
Deobfuscating JavaScript

M. Sc. Computer Science thesis

Jan Frederick Walther

30.05.2022

E R K L Ä R U N G

Ich versichere, die Masterarbeit oder den von mir zu verantwortenden Teil einer

Gruppenarbeit*) ohne fremde Hilfe angefertigt zu haben. Ich habe keine anderen

als die angegebenen Quellen und Hilfsmittel benutzt. Alle Stellen, die wörtlich

oder sinngemäß aus Veröffentlichungen entnommen sind, sind als solche

kenntlich gemacht.

*) Bei einer Gruppenarbeit muss die individuelle Leistung deutlich abgrenzbar und

bewertbar sein und den Anforderungen entsprechen.

Bremen, den ___________________

 (Unterschrift)

1 Intro

Since its inception in 1996, JavaScript, or as this thesis will call it, ECMAScript, has established itself
as the premier choice for running code within a web browser. With the introduction of platforms
like Node.js, ECMAScript has also been adopted outside of the browser. It is also a target for other
programming languages like Kotlin, TypeScript, or Dart. This ubiquitous presence allowed ECMAScript
to be present on many hardware platforms. Smartphones and desktop computer users retrieve and
execute ECMAScript mostly unbeknownst to them while accessing various websites.

It has become common practice to apply multiple kinds of lossless compression to their ECMAScript
files, as is indicated by over fifteen million weekly downloads of UglifyJS[5]. This tool minifies EC-
MAScript files, which includes renaming all variables and functions with random, short, and unique
names to save space without modifying the semantics of a program. In addition to that, it also removes
superfluous whitespace. A curious user may undo the last transformation of the source code by using
a formatting tool, the former not so much.

In addition to benign compression, a more nefarious use case for software makes ECMAScript harder
to read and comprehend for humans. This process is called obfuscation. Malicious software authors
sometimes employ it to hide their intent from the user. These use cases can range from browser privacy
violations to malicious software deployed on the user’s computer using an ECMAScript interpreter
native to the operating system.

A simple example of visualizing this process is considering a simple program that only outputs the
number one thousand in decimals. The commonly used way in ECMAScript would be console.log
(1000). The function output to the console is insignificant and will be omitted for this example. A
valid ECMAScript program may represent the number itself in numerous ways. Replacing the integer
with 500 + 500 would yield the same result as replacing it with a hexadecimal representation (0
x3E8). Both ways of representing the numeric value 1000 keep the program’s semantics intact while
modifying its syntax. Transformations like these may be applied automatically on a program-wide
scale, significantly hampering the source code’s readability.

While classical approaches may remove structural obfuscation, to some extent, they may not undo the
automated renaming employed by benign and malicious agents.

This thesis introduces a deobfuscation program that combines the classical approach to deobfuscation
with machine learning to increase the readability of obfuscated programs. This deobfuscation will

1

Deobfuscating JavaScript 30.05.2022

hopefully allow casual users and reverse engineers more insight into the code running on their internet-
connected devices and gauge an obfuscated application’s intent.

The classical approach includes techniques already in use in optimizing compilers. The machine
learning component will attempt to restore the identifiers replaced in the obfuscation or minification.
It acquired this ability from training on a massive dataset of open-source ECMAScript projects. This
technique allows for a partial restoration of information erased in the obfuscation process.

This thesis will begin by analyzing the state-of-the-art in ECMAScript deobfuscation in chapter 2.

The thesis will then move on to the foundational knowledge around ECMAScript and programming
languages in chapter 3 to allow even a casual observer of the ECMAScript language to understand the
topics discussed.

It will then move on to analyzing the adversaries within this space by looking at a commonly used
obfuscation software and a hand-picked selection of obfuscated malware samples in chapter 4.

With the adversaries in mind, it will move on to the implementation in chapter 5. It will include the
reversal of the obfuscation discussed in the previous chapter and explain the design choices taken
within the deobfuscation software.

The thesis will then include an evaluation chapter 6, which is based upon a case study of a deobfuscated
program and a survey.

Ideas for continuing the ideas and implementations introduced in this thesis are presented in chapter
7.

This thesis will discuss the results in chapter 8.

Jan Frederick Walther 2

2 State of the art

This section will attempt to capture ECMAScript deobfuscation’s state of the art. The existing solutions
can be sorted into two categories. The first category contains tools that attempt to utilize machine
learning to deobfuscate code. The second category instead utilizes classical optimizations taken from
compiler theory instead.

2.1 JSNice

JSNice was released as part of a research project called “Predicting Program Properties from”Big
Code” “ by Raychev et al. in 2015[29].

JSNice does not focus on deobfuscating expressions but instead intends to infer names and types of
variables using machine learning. ECMAScript does not support type annotations at the time of writing,
so the inferred types are added as comments above the declaration instead.

It is based on Google’s Closure Compiler, which will be discussed later in this chapter, and uses the
same comment syntax for type annotations.

To train the underlying model, “10,517 JavaScript projects [were downloaded] from GitHub”[29, p. 120].
The subsequent evaluation of the trained model was done on 50 ECMAScript repositories from BitBucket
sorted by the number of commits. The authors chose BitBucket to reduce the probability of overlap
between training and evaluation data. As part of their due diligence, they ran additional checks to
ensure that the repositories from GitHub did not include those downloaded from BitBucket.

The evaluation was done by first applying UglifyJS[5] on all test files, erasing all identifiers, and replacing
them with short, automatically generated identifiers to reduce the file size. Existing type annotations,
extraneous whitespace, and comments are removed. These type annotations are not a part of the
official specification but rather a community-driven effort to ease debugging and maintainability.
Multiple different formats exist but are limited to exist in comments due to the syntactical limitations
of the language. Several configurations of JSNice were then used to evaluate the precision. These
configurations included a system with access to all training data, one with access to 10% of the training
data, and one with access to1% of the training data. Another configuration that keeps all identifiers
and annotates every type with the most common type, string, was added as a baseline.

The researchers then compared the name predictions to the original identifier names before applying
UglifyJS. This evaluation yielded an accuracy of 63.4% for the system that had access to all the training
data[29, p. 121]. The system with access to 10% of the training data correctly predicted the identifiers
with a chance of 54.5%[29, p. 121]. The system with access to only 1% of the training data yielded an

3

Deobfuscating JavaScript 30.05.2022

accuracy of 41.2%[29, p. 121]. Comparing these results to the baseline indicates an improvement over
no prediction, which only yielded an accuracy of 25.3%[29, p. 120].

The precision of the prediction of type annotations indicated that it was less dependent on large
datasets. The difference between the system that had access to all training data (81.6%) and the one
that had access to only 1% of the training data (77.9%) was a mere 3.7%[29, p. 121]. The research did
not analyze the efficacy of JSNice on programs that employed additional obfuscation techniques.

It has to be noted that UglifyJS will not rename global variables, which may inflate the precision[29,
p. 121].

2.2 JSNaughty

JSNaughty combines JSNice and another solution for recovering identifiers called “AUTONYM”. Au-
tonym utilizes statistical machine translation (SMT), a technique used in natural language processing.
“SMT is a data-driven approach to machine translation, based on statistical models estimated from
(large) bi-lingual text corpora”[38, p. 684]. The training is done similarly to JSNice as both employ
UglifyJS to generate obfuscated source code from code taken from openly available repositories.

The researchers observed “that the static analysis based JSnice[sic] and our simpler, SMT (Moses) based
Autonym perform comparably. The precision values for JSnice are more dispersed: the interquartile
range is 0–67%, with a median of 25%; in contrast, Autonym has higher median precision, 30%, but the
distribution is more concentrated (IQR 10–60%)”[38, p. 690].

2.3 Google Closure Compiler

Google developed the closure compiler as a part of their Closure suite of tools and libraries to build
“powerful and efficient JavaScript”[19]. It applies classical compiler techniques to optimize and min-
imize ECMAScript code. The project’s source code is freely available and may be used as a source
for analyzing the techniques it employs. However, what separates it from the previous entries in
this chapter is that it is not meant to transform code to make it easier for humans to understand but
rather to make it smaller and more efficient for ECMAScript interpreters. It may, therefore, also apply
optimizations to the code, making it harder for humans to understand.

Since the resulting code is meant to be executed, it may not perform some optimizations that could
improve the readability at the cost of generating invalid or inefficient code. This thesis aims not to
make code run faster but to improve its readability. Therefore, it may assume more properties about
the code that may result in readable but not necessarily executable code.

Optimizations are grouped into different levels. These levels are “whitespace-only”, “simple”, and
“advanced”. The following paragraphs will highlight some techniques the closure compiler applies at
different optimization levels[18].

Optimizations at the whitespace-only level only affect the whitespace within the input program. It is

Jan Frederick Walther 4

Deobfuscating JavaScript 30.05.2022

removed to save space as it is a lossless way of compressing an ECMAScript program. This optimization
may be undone using a formatting tool. A later chapter will analyze why this transformation may not
be side effect free in some cases.

