract ionError ("ERROR␣while␣

↪→ doing␣‘git␣log‘:␣" + e r r o r S t r i n g)
↪→ ;

116 }
117 } catch (IOException exc) {
118 throw new Extract ionError ("ERROR:␣" + exc .

↪→ getMessage ()) ;
119 } catch (Inter ruptedExcept ion exc) {
120 throw new Extract ionError ("ERROR:␣Log␣got␣

↪→ interrupted:␣" + exc . getMessage ()) ;
121 }
122
123 for (S t r ing entry : l ogL ine s) {
124 St r ing [] par t s = entry . s p l i t (";" , 5) ;
125 St r ing [] parents = par t s [3] . s p l i t ("␣") ;
126
127 Commit cmmt = new Commit(
128 par t s [0] ,
129 par t s [1] ,
130 new Date (Long . parseLong (par t s [2]) ∗

↪→ 1000) ,

38

4.1 Arborext

131 par t s [4]
132) ;
133
134 for (S t r ing phash : parents) {
135 cmmt . addParentCommit (phash) ;
136 }
137
138 r e t . add (cmmt) ;
139 }
140
141 return r e t ;
142 }
143
144 @Override
145 public void enr ichWithContr ibut ions (Commit commit)

↪→ throws Extract ionError , NeedToSetBranch
146 {
147 // Merge commit don’t have any contributions ,

↪→ but change the branch Id of all
148 // previous contributions.
149
150 SourceF i l e . setEverythingOld () ;
151
152 // If this is a merge commit, signal the

↪→ calling method that
153 // all commits of the parent branches need to

↪→ get their branch
154 // ids adjusted.
155 i f (commit . isMerge ()) {
156 List <Integer > pids = new ArrayList<Integer >

↪→ () ;
157 for (Commit parent : commit . getParents ()) {
158 parent . setBranchId (commit . getBranchId ()

↪→) ;
159 i f (parent . getBranchId () != commit .

↪→ getBranchId ()) {
160 p ids . add (parent . getBranchId ()) ;
161 }
162 }
163

39

4 Implementation

164 throw new NeedToSetBranch (commit .
↪→ getBranchId () , p ids) ;

165 }
166
167 Proce s sBu i lde r showProc = new Proce s sBu i lde r () ;
168 showProc . command("git" , "show" , commit . getHash

↪→ ()) ;
169 List <Str ing > d i f f L i n e s = new ArrayList<Str ing >

↪→ () ;
170
171 try {
172 showProc . d i r e c t o r y (new F i l e ("tmprepo")) ;
173
174 Process proc = showProc . s t a r t () ;
175 BufferedReader reader = new BufferedReader (

↪→ new InputStreamReader (proc .
↪→ getInputStream ())) ;

176 BufferedReader errorReader = new
↪→ BufferedReader (new InputStreamReader (
↪→ proc . getErrorStream ())) ;

177
178 St r ing l i n e ;
179 while ((l i n e = reader . readLine ()) != null)

↪→ {
180 d i f f L i n e s . add (l i n e) ;
181 }
182
183 St r ing e r r o r S t r i n g = "" ;
184 while ((l i n e = errorReader . readLine ()) !=

↪→ null) {
185 e r r o r S t r i n g += l i n e + "\n" ;
186 }
187
188 int ex i tVa l = proc . waitFor () ;
189 i f (ex i tVa l != 0) {
190 throw new Extract ionError ("ERROR␣while␣

↪→ doing␣‘git␣show‘:␣" + e r r o r S t r i n g
↪→) ;

191 }
192 } catch (IOException exc) {

40

4.1 Arborext

193 throw new Extract ionError ("ERROR:␣" + exc .
↪→ getMessage ()) ;

194 } catch (Inter ruptedExcept ion exc) {
195 throw new Extract ionError ("ERROR:␣‘git␣show

↪→ ‘␣got␣interrupted:␣" + exc . getMessage
↪→ ()) ;

196 }
197
198 Pattern renameFrom = Pattern . compi le ("^rename␣

↪→ from␣(?<filegroup >.+)$") ;
199 Pattern renameTo = Pattern . compi le ("^rename␣to␣

↪→ (?<filegroup >.+)$") ;
200 Pattern o r i g F i l e = Pattern . compi le ("^---␣(a/)

↪→ ?(?<filegroup >.+)$") ;
201 Pattern newFile = Pattern . compi le ("^\\+\\+\\+␣(

↪→ b/)?(?<filegroup >.+)$") ;
202 Pattern l i n e s P a t t e r n = Pattern . compi le ("^@@␣

↪→ -(\\d+),(\\d+)␣\\+(\\d+),(\\d+)␣@@.*") ;
203
204 St r ing oldFileName = "" ;
205 St r ing newFileName = "" ;
206 St r ing aF i l e = "" ;
207 St r ing bF i l e = "" ;
208 int l ine_a , nr_a , line_b , nr_b ;
209
210 for (S t r ing l i n e : d i f f L i n e s) {
211 Matcher rnFromMatcher = renameFrom . matcher (

↪→ l i n e) ;
212 Matcher rnToMatcher = renameTo . matcher (l i n e

↪→) ;
213 Matcher orgFi leMatcher = o r i g F i l e . matcher (

↪→ l i n e) ;
214 Matcher newFileMatcher = newFile . matcher (

↪→ l i n e) ;
215 Matcher l inesMatcher = l i n e s P a t t e r n . matcher

↪→ (l i n e) ;
216
217 boolean i s F i l e D e l e t i o n = fa l se ;
218
219

41

4 Implementation

220 i f (rnFromMatcher . matches ()) {
221 oldFileName = rnFromMatcher . group ("

↪→ filegroup") ;
222 }
223
224 i f (rnToMatcher . matches ()) {
225 newFileName = rnToMatcher . group ("

↪→ filegroup") ;
226 i f (oldFileName . isEmpty ()) {
227 throw new Extract ionError ("The␣diff

↪→ ␣is␣malformed.") ;
228 }
229
230 SourceF i l e . g e tSou r c eF i l e (oldFileName) .