The compiler will rename local variables at the “simple” level using a similar method to the previously
discussed UglifyJS. This optimization is harmful to the readability of the generated code and may not
be disabled without modifying the source code of the Closure compiler directly.

At the advanced level, the compiler will optimize the code more aggressively, including more aggressive
renaming, inlining, and dead code removal. These optimizations warn that the generated code may be
invalid if some assumptions the compiler makes do not apply to the code.

2.4 SAFE-DEOBS

SAFE-DEOBS is a project developed by Adrian Herrera using the SAFE framework. It is designed to
use existing techniques used by optimizing compilers to deobfuscate ECMAScript programs with a
particular focus on ECMAScript-based malware.

It operates only on the abstract syntax tree as the SAFE framework does not support transforming back
from higher levels of intermediate representation[14, p. 3]. However, information gathered from the
control flow graph is still used for optimization purposes.

It implements several techniques that are implemented[14, p. 3] within this thesis as well. The first of
these techniques is constant folding, which is discussed in section 5.2. Constant propagation, imple-
mented under the name inlining within this thesis, is also supported. Another technique implemented
by both SAFE-DEOBS and this thesis is dead-branch removal. Function inlining, called “constant evalu-
ation” in this thesis, is also implemented. It also implements variable renaming but uses a different
approach than this thesis.

The results of the deobfuscation were analyzed using escomplex, which employs traditional code
complexity metrics such as physical lines of code, number of functions, cyclomatic complexity, and
Halstead length. The evaluation of this thesis will do the same analysis to compare its results to
SAFE-DEOBS.

Jan Frederick Walther 5

3 Technical Background

This chapter will begin with the foundational knowledge required for working with formal languages.
It will then introduce the basic concepts of ECMAScript and explain its complicated history. Afterward,
it will introduce the basic concepts of software obfuscation to prepare the reader for the subsequent
chapters.

3.1 Programming languages

Humans have built specialized languages to communicate with other humans more efficiently because
all participants share knowledge. Well-known examples are “artificial languages, like the logical
propositions of Aristotle or the music sheet notation of Guittone d’Arezzo” [2, p. 5]. Konrad Zuse
laid the foundation for this development in the space of computer science in 1945 with “Plankalkül”,
his extensions of David Hilbert’s “Aussagenkalkül” (propositional calculus) and “Prädikatenkalkül”
(predicate calculus)[22, p. 203].

Plankalkül, however, except for “brief excerpts”, wasn’t published until 1972[22, p. 203]. Konrad Zuse
designed the language “with the aim to provide a uniform language of formulae adapted to all kinds of
calculating problems” [41, p. 1].

The term “formal language” will be used to differentiate the “artificial” languages introduced in the
preceding paragraphs from the languages that have naturally developed for inter-human communi-
cation. The following chapter will briefly introduce the basics, especially the mathematical notation
needed to interact with formal languages and this thesis.

3.2 Formal languages

The following definitions are taken in abridged and sometimes verbatim from Peter Linz’s 2001 work
“An Introduction to Formal Languages and Automata” [24, pp. 14–26]. Basic knowledge of set theory
and the related notation is considered a prerequisite for this thesis.

3.2.1 Definitions

A formal language is defined over an underlying alphabet, often denoted by either A or the Greek letter
sigma (Σ), which is a non-empty set of symbols. This thesis will use the latter notation. In a natural

6

Deobfuscating JavaScript 30.05.2022

language, like the English language, the counterpart would be the Latin alphabet consisting of 26
letters in a lower and an upper case variant.

From the symbols defined by the alphabet, finite sequences of the symbols may be formed. These
sequences of symbols are called strings and are pretty similar to the concept of strings from a multitude
of high-level programming languages.

Given the alphabet Σ = {a, b} the string ”aa” is a string on Σ or more formally: ”aa” ∈ Σ.

Strings may be concatenated w = ab, with a ∈ Σ and b ∈ Σ and the concatenation will also be a string
on Σ. This example can also introduce the concepts of prefixes and suffixes. a would be called a prefix
of w, and b would be called a suffix.

The length of a string is the number of symbols contained within and is denoted by |a| where a ∈ Σ.

An alphabet always contains the empty string, which is usually, depending on the source, denoted by
either ϵ or λ. For this thesis, it will be denoted as ϵ. The length of the empty string is 0 (|ϵ| = 0). A string
may be exponentiated wn with w ∈ Σ which means that w is concatenated with itself n-times. The
special case of n = 0 is defined as w0 = ϵ.

Exponentiation is also defined for alphabets where Σn is the set of all strings obtained by concatenating
n elements of Σ. The infinite set of all possible strings that can be obtained by concatenating zero
or more symbols from Σ is denoted as Σ∗. Since ϵ ∈ Σ by the definition of alphabets it follows that
{ϵ} ⊂ Σ∗. The set of all obtainable strings except for the empty string is denoted as Σ+ = Σ∗ − {ϵ}.

3.2.2 Formal grammars

However, a string of the alphabet Σ is not necessarily a word of the language L, which is defined over
Σ. Formal grammars define which strings are elements (or words) of the language L. A grammar in
formal languages is very similar to its natural counterpart, with the main difference being that the
former is well defined while the latter is malleable and imprecise.

Peter Linz defines formal grammars as a quadruple G = (V, T, S, P) with:

• V being a finite set of objects called variables (sometimes called non-terminals)
• T being a finite set of objects called terminal symbols
• S ∈ V being the special start variable symbol
• P being a finite set of productions

With V ̸= ∅, T ̸= ∅ and T ∩ V = ∅. The set of productions P , sometimes called production rules, is a
set of rules that specify how non-terminal symbols in a string may be transformed into another symbol.
Transformations of this nature are denoted as x → y, where x ∈ (V ∪ T)+ and y ∈ (V ∪ T)∗. Given
the strings w = uxv and z = uyv with u, v, y ∈ (V ∪ T) and x ∈ V the rule above would be applied
as w ⇒ z. w ⇒ z is said as w derives z or z is derived from w.

Productions may be applied as often as desired and applicable. w1 ⇒ w2 ⇒ · · · ⇒ wn can be said as
w1 derives wn. This can be contracted to w1

∗⇒ wn to indicate that wn can be derived from w1 in an
undefined, and possibly zero, number of steps.

Jan Frederick Walther 7

Deobfuscating JavaScript 30.05.2022

The set of all strings, starting from the start symbol S, that can be obtained by applying the production
rules, in any order, is the language defined or generated by the grammar. So with G = (V, T, S, P) the
set L(G) = {w ∈ T ∗ : S

∗⇒ w} is the language generated by G.

3.2.3 Chomsky hierarchy

Noam Chomsky introduced a hierarchy of formal languages[8] to further reason about formal languages
and their generating grammars. The so-called Chomsky hierarchy divides formal languages into four
types based on the production rules they define. Chomsky also defines the closure properties of each
type of formal grammar.

The following sections will briefly glance over type 0 and type 1 languages as they are of little importance
to this thesis and elaborate further on the remaining types of languages. Please note that all types
within the hierarchy are subsets of higher types. This fact is visualized in figure 3.1. Therefore, all
regular languages are a subset of context-free languages. All context-free languages are subsets of
context-sensitive languages, and all context-sensitive languages are part of the recursively enumerable
languages[24, p. 295]. Languages outside this hierarchy are proven to exist but are nonessential to this
thesis[21, p. 372].

regular

context-free

context-sensitive

recursively enumerable

Figure 3.1: A graphical representation of the sets of languages included in the Chomsky hierarchy.
Source: J. Finkelstein, CC BY-SA 3.0, via Wikimedia Commons

Even though the hierarchy is used as a standard material in automata theory and formal languages, it
was designed with natural languages in mind. Nevertheless, it lays the foundation for understanding
how a computer reads formal languages.

3.2.3.1 Type 3: Regular

Languages are considered regular if and only if there is a deterministic finite automaton that accepts
them. Regular expressions may be used to express regular languages. ECMAScript, among other
programming languages, supports regular expressions, albeit in an extended version. The symbols
of such a regular expression that can represent a regular language are the symbols of the underlying
alphabet and three operators (Σ ∪ {+, ·, ∗}).

The plus operator is defined as union operator so given the alphabet Σ = {a, b} and the regular
expression r = a + b the language generated by r would be L(r) = {ϵ, a, b}[24, p. 72]. This behavior

Jan Frederick Walther 8

https://creativecommons.org/licenses/by-sa/3.0

Deobfuscating JavaScript 30.05.2022

differs from the behavior of regular expressions as they are known from programming languages such
as ECMAScript or Perl. It signifies repetition, but instead of zero or more, it represents one or more
repetitions. A vertical bar (|) is usually used as a union operator instead.

The star operator, also known as Kleene star, Kleene closure or star closure[21, p. 87], denotes the zero
or more occurrences of the preceding symbol(s). The language generated by the alphabet Σ = {a}
and the regular expression r = a∗ would be L(r) = {ϵ, a, aa, aaa, . . .}. This behavior is also used in
regular expressions, implemented in programming languages like ECMAScript or Perl.

The dot operator signals concatenation and may be omitted[24, p. 74]. So the language generated by
the alphabet Σ = {a, b} and the regular expression r = a · b would be L(r) = {ϵ, ab}.

Noam Chomsky defines constraints on the production rules of each type of grammar in “On Certain For-
mal Properties of Grammars”[9]. For regular languages he defines those constraints that all production
rules may only be of the form A → a or A → aB with a ∈ T ; A, B ∈ V and a ̸= ϵ[9, p. 149].

3.2.3.2 Type 2: Context-free

Context-free grammars are the foundation of modern programming languages[3, p. 40]. They are
primarily represented in the Backus-Naur-Form or the extended variant, which section 3.2.4 will visit
and explain in-depth[3, p. 40].

Parsing, the process of finding a sequence of derivations by which an input w ∈ L(G) is derived[24,
p. 136], is proven to always work on context-free grammars. It is furthermore proven that the derivation
for any w ∈ L(G) can be found “in a number of steps proportional to |w|3”[24, p. 139].

Furthermore, software capable of automatically generating code to parse context-free languages has
been developed. It may generate the code for a multitude of popular programming languages. Those
parser generators usually take an extended version of the Backus-Naur form from section 3.2.4.

Context free languages are constrained to production rules of the form A → α with α ∈ V ∪ T ∪ {ϵ}[9,
p. 150].

3.2.3.3 Type 1: Context-sensitive

Context-sensitive languages are constrained to production rules of the form αAβ → αγβ, where
α, β, γ ∈ (V ∪ T)+; A ∈ V and γ ̸= ϵ[9, p. 142].

An alternative definition can be found in Peter Linz’s “An Introduction to Formal Languages and Au-
tomata”[24]. Context-sensitive grammars after Linz are defined as a grammar G, where all production
rules are of the form α → β where α, β ∈ (V ∪ T)+ and |x| ≤ |y|[24, p. 289]. This definition observes
that grammars of those types can also be called non-contracting as “the length of successive sentential
forms can never decrease.” [24, p. 290].

Jan Frederick Walther 9

Deobfuscating JavaScript 30.05.2022

3.2.3.4 Type 0: Recursively enumerable

Recursively enumerable languages have no constraints [9, p. 143] and are equivalent in complexity to
a Turing machine[24, pp. 284–286]. They are of little practical use in programming languages as even
trivial properties tend to be undecidable due to the nature of Turing machines[24, p. 309]. The only
restriction applied to them is that the left-hand side of the production rules may not be empty as per
the definition of production rules[24, p. 283].

3.2.4 Backus–Naur form

The Backus-Naur form (BNF) is a way to describe context-free grammars in an easily understood format.
It is known for widespread use when describing the grammar of a programming language[24, p. 146].
Non-Terminals are placed on the left-hand side of the assignment operator (::=). The right-hand side
represents the production rules for the preceding non-terminal. As defined above, they may contain
terminal symbols as well as non-terminals. Terminal symbols are rendered as-is, while non-terminal
(or variable) symbols are rendered in angle brackets instead. Alternatives are denoted by a vertical line
character (|).

The following is an example of a formal grammar described in BNF. It describes a formal grammar for
displaying basic arithmetic expressions onN0 with the following operators:

• + for addition
• − for subtraction
• ∗ for multiplication
• / for division

The grammar enforces the precedence of multiplicative operations over additive by splitting the opera-
tors into two different non-terminal symbols. Infinite leading zeroes for the Constant productions
are included in this grammar for brevity.

1 Expression ::= <Term> | <Term> <AdditiveOperator> <Term>
2 AdditiveOperator ::= + | -
3 MultiplicativeOperator ::= * | /
4 Term ::= <Factor> | <Factor> <MultiplicativeOperator>

<Factor>
5 Factor ::= <Constant> | (<Expression>)
6 Constant ::= <Digit> | <Digit> <Constant>
7 Digit ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

The use of the BNF becomes obvious immediately once one considers the underlying production rules
of the represented grammar. The first few production rules of the above grammar are listed below to
illustrate this fact.

• S → Expression

• Expression → Term

• Expression → Term AdditiveOperator Term

• AdditiveOperator → ” + ”

Jan Frederick Walther 10

Deobfuscating JavaScript 30.05.2022

• AdditiveOperator → ” − ”
• MultiplicativeOperator → ” ∗ ”
• MultiplicativeOperator → ”/”
• · · ·

It becomes apparent that the Backus-Naur form provides a more concise way of representing context-
free grammars. Multiple extensions to the Backus-Naur form as defined by John Backus and refined by
Peter Naur have been accepted, and some have even been standardized.

The most important extension is the aptly named extended Backus–Naur form (EBNF). One feature
added to this extension is the optional operator, designated by square brackets. For example the line
Expression ::= <Term> | <Term> <AdditiveOperator> <Term> could be written as
Expression ::= Term [AdditiveOperator Term], making the representation even more
concise.

Another extension is the repetition operator, as designated by braces. For example, the line that defines
the rules for the Constant non-terminal could instead be written using the repetition operator as
Constant ::= {Digit}. EBNF further eliminates the requirement for angle brackets around
non-terminals by requiring terminals to be within quotation marks instead. The extended form also
eases incorporating special characters from BNF (<, >, ::=, |) into a formal grammar.

3.2.5 Ambiguities

As mentioned in the section 3.2.3.2, context-free grammars are used as the foundation of most modern
programming languages. The programming language C++ includes in the 2020 iteration of its standard
specification that the language generated by the context-free grammar included in the standard is
a superset of the valid C++ programs[20, §A.1]. The C++ programming language is but one example
where programming languages diverge from the theoretical construct of a formal language.

An easy-to-understand example of this behavior in C++ is the ambiguity between variables and types.
Suppose the construct A * B;were to be parsed. With the C++ programming language in mind, it
becomes evident that its meaning depends entirely on whether A is a type or A and B are declared as
variables. In the first case, it would be a declaration of a pointer of the type A with the identifier B,
and in the latter case, it would be a multiplication with a discarded result. Both are valid statements
and need to be resolved. Eli Bendersky describes how different C and C++ parser implementations
solve this problem. He describes that the usual way of dealing with this ambiguity is to amend an
automatically generated C or C++ parser (what he calls the “lexer hack”) with a bidirectional data flow
between the lexer and the symbol table[6].

3.3 Compiling & Interpreting

After introducing the theoretical foundations of formal languages, we will cover how a given text in a
formal language is translated into a semantically equivalent program. The structure of this chapter

Jan Frederick Walther 11

Deobfuscating JavaScript 30.05.2022

will mirror the chapter “The structure of a compiler” from Alfred Aho et al.’s “Compilers: principles,
techniques, & tools”[3]. Due to the age of the source mentioned above, this thesis will add updates
and alternatives as necessary.

Aho et al. begin by splitting the processes of a compiler into two phases. The first one is analysis, and
the second one is synthesis. “The analysis part breaks up the source program into constituent pieces
and imposes a grammatical structure on them” [3, p. 4].

The second phase, synthesis, is responsible for turning the intermediate representation produced by
the first phase. However, the exact details for this phase are not particularly relevant for this thesis as
the target is not creating an executable program. The focus lies on generating deobfuscated source
code instead.

Aho et al. begin the first phase with the “Lexical Analyzer” (sometimes also referred to as Lexing)[3,
p. 5]. They then proceed to the syntactical analysis and finally move on to the semantic analysis.

This chapter will also serve as an overview of how real-world implementations of programming lan-
guages and their parsers differ from their theoretical origins.

3.3.1 Lexical analysis

Modern compilers usually do not process the input character stream directly but instead work on tokens.
A token is a container of a token type and an optional attribute reference. While Aho et al. describe the
token attribute as a reference to the symbol table, modern compilers usually represent tokens in an
object-oriented manner. As such, the attributes are fields of the token object. The token’s location in
the source code is often included as an attribute of tokens to ease handling analysis errors.

An example of tokens would be identifiers, which are used for many constructs in programming
languages. Some use-cases are to name methods, variables, and classes within certain programming
languages, keywords, or literal values.

Turning the character stream of the input source code into a stream of tokens is done by using lexemes.
A lexeme is defined as a “sequence of characters in the source program that matches the pattern for a
token and is identified by the lexical analyzer as an instance of that token” [3, p. 111]. A pattern is “a
description of the form that the lexemes of a token may take” [3, p. 111]. This description may take the
form of a regular expression in some cases[3, p. 117].