↪→ rename (newFileName) ;
231 }
232
233 i f (orgFi leMatcher . matches ()) {
234 aF i l e = orgFi leMatcher . group ("filegroup

↪→ ") ;
235 }
236
237 i f (newFileMatcher . matches ()) {
238 bF i l e = newFileMatcher . group ("filegroup

↪→ ") ;
239
240 i f (bF i l e . equa l s ("/dev/null")) {
241 i s F i l e D e l e t i o n = true ;
242 new Contr ibut ion (
243 0 ,
244 SourceF i l e . g e tSou r c eF i l e (aF i l e)

↪→ . getLOC () ,
245 false ,
246 commit ,
247 aF i l e
248) ;
249 }
250 }
251
252 i f (l inesMatcher . matches ()) {

42

4.1 Arborext

253 l ine_a = In t eg e r . pa r s e In t (l inesMatcher .
↪→ group (1)) ;

254 nr_a = In t eg e r . pa r s e In t (l inesMatcher .
↪→ group (2)) ;

255 l ine_b = In t eg e r . pa r s e In t (l inesMatcher .
↪→ group (3)) ;

256 nr_b = In t eg e r . pa r s e In t (l inesMatcher .
↪→ group (4)) ;

257
258 i f (bF i l e . isEmpty ()) {
259 throw new Extract ionError ("The␣diff

↪→ ␣is␣malformed.") ;
260 }
261
262 i f (! i s F i l e D e l e t i o n) {
263 int de l t a = nr_b > nr_a ? nr_b −

↪→ nr_a : nr_a − nr_b ;
264 new Contr ibut ion (
265 line_b ,
266 l ine_b + delta ,
267 de l t a >= 0 ,
268 commit ,
269 bF i l e . equa l s ("/dev/null") ?

↪→ aF i l e : bF i l e
270) ;
271 }
272 }
273 }
274 }
275 }

Listing 4.3: The git extraction.

4.1.2 GXL Export

For writing the commit data into GXL files, the builtin XML engine of the Java
Standard Library is used. This is shown in Listing 4.4.

1 /**
2 * Copyright (C) 2022 Daniel Steinhauer

43

4 Implementation

3 *
4 * Licensed under the Apache License, Version 2.0 (the

↪→ "License");
5 * you may not use this file except in compliance with

↪→ the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE -2.0
9 *

10 * Unless required by applicable law or agreed to in
↪→ writing, software

11 * distributed under the License is distributed on an "
↪→ AS IS" BASIS,

12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
↪→ express or implied.

13 * See the License for the specific language governing
↪→ permissions and

14 * limitations under the License.
15 */
16
17 package de . uni_bremen . s ee . a rborext ;
18
19 import org . w3c .dom. Document ;
20 import org . w3c .dom. Element ;
21
22 import java . u t i l . L i s t ;
23 import java . u t i l . ArrayList ;
24 import javax . xml . pa r s e r s . DocumentBuilder ;
25 import javax . xml . pa r s e r s . DocumentBuilderFactory ;
26 import javax . xml . pa r s e r s . Parse rConf igurat ionExcept ion ;
27 import javax . xml . trans form . ∗ ;
28 import javax . xml . trans form .dom. DOMSource ;
29 import javax . xml . trans form . stream . StreamResult ;
30 import java . i o . FileOutputStream ;
31 import java . i o . IOException ;
32
33 /**
34 * Can write a commit history into GXL files.
35 */
36 public class GXLWriter

44

4.1 Arborext

37 {
38 stat ic private Element createAttrNode (Document doc ,

↪→ f ina l St r ing name , f ina l St r ing type , f ina l
↪→ St r ing value)

39 {
40 Element node = doc . createElement ("attr") ;
41 node . s e tAt t r i bu t e ("name" , name) ;
42 Element va lAttr = doc . createElement (type) ;
43 va lAttr . setTextContent (va lue) ;
44 node . appendChild (va lAttr) ;
45
46 return node ;
47 }
48
49 stat ic private Document docFromCommit (Commit commit

↪→ , DocumentBuilder bu i l d e r)
50 {
51 Document doc = bu i l d e r . newDocument () ;
52 Element gxlNode = doc . createElement ("gxl") ;
53 doc . appendChild (gxlNode) ;
54
55 gxlNode . s e tAt t r i bu t e ("xmlns:xlink" , "http://www

↪→ .w3.org/1999/xlink") ;
56
57 Element graphNode = doc . createElement ("graph") ;
58 gxlNode . appendChild (graphNode) ;
59 graphNode . s e tAt t r i bu t e ("edgeids" , "true") ;
60 graphNode . s e tAt t r i bu t e ("id" , "CodeFacts") ;
61
62 // Developer nodes
63 Developer . probeDeveloper (commit . getAuthor ()) ;
64 for (Developer dev : Developer . getDeve lopers ())

↪→ {
65 Element devNode = doc . createElement ("node")

↪→ ;
66 devNode . s e tAt t r i bu t e ("id" , dev . ge t Id ()) ;
67 Element nodeType = doc . createElement ("type"

↪→) ;
68 nodeType . s e tAt t r i bu t e ("xlink:href" , "

↪→ Developer") ;

45

4 Implementation

69
70 devNode . appendChild (nodeType) ;
71 devNode . appendChild (createAttrNode (doc , "

↪→ Linkage.Name" , "string" , dev . ge t Id ())
↪→) ;

72 devNode . appendChild (createAttrNode (doc , "
↪→ Source.Name" , "string" , dev . getName ()
↪→)) ;

73 devNode . appendChild (createAttrNode (doc , "
↪→ Developer.Name" , "string" , dev .
↪→ getName ())) ;

74 graphNode . appendChild (devNode) ;
75 }
76
77 // The contribution nodes should be added after

↪→ the file nodes.
78 List <Element> contr ibut ionNodes = new ArrayList

↪→ <Element> () ;
79
80 // The edges should be added after the nodes
81 List <Element> edges = new ArrayList<Element> ()

↪→ ;
82
83 int newEdgeId = 1 ;
84
85 // Files
86 for (SourceF i l e s f : SourceF i l e . g e t A l l F i l e s ())

↪→ {
87 Element f i l eNode = doc . createElement ("node"

↪→) ;
88 f i l eNode . s e tAt t r i bu t e ("id" , s f . ge t Id ()) ;
89 Element f i leNodeType = doc . createElement ("

↪→ type") ;
90 f i leNodeType . s e tAt t r i bu t e ("xlink:href" , "