Usually, those regular expressions are extended versions of the regular expressions introduced in
section 3.2.3.1. The extensions introduced by Aho et al. include the introduction of the postfix one-or-
more operator “˙”, which is represented by a postfix + in ECMAScript[3, p. 124]. The second extension
is the postfix zero-or-one operator, which Aho et al. and ECMAScript denote with a ?[3, p. 124]. The final
and most complex extension introduced by Aho et al. is character classes. They allow the grouping
of a set of characters to be reused. An example of this would be [A-Z], which is the character class
that describes all uppercase ASCII characters. The regular expression for an identifier could, using
these extensions, be defined as [A-Za-z_][A-Za-z0-9_]*. This regular expression would allow
all identifiers beginning with an upper- or lowercase letter or an underscore followed by an arbitrary

Jan Frederick Walther 12

Deobfuscating JavaScript 30.05.2022

number of letters, underscores, or digits.

Aho et al. define five categories that the tokens usually found in a programming language can be sorted
into. The following section will introduce these five categories with a short paragraph and examples
from the ECMAScript specification.

• Keywords: Keywords like if and else, have the keyword itself as patterns. These tokens
usually do not require any additional attributes beyond their location in the character stream,
which is used for diagnostics and error messages. A sample lexeme for a keyword token would
be “if” for the keyword if.

• Operators: Every operator, binary and unary, is assigned a token in the operator category.
Additional attributes beyond the location are usually unnecessary in this category. Example
lexemes would be <=, -, !, or ==.

• Identifiers: The Identifiers category contains all tokens used as identifiers. These identifiers
usually contain an attribute that contains the raw value of the identifier from the character
stream. An example of this would be main as a function identifier for the main function.

• Constants: Constants, which are sometimes called literals, are constant values such as strings
which are usually denoted by being contained within quotation marks, numeric literals such
as floating-point numbers or integers in decimal, hexadecimal, or octal representation. The
tokens in this category usually contain the raw value from the character stream as an additional
attribute. In most cases, different representations are implemented as the same token. A parsing
software may add an attribute for the numeric representation. Depending on the parser software,
the information may also be discarded. This loss of information could make the source code
harder to understand when transformed into a human-readable format. Example lexemes for
these would be 0x3F, 42, "Hello World!", and 1.33.

• Punctuation: This category contains tokens for all the punctuation used “such as left and right
parentheses, comma, and semicolon” [3, p. 112]. Additional attributes beyond the location in
the character stream are usually not needed.

ECMAScript, in particular, defines the categories “reserved words, identifiers, literals, and punctuators”
[12, § 5.1.2].

Lexical analysis can also remove comments from the input stream early. Since they are of no meaning
for the rest of the parsing process in most languages, they can be discarded early on. ECMAScript
differs as some programs may utilize comments to add improvised type annotations to programs.

3.3.2 Syntactical Analysis

Once the transformation of the stream of characters into a stream of tokens is complete, the syntactical
analysis begins. This process can take many forms, most of them outside of the scope of this thesis.
The most important types of parsers will be introduced, and their drawbacks will be highlighted
accordingly.

Jan Frederick Walther 13

Deobfuscating JavaScript 30.05.2022

The product of all highlighted parsing methods is the so-called parse tree. According to Aho et al., a
parse tree meets the following four properties[3, pp. 45–46]:

1. The root is labeled by the start symbol.
2. Each leaf is labeled by a terminal or by e.
3. Each interior node is labeled by a nonterminal.
4. If A is the nonterminal labeling some interior node and X, X2, · · · , Xn are the labels of the

children of that node from left to right, then there must be a production A → X1X2 · · · Xn. Here,
X1, X2, · · · , Xn each stand for a symbol that is either a terminal or a nonterminal. As a special
case, if A → ϵ is a production, then a node labeled A may have a single child labeled ϵ.

To illustrate this concept we’ll return to the example grammar from section 3.2.4 and build a parse tree
for the expression s = 13 + 10 ∗ 5 + 1. The data structures representing the non-terminal symbols
will have to be defined to build a parse tree. The EBN form already dramatically simplifies this task by
adding optional values. The structure needed for the Expression non-terminal, which is defined
as Expression ::= Term [AdditiveOperator Term], can be represented by a structure
that contains one field for the right-hand side term, one for the left-hand side, and a field for the
additive operator. However, the last two fields are optional, as described in the grammars EBNF. The
AdditiveOperator non-terminal can be represented as a data structure containing one of the
terminal symbols + or -. Term can be defined analogously to Expression.

The full derivation of the 10 in 10 * 5 would look something like MultiplicativeExpression,
ExponentiationExpression, UnaryExpression, UpdateExpression, LeftHandSideExpression,
OptionalExpression, MemberExpression, PrimaryExpression, Literal. This nesting is done to
enforce operator precedence within the parse tree. However, the operator precedence is established
once the expression has been parsed, and the intermediate steps may be purged. Purging all
intermediate steps from a parse tree converts the parse tree into the so-called abstract syntax tree.

An example of an abstract syntax tree can be seen in figure 3.2. The BinaryExpression nodes are
represented by their operator and Literal nodes by their value.

In their work “Compilers: principles, techniques, & tools”, Aho et al. define two groups that most parsers
may be sorted into [3, p. 61]. Those two types are bottom-up parsers and top-down parsers. The names
of the types are based on how they construct the resulting parse tree. While a top-down parser will
construct the parse tree starting from the root node, a bottom-up parser will do the opposite and begin
construction from the leaves of the parse tree structure.

Aho et al. attribute the popularity of top-down parsers to the relative ease of constructing an efficient
parser by hand instead of bottom-up parsing[3, p. 61].

Bottom-up parsers “can handle a larger class of grammars and translation schemes, so software tools
for generating parsers directly from grammars often use bottom-up methods”[3, p. 61].

• Recursive Descent parsers implement a dedicated function for each non-terminal symbol of the
grammar. They belong to the group of top-down parsers and are often chosen when a parser has
to be implemented manually due to their simplicity. Both V8 and SpiderMonkey, the ECMAScript
engines used in popular browsers and other software, employ recursive-descent parsers to parse

Jan Frederick Walther 14

Deobfuscating JavaScript 30.05.2022

Figure 3.2: Abstract syntax tree of the expression s = 13 + 10 ∗ 5 + 1

Jan Frederick Walther 15

Deobfuscating JavaScript 30.05.2022

ECMAScript.
• LL(k) where k specifies the number of tokens of lookahead provided to the parser. A language

from this set is usually called LL(k) grammar. It also belongs to the group of top-down parsers.
They are limited because they can only parse a subset of context-free languages[13].

• LR(k) where k specifies the number of tokens of lookahead provided to the parser. They belong
to the group of bottom-up parsers, and their main drawback is that manually constructing
such a parser is very complicated due to the non-intuitive way they work. Compared to top-
down parsing, it allows recognizing more languages at the cost of worse error reporting and
complexity[13].

3.3.3 Semantical Analysis

With ECMAScript being a dynamically typed language, it is also not necessary or possible to perform
type checking at this point except for trivial cases. Statically typed programming languages will use
this step to enforce their typing system.

ECMAScript performs error handling during this stage. The mechanism is called “early error” and is
defined per production basis. As an example, the WithStatement defines two early errors. The first
is that the production is considered a syntax error if contained within strict mode code. The second
is only applied under certain preconditions and specifies that it is considered a syntax error if the
expression is a labeled function.

This thesis operates because only valid programs may be supplied as input. This restriction allows it to
skip the semantical analysis in most situations.

3.4 JavaScript

JavaScript is a programming language derived from two commercial, proprietary implementations of a
web browser-focused scripting language. The original implementation, called JavaScript, was featured
in a web browser named Navigator by the American company Netscape. Microsoft then decided to
re-implement the language under a different name, specifically JScript, in the new version 3.0 of their
product Internet Explorer[28, p. 45].

This development prompted Netscape to seek standardization of the language under the overview
of the non-profit ECMA. The name used to be an acronym for “European Computer Manufacturers
Association” but was changed in 1994 to reflect the organization’s global influence [15].

Despite the similar name, there is no relation to the Java programming language developed by Sun
Microsystems and then later Oracle. However, the name became an issue when the standardization
process began because the term Java was already trademarked by the Sun Microsystems corporation,
which now belongs to the Oracle corporation. In addition to that, the word JavaScript was also
trademarked by the Sun Microsystems corporation in the United States before the beginning of the
standardization process in November 1996[37]. This trademark led to the new name of ECMAScript for

Jan Frederick Walther 16

Deobfuscating JavaScript 30.05.2022

the standardized version of the language[28, p. 45].

Despite the registered trademarks, the implementation of the ECMAScript standards is referred to as
JavaScript, while the standards themselves are referred to as ECMAScript[28, p. 45].

This thesis will refer to the language defined by the ECMAScript standard as ECMAScript from here on
out. The standard will be referred to as the ECMAScript standard or the ECMAScript specification.

3.4.1 Paradigms

ECMAScript features, as is usual for scripting languages, a multi-paradigm approach. Its typing system
is dynamic and weak, with type annotations not officially supported by the ECMAScript specification.
Comment-based type annotations have been adopted by some tools, as mentioned in section 2.1.
There are plans to adopt optional, explicit type annotations as part of the language[34].

This thesis will also cover some of the implicit type conversions within ECMAScript.

Features from object-oriented programming can be found in ECMAScript through the recently added
support for classes. Abstract classes and inheritance are supported. The type system renders the
existence of interfaces meaningless as the boundaries may be broken trivially and even acciden-
tally. ECMAScript, therefore, does not support interfaces. Presumably destined for this feature, the
implements keyword is a future reserved word. At its core, ECMAScript is a prototyped language,
however

Functional aspects of ECMAScript can be found in the associated methods of arrays. ECMAScript
provides routines for mapping, filtering, and reducing this way. Other higher-order functions such as
currying are supported as well.

Procedural and imperative patterns may be built using the various control-flow statements afforded
by ECMAScript.

Event-driven aspects can be found when interacting with the document object model (DOM). The DOM
represents the currently displayed website when ECMAScript is used in the context of a browser. It is
a tree structure containing the HTML nodes as ECMAScript objects. Each node within this tree may
emit events that may be listened to by attaching a function to the event. For example a button may be
defined in HTML like this: <button onclick="clickHandler()">Button</button>.

This button will be labeled by the text “Button” and will execute the function clickHandler() once
clicked. Event handlers may also be attached by traversing the DOM and setting the property value of,
for example, the onClick event.

3.4.2 Structure

Like many other programming languages featuring an imperative paradigm, the ECMAScript abstract
syntax tree nodes feature two subclasses. The first one is statements that regulate the intraprocedural
control flow or declare names and do not evaluate a value. An example of this in ECMAScript would be
the if statement. ECMAScript is mentioned explicitly as some programming languages, such as Rust

Jan Frederick Walther 17

Deobfuscating JavaScript 30.05.2022

and Python, allow using it as an expression.

The second subclass of the nodes is expressions, which, unlike statements, evaluate to a value. Ex-
pressions may be used in the place of statements using the ExpressionStatement. Expressions
may also influence the intraprocedural control flow. For example, an expression might do this by
throwing an exception implicitly. They may also influence the interprocedural control flow using the
CallExpression, which invokes other functions. However, the control flow will always return to
the calling function in the absence of exceptions.

3.4.3 Data types

The ECMAScript standard defines seven built-in data types introduced during the following chapters.

3.4.3.1 Boolean type

The Boolean type defines true and false as its only possible values[12, § 6.1.3] analog to other
programming languages like Java and C++. When coerced into a numeric data type, true will be
assigned a mathematical value of one. falsewill be given the mathematical value zero instead.

3.4.3.2 Undefined

The ECMAScript standard 12th edition defines the undefined type as follows[12, § 6.1.1]:

The Undefined type has exactly one value, called undefined. Any variable that has not been
assigned a value has the value undefined.

3.4.3.3 Null type

The null type, similarly to the undefined type, only has one value called null[12, § 6.1.2]. Semanti-
cally undefined represents a variable that has not yet been defined, the value of a nonexistent object
property or an empty optional parameter. null is used when a reference to an object is expected[28,
p.11]. Both undefined and null will evaluate to a boolean false when coerced to the boolean
type.

3.4.3.4 String type

The String type is the set of all ordered sequences of zero or more 16-bit unsigned integer values
(“elements”) up to a maximum length of 253 − 1 elements.[12, § 6.1.4]

Jan Frederick Walther 18

Deobfuscating JavaScript 30.05.2022

3.4.3.5 Number type

The number type represents a single floating-point number in the IEEE754-2019[17] double precision
format[12, § 6.1.6.1]. The size of each Number instance is 64 bits, where one bit represents the sign,
eleven for the exponent, and 52 for the fraction, as can be seen in figure 3.3.

To convert the binary format into a human-readable number, the three binary parts are combined as
follows:

If the sign bit is set, the resulting number will be negative. Instead of opting for a twos-complement, the
exponent is offset by 1023. Therefore, to get an exponent of zero, the exponent bits have to be set to
0x3FF in hexadecimal or 1111111111 in binary. The base of the exponentiation is always two. The
fraction part is the sum of one and the sum of exponentiating two, with the index of each bit multiplied
by minus one. So to get a fraction of 1.5 the first bit of the fraction has to be set: 1 + 2−1 = 1.5. This

can be expressed mathematically with the following sum: 1 +
52∑

i=1
fi2−i where f represents the bits of

the fraction and fn represents the nth bit of the fraction.

exponent
(11 bit)sign

fraction
(52 bit)

63 52 0

Figure 3.3: The memory format of an IEEE 754 double-precision floating-point value
Source: Codekaizen, CC BY-SA 4.0, via Wikimedia Commons

The ECMAScript standard follows the IEEE754-2019[17] standard except for the special value “Not-a-
Number” (NaN) where the IEEE754 standard defines 253 − 2 distinct values. Instead of that, there is
only a single NaN value. This deviation from the standard only affects the user-facing part, though. The
actual layout of the NaN value is implementation-specific and may be observed using either an external
tool or the built-in classes ArrayBuffer and SharedArrayBuffer[12, § 6.1.6.1]. A malicious
agent may use this to construct an opaque predicate, which is explained in section 3.5.1.

The ECMAScript specification defines three distinct sets of numbers. The first one is theNumber values,
which are denoted by a subscriptF and represent a number within the limitations of a double-precision
IEEE 754 floating-point value. For example, 0.1F + 0.2F, which results in 0.30000000000000004F due
to the limitations of IEEE 754.

BigInt values, which are represented byZ, represent positive or negative integers.

Finally, the mathematical value is the value of the previously mentioned numeric types mapped into
real numbers’ mathematical space. This set is denoted byR.

Jan Frederick Walther 19

https://creativecommons.org/licenses/by-sa/4.0

Deobfuscating JavaScript 30.05.2022

3.4.3.6 BigInt

The BigInt type represents an arbitrary precision integer type. Because of that, no particular values
are reserved like they are with numbers NaN, negative zero, or Infinity. Operations on BigInt
values “are designed to return exact mathematically-based answers”[12, § 6.1.6.2]. BigInt literal
values may be specified by appending the character n to a numeric literal. They are implemented as
binary strings of arbitrary length and support a sign by considering a sign bit set infinitely far to the
left of the binary string. This out-of-band storage of the sign bit becomes essential for some bitwise
operations encountered later in this thesis.

There is no maximum size defined for the BigInt type values in the ECMAScript specification. Still,
technical limits can be reached quite easily by trying to allocate a BigInt value more extensive
than the available physical or even virtual memory. Exceeding the available memory will result in a
RangeError thrown in V8 and SpiderMonkey. However, this behavior is implementation-defined
and not part of the ECMAScript specification.

3.4.3.7 Objects

The ECMAScript specification defines the Object type as a collection of properties[12, § 6.1.7]. These
properties may take one of two forms, either a data property or an accessor property. Both forms
associate a key, a string or Symbol value, with a set of boolean attributes and either an ECMAScript
value or one or two accessor functions. The attributes are denoted by being enclosed in square
brackets.

The first form, the data properties, associate a key with a value and a set of boolean attributes, similar
to how structures work in other programming languages. This value may be of any of the ECMAScript
types.

The attributes of data properties consist of the following elements[12, § 6.1.7.1]:

• [[Writable]]will cause attempts to set a new value to fail if set to false.
• [[Enumerable]] controls whether a for-in iteration will include this property.
• [[Configurable]] controls whether the code can delete the property, change the form

of the property, or its attributes. Changing the value or setting [[Writable]] to false is
excluded from this restriction.

A programmer may not modify these attributes directly. However, a programmer may modify them
through built-in functions.

Accessor properties provide the functions [[Get]] and [[Set]], both of which are optional, but
at least one has to be provided for the property to be valid. These work similar to getters and setters
in programming languages like Java. The main difference is that the access is handled transparently.
Assigning or reading a value from an accessor property does not differ from doing the same thing
on a data property. The different forms may be distinguished using the built-in function Object.
getOwnPropertyDescriptor().

Jan Frederick Walther 20

Deobfuscating JavaScript 30.05.2022

Accessor properties also contain a set of boolean attributes. It consists of the previously introduced
[[Enumerable]] and [[Configurable]] properties. The former is identical to how it is im-
plemented for data properties, while the latter has no exemptions, unlike those implemented for
data properties. Write protection must be implemented by the user within the [[Set]]method if
desired.

Inheritance is modeled in ECMAScript using so-called prototypes. These prototypes are a property of
the object and are also objects. Prototype objects may themselves also possess a prototype property.
This linked list of prototypes is referred to as the prototype chain, with null being the root element.
Suppose a property can not be found on an object. In that case, the prototype chain is traversed
upwards in search of the property, similar to how virtual method tables work in programming languages
like C++.

3.4.3.8 Symbol

The Symbol type poses, as previously mentioned, as an alternative to the string type for keys of an
object property. “Each possible Symbol value is unique and immutable”[12, § 6.1.5].