↪→ File") ;
91 f i l eNode . appendChild (f i leNodeType) ;
92
93 f i l eNode . appendChild (createAttrNode (doc , "

↪→ Source.Name" , "string" , s f . getNames ()
↪→)) ;

46

4.1 Arborext

94 f i l eNode . appendChild (createAttrNode (doc , "
↪→ Linkage.Name" , "string" , s f . ge t Id ()))
↪→ ;

95 f i l eNode . appendChild (createAttrNode (doc , "
↪→ Metric.Number_Of_Calling_Routines" , "
↪→ int" , "0")) ;

96 f i l eNode . appendChild (createAttrNode (doc , "
↪→ Metric.Number_Of_Called_Routines" , "
↪→ int" , "0")) ;

97 f i l eNode . appendChild (createAttrNode (doc , "
↪→ Metric.McCabe_Complexity" , "int" , "1"
↪→)) ;

98 f i l eNode . appendChild (createAttrNode (doc , "
↪→ Metric.Lines.LOC" , "int" , I n t eg e r .
↪→ t oS t r i ng (s f . getLOC ()))) ;

99 graphNode . appendChild (f i l eNode) ;
100
101 // Contributions
102 for (Contr ibut ion cont : s f .

↪→ ge tCont r ibut i ons ()) {
103 Element cNode = doc . createElement ("node

↪→ ") ;
104 cNode . s e tAt t r i bu t e ("id" , cont . ge t Id ()) ;
105 Element contNodeType = doc .

↪→ createElement ("type") ;
106 contNodeType . s e tAt t r i bu t e ("xlink:href" ,

↪→ "Contribution") ;
107
108 cNode . appendChild (contNodeType) ;
109 cNode . appendChild (createAttrNode (doc , "

↪→ Linkage.Name" , "string" , cont .
↪→ get Id ())) ;

110 cNode . appendChild (createAttrNode (doc , "
↪→ Source.Name" , "string" , cont .
↪→ get Id ())) ;

111 cNode . appendChild (createAttrNode (doc , "
↪→ Metric.Lines.FirstLine" , "int" ,
↪→ I n t eg e r . t oS t r i ng (cont .
↪→ g e t F i r s t L i n e ()))) ;

47

4 Implementation

112 cNode . appendChild (createAttrNode (doc , "
↪→ Metric.Lines.LastLine" , "int" ,
↪→ I n t eg e r . t oS t r i ng (cont . getLastL ine
↪→ ()))) ;

113 cNode . appendChild (createAttrNode (doc , "
↪→ Metric.Lines.LOC" , "int" , I n t eg e r
↪→ . t oS t r i ng (cont . getLOC ()))) ;

114 cNode . appendChild (createAttrNode (doc , "
↪→ Contribution.FileId" , "string" ,
↪→ s f . ge t Id ())) ;

115 cNode . appendChild (createAttrNode (doc , "
↪→ Info.CommitId" , "string" , cont .
↪→ getCommit () . getHash ())) ;

116 cNode . appendChild (createAttrNode (doc , "
↪→ Info.CommitAuthor" , "string" ,
↪→ cont . getCommit () . getAuthor ())) ;

117 cNode . appendChild (createAttrNode (doc , "
↪→ Info.CommitMessage" , "string" ,
↪→ cont . getCommit () . getCommitMessage
↪→ ())) ;

118 cNode . appendChild (createAttrNode (doc , "
↪→ Info.CommitTimestamp" , "string" ,
↪→ cont . getCommit () . getDate () .
↪→ t oS t r i ng ())) ;

119 cNode . appendChild (createAttrNode (doc , "
↪→ Info.Branch" , "int" , I n t eg e r .
↪→ t oS t r i ng (cont . getBranchId ()))) ;

120
121 contr ibut ionNodes . add (cNode) ;
122
123 // Edge for contributions that were

↪→ added with this commit.
124 i f (cont . isNew ()) {
125 Element cEdge = doc . createElement ("

↪→ edge") ;
126 cEdge . s e tAt t r i bu t e ("id" , "E" +

↪→ I n t eg e r . t oS t r i ng (newEdgeId++)
↪→) ;

127 cEdge . s e tAt t r i bu t e ("from" ,
↪→ Developer . probeDeveloper (cont

48

4.1 Arborext

↪→ . getCommit () . getAuthor ()) .
↪→ get Id ()) ;

128 cEdge . s e tAt t r i bu t e ("to" , cont . ge t Id
↪→ ()) ;

129 Element cEdgeType = doc .
↪→ createElement ("type") ;

130 cEdgeType . s e tAt t r i bu t e ("xlink:href"
↪→ , "Call") ;

131 cEdge . appendChild (cEdgeType) ;
132 edges . add (cEdge) ;
133 }
134 }
135 }
136
137 for (Element e l e : contr ibut ionNodes) {
138 graphNode . appendChild (e l e) ;
139 }
140
141 for (Element e l e : edges) {
142 graphNode . appendChild (e l e) ;
143 }
144
145 return doc ;
146 }
147
148 /**
149 * Write all provided commits into separate GXL

↪→ files for each commit.
150 *
151 * @param commits list of commits.
152 * @param extractor the extractor to extract data

↪→ from the VCS.
153 *
154 * @throws ParserConfigurationException if

↪→ something went wrong with the parser.
155 * @throws TransformerException if something went

↪→ wrong with the transformer.
156 * @throws IOException if the files could not be

↪→ written to or the repository could not be
↪→ deleted.

49

4 Implementation

157 * @throws ExtractionError if something went wrong
↪→ with the extraction.

158 */
159 stat ic public void writeCommitsInGXL (List <Commit>

↪→ commits , Extractor ex t r a c t o r)
160 throws ParserConf igurat ionExcept ion ,

↪→ TransformerException , IOException ,
↪→ Extract ionError

161 {
162 DocumentBuilderFactory f a c t o r y =

↪→ DocumentBuilderFactory . newInstance () ;
163 DocumentBuilder bu i l d e r = f a c t o ry .

↪→ newDocumentBuilder () ;
164
165 TransformerFactory transFactory =

↪→ TransformerFactory . newInstance () ;
166 Transformer t rans fo rmer = transFactory .

↪→ newTransformer () ;
167
168 // Set transformer options
169 t rans fo rmer . setOutputProperty (OutputKeys .INDENT

↪→ , "yes") ;
170 t rans fo rmer . setOutputProperty (OutputKeys .

↪→ DOCTYPE_SYSTEM, "http://www.gupro.de/GXL/
↪→ gxl-1.0.dtd") ;

171
172 int commitNr = 0 ;
173
174 for (Commit commit : commits) {
175 try {
176 ex t r a c t o r . enr ichWithContr ibut ions (

↪→ commit) ;
177 } catch (NeedToSetBranch ntsb) {
178 for (Commit cmmt : commits) {
179 ntsb . editCommitI fNecessary (cmmt) ;
180 }
181 }
182
183 Document doc = docFromCommit (commit ,

↪→ bu i l d e r) ;

50

4.2 SEE Extension

Figure 4.1: The flying saucer representing a developer

184 DOMSource source = new DOMSource(doc) ;
185
186 St r ing f i l ename = St r ing . format ("out_%06d.

↪→ gxl" , commitNr++) ;
187 FileOutputStream out = new FileOutputStream

↪→ (f i l ename) ;
188 StreamResult r e s u l t = new StreamResult (out)

↪→ ;
189
190 t rans fo rmer . trans form (source , r e s u l t) ;
191 }
192 }
193 }

Listing 4.4: The GXL export.

4.2 SEE Extension

A prefab in the form of a flying saucer (Figure 4.1) has been added to the game
to represent a developer flying over the codebase.

Figure 4.2 shows SEE visualizing a single commit from a sample repository.

Listings 4.5 and 4.6 show the factories that create the Contribution and Developer
game nodes respectively.

1 us ing System ;
2 us ing SEE.Game ;
3 us ing SEE. DataModel ;
4 us ing UnityEngine ;

51

4 Implementation

Figure 4.2: A screenshot of SEE examining a single commit

5
6 namespace SEE.GO. NodeFactor ies
7 {
8 i n t e r n a l c l a s s Contr ibut ionFactory : CubeFactory
9 {

10 /// <summary>
11 /// Constructor .
12 /// </summary>
13 pub l i c Contr ibut ionFactory ()
14 : base (Mate r i a l s . ShaderType . Opaque ,

↪→ ColorRange . Defau l t ())
15 { }
16
17 /// <summary>
18 /// Get a unique c o l o r f o r t h i s branch number .
19 /// <param name="branchId">The branch number</

↪→ param>
20 /// </summary>
21 protec ted s t a t i c Color BranchToColor (i n t

↪→ branchId)
22 {
23 double phi1 = 2 .0 d / (1 . 0 d + Math . Sqrt (5 . 0 d

↪→)) ;

52

4.2 SEE Extension

24 double hue = branchId ∗ phi1 ;
25 hue −= Math . Floor (hue) ;
26 Color r e t = Color .HSVToRGB((f l o a t) hue , 1 . 0 f

↪→ , 1 . 0 f) ;
27 r e t . a = 0 .25 f ;
28 re turn r e t ;
29 }
30
31 /// <summary>
32 /// Creates and r e tu rn s a new block

↪→ r e p r e s e n t a t i o n o f a graph node .
33 /// The i n t e r p r e t a t i o n o f the g iven <paramref

↪→ name="style"/> depends upon
34 /// the s u b c l a s s e s . I t can be used to s p e c i f y a

↪→ v i s u a l property o f the
35 /// o b j e c t s such as the c o l o r . The al lowed

↪→ range o f a s t y l e index depends
36 /// upon the subc l a s s e s , too , but must be in

↪→ [0 , NumberOfStyles () −1].
37 /// The <paramref name="renderQueueOffset"/>

↪→ s p e c i f i e s the o f f s e t o f the render
38 /// queue o f the new block . The h igher the

↪→ value , the l a t e r the ob j e c t
39 /// w i l l be drawn . Objects drawn l a t e r w i l l

↪→ cover o b j e c t s drawn e a r l i e r .
40 /// This parameter can be used f o r the

↪→ r ender ing o f t ransparent ob j ec t s ,
41 /// where the inner nodes must be rendered

↪→ be f o r e the l e a v e s to ensure
42 /// c o r r e c t s o r t i n g .
43 ///
44 /// Parameter <paramref name="metrics"/>

↪→ s p e c i f i e s the l eng th s o f the returned
45 /// ob j e c t . I f <c>nul l </c>, the d e f a u l t l eng th s

↪→ are used . What a "length"
46 /// c on s t i t u t e s , depends upon the kind o f shape

↪→ (mesh) used f o r the ob j e c t
47 /// and may be dec ided by s u b c l a s s e s o f t h i s <

↪→ s e e c r e f="NodeFactory"/>.
48 /// For ins tance , f o r a cube , the dimensions

53

4 Implementation

↪→ are i t s widths , height , and
49 /// depth .
50 /// </summary>
51 /// <param name="style">s p e c i f i e s an a d d i t i o n a l

↪→ v i s u a l s t y l e parameter o f
52 /// the object </param>
53 /// <returns >new node r ep r e s en ta t i on </returns >
54 /// <param name="metrics">the metr ic va lue s

↪→ determining the l eng th s o f <paramref name
↪→ ="gameObject"/></param>

55 pub l i c ov e r r i d e GameObject NewBlock (i n t s t y l e =
↪→ 0 , f l o a t [] met r i c s = n u l l)

56 {
57 GameObject gameObject = new GameObject () {

↪→ tag = Tags . Node } ;
58 // A MeshFi l ter i s nece s sa ry f o r the

↪→ gameObject to hold a mesh .
59 MeshFi l ter meshFi l te r = gameObject .

↪→ AddComponent<MeshFilter >() ;
60 meshFi l te r . sharedMesh = GetMesh (metr i c s) ;
61 SetDimensions (gameObject , met r i c s) ;
62 MeshRenderer r ende r e r = gameObject .