The ECMAScript specification defines a set of well-known symbols, which are symbols that are explicitly
referred to by algorithms used in the specification. These symbols are denoted using @@ as a prefix.

An example for this would be the well-known @@iterator symbol, which may be set as an object
property to override the default iterator of an object. This property is used implicitly by the for-of
statement.

3.4.4 Scoping rules

ECMAScript differs in the way scoping works from comparable programming languages.

Variables may be declared using one of the three declarations kinds var, let, and const.

Variables declared using let and const are scoped within their respective block. Any attempt to
access them before their declaration will cause a ReferenceError exception even if a variable with
the same name has been declared in a reachable scope. This behavior can lead to some non-obvious
error cases as outlined by the following code snippet.

1 const a = () => {
2 console.log("foo");
3 };
4 {
5 a();
6 const a = () => {
7 console.log("bar");
8 };
9 }

Intuitively one might think that the global declaration of a() may be invoked here, but a
ReferenceError is thrown instead. According to some sources, this phenomenon is called the

Jan Frederick Walther 21

Deobfuscating JavaScript 30.05.2022

“temporal dead zone”[39] [25] [1]. The ECMAScript specification does not acknowledge this term.

Specifying an initial value for variables declared as let is optional. undefined is used as a default
value for let variables that have been declared but not yet initialized.

Variables declared asconstmust specify an initial value. Not initializing it is considered a syntax error.
Attempting to assign a value to a variable, which was declared as const outside of the initialization,
will cause a TypeError exception.

var declarations, on the other hand, are function scoped instead. If a variable is declared using var
outside of a function, it is considered a global variable instead. Variables declared in such a way are
also hoisted. This term means that the declaration is virtually moved to the beginning of the scope but
not the initialization. Accessing a variable declared as var before it has been declared will not cause
an exception to be thrown. Its value will be undefined until it has been declared and initialized.

An example for the somewhat non-obvious behavior ofvardeclared variables is shown in the following
snippet.

1 function foo() {
2 var x = 6;
3 {
4 var x = 7;
5 console.log(x);
6 }
7 console.log(x);
8 }

This code will print the number seven twice as the second declaration of x reassigns the existing
variable instead of creating a new one.

3.4.5 Strict mode

The ECMAScript standard defines a strict mode, which disables some “error-prone features”[12, § 4.3.2]
and provides “enhanced error checking”[12, § 4.3.2]. Some examples for features, that are disabled in
the strict mode, will be shown as they are encountered during this thesis along with reasoning as to
why they are error-prone. “A complete ECMAScript program may be composed of both strict mode
and non-strict mode ECMAScript source text units”[12, § 4.3.2]. In order to conform to the ECMAScript
specification an implementation must implement both the strict and non-strict mode of ECMAScript
as well as the combination of the two within a composite program[12, § 4.3.2].

3.4.6 Abstract operations

The ECMAScript specification defines several abstract operations, which are used to specify the se-
mantics of the language[12, § 7] [12, § 5.2.1]. These abstract operations will be described as they are
encountered throughout this thesis. An abstract operation consists of a name, a list of parameters,
and a list of steps applied to reach a result. Some of the parameters may be marked as optional. An
example of abstract operations, which will also be explained in detail in later chapters, are the ones

Jan Frederick Walther 22

Deobfuscating JavaScript 30.05.2022

concerning type conversion. They may also be treated as polymorphically dispatched methods.

Abstract operations are not part of the ECMAScript language and may therefore not be invoked by
ECMAScript code.

3.4.7 Important built-in methods and objects

ECMAScript provides a plethora of built-in objects and methods that will become important later on in
this thesis. The most important ones will be introduced in the following along with an explanation as
to why they are important. An important issue with these methods, that will be discussed in detail in
section 5.2.1.4, is that they may be overridden by the application. A function such as Math.random
may therefore be overridden with a benign change, such as a better pseudo random number generator,
or malicious functions as to obfuscate the control flow of the application. The dynamic nature of
ECMAScript makes it exceedingly hard to track these overridden functions, objects, or constants using
static analysis.

3.4.7.1 eval()

eval() allows a programmer to evaluate expressions and statements at runtime. The code is supplied
to eval as a parameter of the string type (see section 3.4.3.4). If the parameter is of another type, the
parameter will be returned by eval() without evaluating any code.

A quirk of this function is that eval()will use the local scope if invoked directly. If eval() is invoked
indirectly, for example, through a variable, it will use the global scope instead.

The use of eval() is heavily discouraged for both security and performance reasons. When not in
strict mode, eval()will operate on the local scope and, as such, may define new variables at runtime,
making static analysis hard if not impossible. If strict mode is enabled, the variables created within
eval() are only valid within the code passed to eval().

Utilizing eval() hampers modern ECMAScript engines as they implement just-in-time compilation,
turning ECMAScript code into native code for a considerable performance gain. The compilation
process has to be started anew if eval() is encountered as it might break assumptions about the
previously generated code.

3.4.7.2 Function

Programmers may use the built-in Function class to write dynamic functions compiled from a
supplied string. It works similarly to the previously discussed eval() function with two significant
differences. The first difference is that this method is limited to creating functions. Unlike eval(), it
may not create code that would run in a local context. Generated functions live in the global scope
only.

Jan Frederick Walther 23

Deobfuscating JavaScript 30.05.2022

3.4.7.3 JSON.stringify()

JSON.stringify() is a built-in function in ECMAScript that a programmer may use to convert an
ECMAScript value into the ubiquitous JavaScript Object Notation (JSON) format. String values are
escaped according to the JSON specification, matching how quotes are escaped within ECMAScript.
This thesis uses this as a shortcut to escaping strings that are newly inserted into the abstract syntax
tree.

3.4.8 Automatic semicolon insertion

As with most other C-like programming languages, ECMAScript expects statements to be terminated
by a semicolon. Unlike the other programming languages, it is valid to omit semicolons in some
situations[12, § 12.9].

The ECMAScript defines three rules where semicolons are inserted automatically.

The first rule is that a semicolon will be inserted if “a token [. . .] is encountered that is not allowed by
any production of the grammar”[12, § 12.9.1] and one or more of the conditions apply:

• One or more LineTerminator characters separate the token from its predecessor
• The token is a closing curly brace
• The token is a closing brace

The second rule applies if the end of the token stream is reached and the goal nonterminal was unable
to be parsed from it, a semicolon will be inserted automatically.

The final rule specifies a list of restricted productions that explicitly include within their definition that
one or more LineTerminators may not be inserted between the tokens that make up the production.
An example of this can be found in the following code snippet.

1 return
2 1 + 2

As the ReturnStatement is included in the list of restricted productions, it will cause this code to be
parsed as two separate statements, as may be seen in the following code snippet, where the automatic
semicolon insertion has been applied.

1 return;
2 1 + 2;

It becomes apparent that the semantics of the code differs from what might have been the program-
mer’s intent. The function will return undefined instead of the number value 3.

Jan Frederick Walther 24

Deobfuscating JavaScript 30.05.2022

3.5 Obfuscation

The term obfuscation describes purposefully making a piece of software harder to understand for
humans. This process may take different forms based on the software. There are several reasons
why a programmer may want to obfuscate their software. These include the protection of intellectual
property from reverse engineering, the evasion of malware detection, or, as discussed in a later chapter,
a reduction in file size.

For software compiled to machine code or bytecode, obfuscation may be applied before the compila-
tion is done or afterward. If obfuscation is added to a program before the compilation process, the
compiler may undo at least some obfuscation via its optimizations.

Obfuscation of machine code may take many different forms. A commonly used way of obfuscating
software is the use of so-called packers. Packers are programs that accept other programs as input and
apply various obfuscation techniques to their input to generate a second, obfuscated program that is
semantically equivalent to the input program.

Software deployed in its source code form and interpreted or compiled by the user can only reliably be
obfuscated on the source code level.

This thesis will refer to a program that obfuscates other programs as obfuscators. Programs that
attempt to reverse the effects of obfuscation will be referred to as deobfuscators.

3.5.1 Opaque predicates

This thesis will refer to values that a deobfuscator may not determine statically at various points. An
example of this is opaque predicates.

Collberg et al. define opaque predicates in their 1997 paper “Manufacturing Cheap, Resilient, and
Stealthy Opaque Constructs” as variables or predicates that have “some property q which is known a
priori to the obfuscator, but which is difficult for the deobfuscator to deduce”[10].

As introduced in section 3.4.3.5, an attacker may also use these predicates in ECMAScript to harden a
piece of software against deobfuscation. The following example introduces one such predicate that an
attacker may use to identify the currently running JavaScript interpreter without explicitly doing so.

Suppose that a function printRepresentation(value) accepts a parameter value of the
number type and prints the hexadecimal byte representation of the underlying value. In this example,
the two ECMAScript engines to be differentiated were the version of SpiderMonkey shipped with Mozilla
Firefox 95 and the version of V8 shipped with Chromium 96.0.4664.93.