↪→ AddComponent<MeshRenderer >() ;
63 Mater ia l baseMat = Resources . Load<Mater ia l>

↪→ ("Materials/
↪→ TransparentContributionMaterial") ;

64 r ende r e r . mate r i a l = new Mater ia l (baseMat) ;
65
66 re turn gameObject ;
67 }
68
69 /// <summary>
70 /// This node does not need a c o l l i d e r .
71 /// </summary>
72 /// <param name="gameObject">the game ob j e c t

↪→ r e c e i v i n g the c o l l i d e r </param>
73 protec ted ove r r i d e void AddCol l ider (GameObject

↪→ gameObject)
74 {
75 }

54

4.2 SEE Extension

76
77 /// <summary>
78 /// Set the node ’ s mate r i a l c o l o r accord ing to

↪→ the branch number .
79 /// <param name="gameObject">The game ob j e c t

↪→ f o r the node</param>
80 /// <param name="branchNr">The branch number</

↪→ param>
81 /// </summary>
82 pub l i c void SetBranchNumber (GameObject

↪→ gameObject , i n t branchNr)
83 {
84 MeshRenderer r ende r e r = gameObject .

↪→ GetComponent<MeshRenderer> () ;
85 r ende r e r . sharedMater ia l . c o l o r =

↪→ BranchToColor (branchNr) ;
86 }
87 }
88 }

Listing 4.5: A C# factory for creating contribution game nodes.

1 us ing SEE.Game ;
2 us ing SEE. DataModel ;
3 us ing UnityEngine ;
4
5 namespace SEE.GO. NodeFactor ies
6 {
7 i n t e r n a l c l a s s DeveloperFactory : NodeFactory
8 {
9 p r i va t e GameObject f l y i n g Sa uc e r ;

10
11 /// <summary>
12 /// Constructor .
13 /// </summary>
14 pub l i c DeveloperFactory ()
15 : base (Mate r i a l s . ShaderType . Opaque ,

↪→ ColorRange . Defau l t ())
16 {
17 t h i s . f l y i n g Sa u c e r = Resources . Load<

↪→ GameObject> ("Prefabs/flyingsaucer") ;
18 }

55

4 Implementation

19
20 /// <summary>
21 /// Creates and r e tu rn s a new block

↪→ r e p r e s e n t a t i o n o f a graph node .
22 /// The i n t e r p r e t a t i o n o f the g iven <paramref

↪→ name="style"/> depends upon
23 /// the s u b c l a s s e s . I t can be used to s p e c i f y a

↪→ v i s u a l property o f the
24 /// o b j e c t s such as the c o l o r . The al lowed

↪→ range o f a s t y l e index depends
25 /// upon the subc l a s s e s , too , but must be in

↪→ [0 , NumberOfStyles () −1].
26 /// The <paramref name="renderQueueOffset"/>

↪→ s p e c i f i e s the o f f s e t o f the render
27 /// queue o f the new block . The h igher the

↪→ value , the l a t e r the ob j e c t
28 /// w i l l be drawn . Objects drawn l a t e r w i l l

↪→ cover o b j e c t s drawn e a r l i e r .
29 /// This parameter can be used f o r the

↪→ r ender ing o f t ransparent ob j ec t s ,
30 /// where the inner nodes must be rendered

↪→ be f o r e the l e a v e s to ensure
31 /// c o r r e c t s o r t i n g .
32 ///
33 /// Parameter <paramref name="metrics"/>

↪→ s p e c i f i e s the l eng th s o f the returned
34 /// ob j e c t . I f <c>nul l </c>, the d e f a u l t l eng th s

↪→ are used . What a "length"
35 /// c on s t i t u t e s , depends upon the kind o f shape

↪→ (mesh) used f o r the ob j e c t
36 /// and may be dec ided by s u b c l a s s e s o f t h i s <

↪→ s ee c r e f="NodeFactory"/>.
37 /// For ins tance , f o r a cube , the dimensions

↪→ are i t s widths , height , and
38 /// depth .
39 /// </summary>
40 /// <param name="style">s p e c i f i e s an a d d i t i o n a l

↪→ v i s u a l s t y l e parameter o f
41 /// the ob j e c t . This parameter i s ignored .</

↪→ param>

56

4.2 SEE Extension

42 /// <returns >new node r ep r e s en ta t i on </returns >
43 /// <param name="metrics">the metr ic va lue s

↪→ determining the l eng th s o f <paramref name
↪→ ="gameObject"/>.

44 /// This parameter i s ignored .
45 /// </param>
46 pub l i c ov e r r i d e GameObject NewBlock (i n t s t y l e =

↪→ 0 , f l o a t [] met r i c s = n u l l)
47 {
48 return GameObject . I n s t a n t i a t e (t h i s .

↪→ f l y i n gS a uc e r) as GameObject ;
49 }
50
51 pub l i c void SetName(GameObject dev , s t r i n g

↪→ devName)
52 {
53 Fly ingDeve loper fd = dev . GetComponent<

↪→ FlyingDeveloper> () ;
54 fd . AuthorName = devName ;
55 }
56
57 /// <summary>
58 /// This node does not need a c o l l i d e r .
59 /// </summary>
60 /// <param name="gameObject">the game ob j e c t

↪→ r e c e i v i n g the c o l l i d e r </param>
61 protec ted ove r r i d e void AddCol l ider (GameObject

↪→ gameObject)
62 {
63 }
64
65 /// <summary>
66 /// Returns a mesh f o r a node .
67 /// </summary>
68 /// <param name="metrics">the metr ic va lue s

↪→ determining the l eng th s o f <paramref name
↪→ ="gameObject"/>.

69 /// This va lue i s ignored .
70 /// </param>
71 /// <returns >mesh f o r a node</returns >

57

4 Implementation

72 protec ted ove r r i d e Mesh GetMesh (f l o a t [] met r i c s
↪→)

73 {
74 // FIXME
75 return n u l l ;
76 }
77
78 /// <summary>
79 /// Sets the dimensions o f <paramref name="

↪→ gameObject"/>.
80 ///
81 /// The dimensions o f a f l y i n g saucer are f i x e d

↪→ . Changes are ignored .
82 /// </summary>
83 /// <param name="gameObject">the game ob j e c t

↪→ whose dimensions are to be set</param>
84 /// <param name="metrics">the metr ic va lue s

↪→ determining the l eng th s o f <paramref name
↪→ ="gameObject"/>.

85 /// This va lue i s ignored .
86 /// </param>
87 protec ted ove r r i d e void SetDimensions (

↪→ GameObject gameObject , f l o a t [] met r i c s)
88 {
89 }
90
91 /// <summary>
92 /// Sets the s i z e (i t s s c a l e) o f the g iven

↪→ block by the g iven s i z e . Note : The un i t
↪→ o f

93 /// s i z e i s Unity worldspace un i t s .
94 ///
95 /// The s i z e o f a f l y i n g saucer i s f i x e d .

↪→ Changes are ignored .
96 /// </summary>
97 /// <param name="block">block to be sca led </

↪→ param>
98 /// <param name="size">new s i z e in worldspace </

↪→ param>
99 pub l i c ov e r r i d e void Se tS i z e (GameObject block ,

58

4.2 SEE Extension

↪→ Vector3 s i z e)
100 {
101 }
102
103 /// <summary>
104 /// Sets the p o s i t i o n o f the cur r ent block . The

↪→ given p o s i t i o n i s
105 /// i n t e r p r e t e d as the cent e r (x , z) o f the

↪→ block on the ground (y) .
106 /// </summary>
107 /// <param name="block">block to be pos i t i oned

↪→ </param>
108 /// <param name="position">where to p o s i t i o n

↪→ the block (i t s c en te r) on the ground y</
↪→ param>

109 pub l i c ov e r r i d e void SetGroundPosit ion (
↪→ GameObject block , Vector3 p o s i t i o n)

110 {
111 block . trans form . p o s i t i o n = new Vector3 (

↪→ p o s i t i o n . x , p o s i t i o n . y + 0 .5 f ,
↪→ p o s i t i o n . z) ;

112 }
113
114 /// <summary>
115 /// Sets the l o c a l p o s i t i o n o f the cur rent

↪→ block with in i t s parent ob j e c t .
116 /// The given p o s i t i o n i s i n t e r p r e t e d as the

↪→ c en te r (x , z) o f the block on the ground (
↪→ y) .

117 /// </summary>
118 /// <param name="block">block to be pos i t i oned

↪→ </param>
119 /// <param name="position">where to p o s i t i o n

↪→ the block (i t s c en te r)</param>
120 pub l i c ov e r r i d e void SetLocalGroundPosit ion (

↪→ GameObject block , Vector3 p o s i t i o n)
121 {
122 block . trans form . l o c a l P o s i t i o n = new Vector3

↪→ (p o s i t i o n . x , p o s i t i o n . y + 0 .5 f ,
↪→ p o s i t i o n . z) ;

59

4 Implementation

123 }
124 }
125 }

Listing 4.6: A C# factory for creating developer game nodes.

In order to properly insert them into the scene, the GraphRenderer, which is re-
sponsible for building a scene from a given graph of nodes, needs a few adjustments.
Two methods for creating our type of new nodes needed to be added (Listing 4.7).
Furthermore the method GraphRender.DrawGraph needs to call these methods at
the right time. That is after all the other nodes have been placed by the chosen
layout, but before decorations are added.

1 /// <summary>
2 /// Draw and p lace the con t r i bu t i on nodes .
3 /// </summary>
4 /// <param name="nodes">The l i s t i f

↪→ con t r i bu t i on nodes .</param>
5 /// <param name="map">A map o f a l l Nodes −>

↪→ GameObjects in the c i t y .</param>
6 pr i va t e void Pos i t ionContr ibut ionNodes (Lis t <

↪→ Node> nodes , L i s t <Node> f i l eNodes ,
↪→ Dict ionary<Node , GameObject> map)

7 {
8 // Get a d i c t i o n a r y o f a l l f i l e s with t h e i r

↪→ ID .
9 Dict ionary<s t r i ng , GameObject> idgo = new

↪→ Dict ionary<s t r i ng , GameObject> () ;
10 foreach (var entry in f i l e N o d e s)
11 {
12 idgo [entry . ID] = map [entry] ;
13 }
14
15 NodeFactory s fFac to ry = nodeTypeToFactory ["

↪→ File"] ;
16
17 foreach (var nd in nodes)
18 {
19 GameObject gameNode = DrawNode (nd) ;
20 map [nd] = gameNode ;
21
22 // Set met r i c s .

60

4.2 SEE Extension

23 Contr ibut ionFactory f a c t =
↪→ nodeTypeToFactory ["Contribution"]
↪→ as Contr ibut ionFactory ;

24 s t r i n g con tF i l e Id = nd . GetStr ing ("
↪→ Contribution.FileId") ;

25 GameObject s f i l e _ g o = idgo [c on tF i l e I d] ;
26 i f (! s f i l e _ g o)
27 {
28 throw new Exception ("Could␣not␣find

↪→ ␣source␣file␣block:␣" +
↪→ con tF i l e Id) ;

29 }
30 Node s f i l e_nd = s f i l e _ g o . GetComponent<

↪→ NodeRef> () . Value ;
31
32 i n t s f _ l i n e s = s f i l e_nd . GetInt ("Metric.

↪→ Lines.LOC") ;
33 i n t nd_lines = nd . GetInt ("Metric.Lines.

↪→ LOC") ;
34 f l o a t l i ne_he ight = 1 .0 f / s f _ l i n e s ;
35
36 Vector3 sfDim = new Vector3 (
37 1 .125 f ,
38 l ine_he ight ∗ nd_lines ,
39 1 .125 f
40) ;
41
42 Vector3 s fPos = new Vector3 (
43 0 .0 f ,
44 l ine_he ight ∗ nd . GetInt ("Metric.

↪→ Lines.FirstLine") − 0 .5 f ,
45 0 .0 f
46) ;
47
48 f a c t . SetBranchNumber (gameNode , nd .

↪→ GetInt ("Info.Branch")) ;
49
50 gameNode . trans form . parent = s f i l e _ g o .

↪→ trans form ;
51 gameNode . trans form . l o c a l P o s i t i o n =

61

4 Implementation

↪→ s fPos ;
52 gameNode . trans form . l o c a l S c a l e = sfDim ;
53 }
54 }
55
56 /// <summary>
57 /// Draw and p lace the deve loper nodes .
58 /// </summary>
59 /// <param name="nodes">The l i s t i f

↪→ con t r i bu t i on nodes .</param>
60 /// <param name="map">A map o f a l l Nodes −>

↪→ GameObjects in the c i t y .</param>
61 pr i va t e void Pos i t ionDeveloperNodes (Li s t <Node>

↪→ nodes , Dict ionary<Node , GameObject> map)
62 {
63 NodeFactory cFac = nodeTypeToFactory ["

↪→ Contribution"] ;
64 DeveloperFactory dFac = nodeTypeToFactory ["

↪→ Developer"] as DeveloperFactory ;
65
66 // Get the max he ight o f the c i t y
67 f l o a t maxHeight = 0 .0 f ;
68 foreach (var entry in map)
69 {
70 NodeFactory f a c t o r y = nodeTypeToFactory

↪→ [entry . Key . Type] ;
71 f l o a t he ight = fa c t o ry . Roof (entry .