In SpiderMonkey the expression printRepresentation(1**Infinity)will print
0x7ff8000000000000while in V8 it will print 0xfff8000000000000 instead. An attacker may
use the result of this computation to differentiate the program’s behavior depending on the JavaScript
engine currently in use.

However, this implementation-specific detail implies that a deobfuscator that aims to conserve the

Jan Frederick Walther 25

Deobfuscating JavaScript 30.05.2022

semantics of the application may not fold all constants that evaluate to NaN without prior knowledge
of which engine the program is targeting or wants to target.

The example that was introduced earlier may look like this in practice:

1 const buffer = new ArrayBuffer(8);
2 const float64 = new Float64Array(buffer);
3 float64[0] = 1**Infinity;
4 const dv = new DataView(buffer)
5
6 if(dv.getInt8(7) < 0) {
7 console.log("Hello V8!");
8 } else {
9 console.log("Hello Firefox!")

10 }

ArrayBuffer provides the backing storage of eight bytes, while Float64Array needs to store a
single number type value. 1**Infinity uses the exponentiation operator to calculate 1+∞ which
is, depending on the sets chosen, indeterminate in mathematics. At the time of the standardization
of ECMAScript, the IEEE754 standard did not define the result of the operation. The 2019 revision[17,
p. 63] defined it as having the result +1F.

Due to this operation being undefined before the 2019 revision, ECMAScript defines the result as NaN[12,
§ 6.1.6.1.3]. This particular case was kept even though it is defined in the IEEE754-2019 standard to
preserve the arithmetic behavior of the language. Due to this discrepancy with the standard, the
implementors of ECMAScript engines have to add a special case in their engines because it can not
necessarily be handled by the host CPU natively. This historical detail would explain why the internal
representations of NaN differ between different JavaScript engines. A DataView instance is then
used to inspect the underlying ArrayBuffer. It is similar to a pointer cast in languages like C and
C++ and is used in this case to read the seventh byte of the number value.

Instead of just printing the platform, an adversary may use the sign bit that differentiates the results
to calculate a decryption key that may only be calculated on the specific platform the program was
intended to run on. This information is known to the obfuscator a priori as it can be set by the user
operating the obfuscator. Still, the deobfuscator needs user input and therefore requires information
manually gathered by a human or needs to rely on heuristics to identify the targeted platform of the
program.

Jan Frederick Walther 26

4 Analyzing the targets

To begin deobfuscating ECMAScript, it is necessary first to analyze the types of obfuscation that may
be encountered. The obfuscation software in question is the software javascript-obfuscator[35], which
is available under the BSD 2-Clause “Simplified” License. It was chosen due to its popularity and
plethora of settings, influencing the obfuscated code. In addition to that, a few samples were taken
from malware written in ECMAScript.

The following chapter will analyze the javascript-obfuscator software and its available settings. Further-
more, it will include solutions for undoing the applied transformations if they are available. Examples
of the settings in action are given where appropriate to illustrate the settings’ impact further.

The next chapter will focus on deobfuscation techniques from the malware samples. The contents
of that chapter will focus more on solutions as the samples do not include any information on the
obfuscation software used.

4.1 javascript-obfuscator

The following chapters describe the available settings in javascript-obfuscator and include solutions if
available. Settings that do not directly influence the generated code or merely influence whitespace
are not included in this list for reasons of brevity.

4.1.1 Control Flow Flattening

Control flow flattening was first introduced and demonstrated on the language C by Wang et al. in their
2000 paper “Software Tamper Resistance: Obstructing Static Analysis of Programs”. In the paper, the
authors describe an obfuscation technique applied on the basic block level.

The transformation introduced by the paper works in two steps. The first step transforms all “high-level
control transfers”[40, p. 5] into equivalent “if-then-goto constructs”[40, p. 5]. In the second step, the
goto parts of these newly created constructs are modified in such a way that their control flow target is
no longer static. “This is done by loading from the content of some data variable location instead of a
direct jump address”[40, p. 5].

In the language they’ve chosen to demonstrate this technique, C, this can be achieved by rearranging
the control flow constructs as cases of a switch construct. The condition on which the switch construct
decides the branch to be taken is then recalculated at the end of every case of the switch construct.

The authors then argue that statically building the control flow graph is then dependent on whether

27

Deobfuscating JavaScript 30.05.2022

the branch variable can be determined. However, the process of determining the value amounts to a
“classical use-and-def” data-flow problem, as they claim.

Furthermore, they expand upon this by introducing alias detection as a data-flow problem, which is
the problem of two or more identifiers pointing to the same memory. This problem is undecidable in
the presence of “general pointers and recursive data structures”[40, p. 8].

Statical analysis may be slowed down further by adding dummy cases to the switch construct. Given
the nature of the predicate, they may not be eliminated unless the predicate can be determined never
to take the value that would trigger the execution of any of the dummy cases.

This can be similarly applied to ECMAScript as the obfuscation tool already does. However, a problem
that has to be overcome is the lack of a goto statement in the language defined by the ECMAScript
specification. Any program that has been obfuscated using this technique will incur a heavy perfor-
mance loss, especially in ECMAScript engines that utilize just-in-time compilation. The same issues
faced by a deobfuscation program also apply to an ECMAScript engine.

The obfuscation software implements control flow flattening on both expressions and statements
instead of basic blocks and will use an object literal instead of a switch case. It also explicitly warns the
user of the performance impact of this obfuscation technique and accepts a numeric modifier between
zero and one which determines the chance of a statement being added to the control flow flattening.

These statements and expressions will be assigned a random key and move as the value of said key
within an object literal. Duplicate usages of e.g. a function or a string literal will receive the same key. A
call like console.log("Hello World!")may be transformed by the control flow flattening to
look something like the following code snippet.

1 var obj = {
2 'bar': 'log',
3 'foo': 'Hello World!',
4 };
5
6 console[obj['bar']](obj['foo']);

This example also shows one of the possibilities of obscuring the access of object properties. In addition
to simply hiding the member access behind an expression that may not be evaluated statically, it is
also possible to define a property proxy for objects. This proxy can then intercept any property access
to the object and return different values based upon arbitrary conditions.

The decision has been made to exclude this transformation from the scope of this thesis. This thesis
focuses on static analysis with a probabilistic approach at times.

4.1.2 Dead code injection

The dead code injection setting adds randomly generated code fragments to the program and also
ships with a percentage modifier that controls at which rate dead code is added. These code fragments
may never be executed and are, as such dead code. Alternatively, they do not do any meaningful
operations if they are invoked. Enabling this setting also forcefully enables the string array setting,

Jan Frederick Walther 28

Deobfuscating JavaScript 30.05.2022

which will be discussed later in this thesis. This setting is enabled so that the newly added dead code
may act as a proxy between the consumers of the string array and the string array.

The deobfuscation program already tackles this obfuscation technique by repeatedly applying the
inlining, constant folding, dead code elimination, and constant evaluation passes.

4.1.3 Debug protection

ECMAScript prominently features a debugger statement that allows programmers to define a break-
point within their application from the source code. It is similar to manually causing a software
interrupt using int 3 in x86 assembler. The protection itself aims to disable the functionality to
hamper dynamic analysis of the obfuscated application. This is accomplished by repeatedly calling
dynamically generated functions containing the debugger statement. The javascript-obfuscator
manual recommends an interval between 2000 and 4000 milliseconds for the calls.

The impact on regular users is negligible as the debugger statement has no effect if a debugger is not
available or enabled.

Since this thesis focuses on static analysis, it does not actively remove this technique. The deobfusca-
tion software adds the code for calling generating the functions from a template. This, however, means
that the code added from the template is also subject to the other, partly randomized, obfuscation
techniques. A simple search and replace operation can, as such, not remove the added code.

However, one possible solution would be to patch the constructor of the built-in Function class in
such a way that it becomes unusable for the target program. This may take different forms, but the
trivial solution would be to set Function.prototype.constructor to a function that returns a
function that logs the code it was supposed to run in an unpatched environment. An allowlist could
then be built manually by the user not to impact other parts of the program that rely on the built-in
Function class.

Since built-in objects that are writable may be modified arbitrarily without the possibility of restoring
them short of restarting the ECMAScript engine, it becomes impossible for the obfuscator to restore
the patched constructor to its original value.

4.1.4 Disable console output

This technique also aims to slow down the dynamic analysis by patching the methods of the built-in
console object to do nothing instead of writing to the console.

As this technique also focuses on dynamic analysis and not static analysis, it is also considered outside
of the scope of this thesis and especially the accompanying implementation. The code necessary
for this is again introduced from a template and, as such, is also subject to the other obfuscation
techniques.

A user trying to re-enable the functions of the console object is confronted with the same problem
that was used as a solution in the previous chapter. Fortunately, the deobfuscation software could

Jan Frederick Walther 29

Deobfuscating JavaScript 30.05.2022

save the original values of the functions before they are replaced and restore them either after the
replacement, which requires knowledge of where the replacement is done, or by restoring the original
values whenever they are called.