↪→ Value) . y ;
72 i f (he ight > maxHeight)
73 {
74 maxHeight = he ight ;
75 }
76 }
77
78 foreach (var nd in nodes)
79 {
80 GameObject gameNode = DrawNode (nd) ;
81 map [nd] = gameNode ;
82
83 Vector3 avgPos = new Vector3 (0 , 0 , 0) ;

62

4.2 SEE Extension

84 i n t nn = 0 ;
85 foreach (var outg in nd . Outgoings)
86 {
87 avgPos += cFac . GetCenterPos i t ion (

↪→ map [outg . Target]) ;
88 nn++;
89 }
90 i f (nn > 0)
91 {
92 avgPos /= nn ;
93 }
94
95 avgPos . y = maxHeight ∗ 1 .125 f ;
96
97 dFac . SetGroundPosit ion (gameNode ,

↪→ avgPos) ;
98 dFac . SetName (gameNode , nd . GetStr ing ("

↪→ Developer.Name")) ;
99 }

100 }
Listing 4.7: C# methods for inserting the contribution/developer nodes.

4.2.1 Colors of Branches

The ContributionFactory has a method that assigns each branch number a
unique color. This is achieved by going off an HSV color wheel. The Hue value is
determined by multiplying the branch number b with the golden angle g.

h = bg (4.1)

g = 2π

Φ (4.2)

With Φ being the golden ratio.

Φ =
√

5 + 1
2 (4.3)

Since the golden angle is irrational it is ensured that no matter how often a rotating
object is rotated by g it will never end up with the same angle.

63

5 Evaluation

5.1 Design of the Study

For the purpose of evaluating the usability of this software a user study is con-
ducted.

The participants are given a stripped down version of SEE as an executable file for
Windows and Linux operating systems alongside a short text file explaining how
to use it.

Due to sanitary measures as well as ease of use for the participants the study
is conducted over the internet on every participants own computer. They there-
fore receive all the aforementioned material as a downloadable zip file which is
attached.

5.1.1 Hypothesis to Examine

The hypothesis is:

The method of displaying developer’s actions across branches improves
the understanding of a repository’s history.

The corresponding null hypothesis is:

The visualization method is not helpful at all or - worse - confusing.

65

5 Evaluation

5.1.2 The SEE Executable

Since the full version of SEE has been tested thoroughly for several times and
the usability of the whole application is not in the scope of this work a stripped
down version of SEE has been created. This version only contains one scene which
consists of a code city of a sample repository in its several stages. The user can
navigate between those stages by pressing keys on the keyboard as well as view
the code city from different angles. Figure 4.2 on page 52 shows a screenshot of
this stripped down version of SEE.

The sample repository used for the code city as well as the executables are attached
on the DVD.

5.1.3 The Tasks and Questions

Before the experiment begins the participants are asked to tell us something about
their prior knowledge and skill level by rating these questions on a scale from zero
to ten:

1. How would you rate your skill level on coding/software development?

2. How would you rate your knowledge on version control systems like git,
subversion or mercurial?

3. How would you rate your experience with working on software projects to-
gether with other people in a team?

In order to prove the hypothesis by disproving the null hypothesis a deviation from
the standardized System Usability Scale [21] seems to be reasonable, because the
main focus of this study is to examine the visualization concept rather then the
SEE software itself.

Therefore a more open format for the following questions is chosen:

4. What do you think happened in each commit? (Only a few words per com-
mit)

5. What was clear about the visualization?

66

5.2 Results and Discussion

6. What was unclear about the visualization?

The fourth question is supposed to give some insight into how the participants
perceive the visualization and whether this aligns with the expectations.

The last two questions give the participants the direct chance to provide some
feedback on what is good and what might need improvement.

5.1.4 Execution

The study is conducted online in an within-subjects design meaning that every
participant gets the same tasks and questions in the same order. Given the low
number of expected participants due to the requirement of prior knowledge on the
subject matter, this seems to be a reasonable decision.

The independent variable here is the project repository to extract from which was
given by the researcher. The dependent variable is the participant’s feedback.

5.2 Results and Discussion

There were 7 participants in this study.

On average they rated their skill level in software development with 8.0 out of 10
with a standard deviation of 1.2. The lowest score here was 6. So its safe to say
the participants were quite confident in their programming skills. Considering all
participants are current or former students of computer science or related studies,
this is not surprising.

The situation is different however for their perceived knowledge about Version
Control Systems with an average of 6.1 and a standard deviation of 2.3. The
lowest score was 2 here. So not all participants seem to be using Version Controls
Systems on a regular basis or at least some don’t feel confident using them.

When it comes to their perceived skills in team programming it is even more diverse
with an average of 4.9 and a standard deviation of 3.2. The lowest score was 0, the
highest 9. This can be explained by the fact that the participants are in different

67

5 Evaluation

stages of their career; some have just started studying while others already work
as programmers in companies.

The correct order of events in the sample software repository was:

1. Alice created README.md

2. Bob created beta.txt on a separate branch.

3. Alice created alpha.txt on her branch.

4. Charles created gamma.txt and edited alpha.txt on a new branch.

5. Daniel Steinhauer merged Bob’s branch into Alice’s branch.

6. Daniel Steinhauer merged Charles’ branch into Alice’s branch.

The participants got the first three steps all right, but the fact that the flying
saucers for the developers overlapped at the last three changes was a cause for
confusion. It turned out to be not clear which developer is responsible for what
action. Only two participants managed to guess that correctly.

The majority of the participants pointed out that it was clear which contributions
to files belong to which branch and three liked the idea of having the developers
hovering over the code city.

When asked about what was unclear, all participants complained about the flying
saucers overlapping like discussed before. Five participants also mentioned that a
merge of a branch into another is easy to miss since the change of color happens
so sudden.

All in all it can be said that the visual representation might need some improve-
ments. The developers who are not active in a given commit for example should
be pushed to the sidelines or taken out of the picture entirely in order to avoid con-
fusion. It is also worth considering adding a less subtle animation for a merge.

68

6 Conclusion And Outlook

6.1 Conclusion

For this project an effective visualization tool the parallel work of several developers
on a software project was created. This was a valuable contrast to Felix Gaebler’s
approach which followed a single line of development and did not visualize the
different authors working on the project, although this information is included in
the GXL files.

By clearly highlighting which developer is doing what in a big software project it
is easy to spot potential points of conflict as well as getting a better understanding
of how the project evolved over time.

The visualization can be further optimized though. The overlapping flying saucers
representing developers is an issue. Also having a colored halo for each contribution
to a source file looks quite messy after some time.

6.2 Outlook

In his thesis Gaebler pointed out, that his solution might be extended in a way
that visualizes the software developers. [13] Despite this project doing this, the
concepts are too different to be considered an extension. The data extracted
by Gaebler’s tool cannot be used to visualize the simultaneous proceedings on
different branches. This incompatibility of approaches leads to this tool missing
out on some crucial features of Gaebler’s solution.

A future attempt to combine the features of both approaches might be worth-
while.

69

6 Conclusion And Outlook

This idea could be improved not to show all contributions, but rather only some
important ones, even though it is unclear at this point, what measures these im-
portant contributions should be selected by.

70

Bibliography
[1] url: https://unity.com (visited on 08/15/2022).
[2] url: https://insights.dice.com/2013/06/03/how-unity3d-become-a-

game-development-beast/ (visited on 08/15/2022).
[3] url: https://sonarqube.org (visited on 09/27/2022).
[4] url: https://see.uni-bremen.de (visited on 05/17/2022).
[5] url: https://userpages.uni-koblenz.de/~ist/GXL/Introduction/

background.html (visited on 05/20/2022).
[6] url: https://github.com/uni-bremen-agst/SEE/wiki/GXL (visited on

08/01/2022).
[7] url: https : / / github . com / uni - bremen - agst / libvcs4j (visited on

05/17/2022).
[8] url: https://maven.apache.org/ (visited on 08/14/2022).
[9] url: https://commons.apache.org/proper/commons-cli/ (visited on

08/23/2022).
[10] url: https://commons.apache.org/proper/commons- io/ (visited on

08/23/2022).
[11] url: https://www.gnu.org/software/diffutils/manual/html_node/

Detailed-Unified.html (visited on 08/23/2022).
[12] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Version

Control with Subversion - For Subversion 1.7. English. 2013.
[13] Felix Gaebler. “Extraktion von Daten aus Versionskontrollsystemen zur an-

schließenden Visualisierung in einer CodeCity”. AG Softwaretechnik, Uni-
versity of Bremen, 2021.

[14] Florian Garbade. “3-Dimensionale Darstellung von Codeänderungen in Unity”.
AG Softwaretechnik, University of Bremen, 2020.

[15] Valentin Haenel and Julius Plenz. Git - Verteilte Versionsverwaltung für
Code und Dokumente. German. 2nd ed. Munich: Open Source Press, 2014.

71

https://unity.com
https://insights.dice.com/2013/06/03/how-unity3d-become-a-game-development-beast/
https://insights.dice.com/2013/06/03/how-unity3d-become-a-game-development-beast/
https://sonarqube.org
https://see.uni-bremen.de
https://userpages.uni-koblenz.de/~ist/GXL/Introduction/background.html
https://userpages.uni-koblenz.de/~ist/GXL/Introduction/background.html
https://github.com/uni-bremen-agst/SEE/wiki/GXL
https://github.com/uni-bremen-agst/libvcs4j
https://maven.apache.org/
https://commons.apache.org/proper/commons-cli/
https://commons.apache.org/proper/commons-io/
https://www.gnu.org/software/diffutils/manual/html_node/Detailed-Unified.html
https://www.gnu.org/software/diffutils/manual/html_node/Detailed-Unified.html

Bibliography

[16] Rainer Koschke. url: https://www.youtube.com/watch?v=i4PZWPwV5iI
(visited on 08/02/2022).

[17] Rainer Koschke. url: https://www.youtube.com/watch?v=UaVRHIVxY-c
(visited on 08/02/2022).

[18] Rainer Koschke. url: https://www.youtube.com/watch?v=loU7_j6ZFkc
(visited on 08/02/2022).

[19] Rainer Koschke. url: https://www.youtube.com/watch?v=nReGgKgrMrI
(visited on 08/02/2022).

[20] Rainer Koschke. “Auge in Auge mit Ihrer Softwarearchitektur”. AG Soft-
waretechnik, University of Bremen, 2020.

[21] James Lewis and Jeff Sauro. “The Factor Structure of the System Usability
Scale”. In: vol. 5619. July 2009, pp. 94–103. isbn: 978-3-642-02805-2. doi:
10.1007/978-3-642-02806-9_12.

[22] Bryan O’Sullivan. 2015. url: https://book.mercurial-scm.org/read/
(visited on 05/17/2022).

72

https://www.youtube.com/watch?v=i4PZWPwV5iI
https://www.youtube.com/watch?v=UaVRHIVxY-c
https://www.youtube.com/watch?v=loU7_j6ZFkc
https://www.youtube.com/watch?v=nReGgKgrMrI
https://doi.org/10.1007/978-3-642-02806-9_12
https://book.mercurial-scm.org/read/

	Introduction
	Abstract
	Current Situation
	Limitations of SEE

	Aims of This Project

	Background
	Version Control Systems
	Basics
	Types of VCS

	Unity Game Engine
	Code Cities
	Code Smells
	SEE
	GXL
	LibVCS4j
	How Does This Work Blend In?

	Design
	General Design
	Visualizing Changes From Multiple Branches
	Renaming Files

	Arborext
	Requirements
	Concepts

	SEE Extension
	Requirements
	Concepts

	Implementation
	Arborext
	Usage of Version Control Systems
	GXL Export

	SEE Extension
	Colors of Branches

	Evaluation
	Design of the Study
	Hypothesis to Examine
	The SEE Executable
	The Tasks and Questions
	Execution

	Results and Discussion

	Conclusion And Outlook
	Conclusion
	Outlook

	Bibliography