Another approach would be to make the properties of the console object read-only before the control
flow reaches the obfuscated code so that they may not be replaced at runtime. Attempting to overwrite
a read-only property will silently discard the new value. A simple implementation of this technique
may be seen in the following code snippet.

1 Object.defineProperty(console, "log", {
2 value: console.log,
3 writable: false
4 });

4.1.5 Domain lock

The domain lock functionality allows the user of the deobfuscation software to limit the execution of
the users’ program to a specific set of domains. The prevention of intellectual property theft is listed
as a reason for employing this technique. If the program is executed on domains other than the ones
specified by the user, the script will forcefully redirect the user

In addition to focussing solely on the browser environment, it is yet again a technique aimed at
hampering dynamic analysis and is considered outside of the scope of this thesis. It is again sourced
from a template as with the previous techniques.

The template in question reads the current domain using the property location of window.
document and validates it using a regular expression. The second technique suggested for defeating
the disabled console output technique may not be applied here as the location property of the window
object is read-only. If it is attempted, a TypeError exception is thrown.

Suppose the reverse engineer knows the original domain, which the program was locked to. In that case,
they may patch the constructor of the built-in RegExp class and intercept all regular expressions that
are being constructed. Using this knowledge, the reverse engineer may then develop a patched version
of the constructor that only replaces the regular expression used by the domain locking technique
with the ones desired by the reverse engineer. Alternatively, the reverse engineer may use the stack
trace of the patched constructor to trace the location of the domain locking code within the obfuscated
program to remove it.

4.1.6 Identifier renaming

Renaming identifiers is a powerful technique employed by the obfuscator as identifiers may be used as
clues by a reverse engineer as to what a variable, function, or class may be used for. The obfuscation
program provides several generators for new identifiers:

• New identifiers may be chosen from a user-supplied dictionary. This can not only remove any
clues that a reverse engineer could have gained from the original identifiers but may instead

Jan Frederick Walther 30

Deobfuscating JavaScript 30.05.2022

send a reverse engineer down the wrong path by supplying false clues.
• The default setting for new identifiers is to rename all identifiers to an underscore followed by a

hexadecimal number, including the 0x prefix.
• The user may also choose to use short single or double letter names for renamed identifiers.

The original identifier names are lost forever and may not be restored through conventional operations
on the abstract syntax tree. Some clues as to what the original names were may be gathered from
surrounding strings, but this is far from reliable and may be hampered by the other obfuscation
techniques.

This thesis includes Context2Name, which attempts to restore identifiers using a machine-learning
model trained on a large set of ECMAScript code. The surrounding tokens of an identifier are used to
attempt to generate a meaningful identifier.

The user may also separately enable the renaming of global variables and functions, but this setting
gives an express warning that it may break the supplied program. This warning is added because
statically tracing variables in ECMAScript is an imperfect process as some runtime information may be
necessary to accomplish it fully.

A similar warning also adorns the setting that enables the renaming of object properties. The same
issues as with global variables apply.

4.1.7 Numbers to expression

The “numbers to expressions” setting makes the obfuscation software replace all numeric literals in
the program with an equivalent expression that evaluates to the same value. Special care is taken
not to make the calculation overflow with regards to the upper limit a value of the type number may
represent.

As this is a relatively trivial transformation with no information irreversibly lost it may be entirely
removed. The deobfuscation program described by this thesis applies the constant folding described
in section 5.2 to remove it entirely.

4.1.8 Self defense

If enabled, the self-defense setting adds a piece of templated code to the program. This code will check
if there has been an attempt to reformat the source code to make it more readable, and if that is the
case, the program will cease to function.

This technique works by abusing the fact that a function may read the source code of arbitrary EC-
MAScript functions within its scope. This is accomplished by calling the member methodtoString()
of the function in question. This string representation is identical to the one parsed by the engine and,
as such, also contains the newly inserted whitespaces. The actual self-defense is then happening using
a regular expression, which aims to trigger the so-called catastrophic backtracking issue. This issue is a
denial-of-service attack on regular expression engines, and the presence of many space characters will

Jan Frederick Walther 31

Deobfuscating JavaScript 30.05.2022

trigger it. Enabling this setting also forcefully enables the setting to remove extraneous whitespace.

As with the previous technique that employed regular expressions, this may also be bypassed by
patching the constructor of the built-in RegExp class to monitor or intercept the malicious regular
expressions created by the obfuscated code. An alternative version of the template employs the built-in
Function class and the built-in eval() method. However, the code passed to those functions will
still trigger the patched constructor of the RegExp class. While this technique will trigger after the
deobfuscation program has run, it does not affect the actual deobfuscation process and is therefore
not included in the deobfuscation program.

4.1.9 Simplification

The “simplification” setting makes the obfuscation software perform several transformations that
shorten the code and make it harder to understand for a human. The first transformation included in
this is the merging of variable declarations. An example of this would be the following code snippet:

1 let a = 2;
2 let b = 4;

The obfuscation software will merge these two declarations, turning them into let a = 2, b =
4;. A merge can, of course, only be done if the kinds of declarations are compatible with each other.
Merging a declaration of the const kind with one of the let kind could lead to a runtime error if the
resulting kind is const and the variable formerly declared as let is attempted to be written to after
its initialization. One solution for this problem would be to downgrade the variable defined as const
to a let binding. However, this downgrade could be used by the input program to detect whether it
has been obfuscated by attempting to write to the formerly const variable and catching the resulting
TypeError. If the exception is not thrown, this is a sign that the application has been obfuscated.
Since this transformation does not only make the program more challenging to read but also smaller
in terms of file size, it is also often employed by compression software.

The deobfuscation software may undo declaration merging by splitting the declaration back into
separate declaration statements.

Another transformation employed by the simplification setting is the dissolution of the optional block
statements around if statements if they only contain a single statement. An example of this behavior
would be the following snippet:

1 if(a > b) {
2 console.log("a is larger than b");
3 } else {
4 console.log("b is larger than a");
5 }

The obfuscation software will turn thisif statement into the equivalent but harder to read and maintain
version that looks like the following snippet.

Jan Frederick Walther 32

Deobfuscating JavaScript 30.05.2022

1 if(a > b) console.log("a is larger than b");
2 else console.log("b is larger than a");

The deobfuscation software can undo this by re-adding the block statements for the if and else blocks.
The braces should be added back in all cases, even if the input source code omitted the braces, as the
variant with explicit block statements is the recommended way, as indicated by its inclusion in the
popular ECMAScript linter ESLint[11].

A third obfuscation introduced by this setting is the merging of multiple expression statements into a
single expression statement using the comma operator. An example of this behavior is shown using
the following code snippet as an input to the obfuscation software.

1 function foo() {
2 console.log("bar");
3 return Math.random();
4 }

The resulting code, after this transformation, merges the two expression statements into one.

1 function foo() {
2 return console.log("bar"), Math.random();
3 }

The return value is kept intact as the last value of the comma operator is the value of expression as a
whole. Unlike the simplification introduced before this one, the comma operator provides legitimate
uses that do not worsen the readability. One such use case would be using multiple variables within a
for statement. Therefore, the deobfuscation software will only separate expressions within a comma
operator expression if not included within a for statement.

Boolean literal values like true are converted to !![]. This technique is not yet a part of the simplifi-
cation setting but is included in this chapter nonetheless as it is closest in purpose. The deobfuscation
software includes special peephole rules to undo these transformations. Boolean literals are easier to
understand than following the complicated coercion rules of ECMAScript, so these may be applied in
every case. This transformation is done using constant folding, which is explained in further detail in
section 5.2.1.6.

While not explicitly included in this setting, the transformation of member accesses using an identifier
for the property to a member access using a string is also included in this category. This transformation
will for example change console.log() into the semantically equivalent console['log'].

4.1.10 Split strings

The “split strings” setting is equivalent to the “numbers to expressions” setting for the string type
values. The main difference is that only a single binary operator accepts string values as an input
while producingstringvalues. The operator is the binary plus operator, which will coerce its operands
into’ string’ values if at least one operand is a string. The plus operator will then concatenate both

Jan Frederick Walther 33

Deobfuscating JavaScript 30.05.2022

values.

If this setting is enabled, the obfuscation software will split string literals into smaller parts. An example
of this would be the string literal "foobar". The obfuscation software may turn this into "foo"+ "
bar".

As long as both operands of the plus operator remain in their literal form, it is trivial for the deobfus-
cation software to merge them back together. Merging every occurrence of this may prove counter-
productive as the string might’ve been split in the input source code to meet a limitation on line length.
Merging all strings and running a code quality tool like ESLint on the deobfuscated code may mediate
this issue.

4.1.11 String Array

The “string array” setting provides another technique for obfuscating the usage of strings. It will copy
some string literals from their place within the input source code to a global array if enabled. The
literal is then replaced with a member access expression on the global array with the index of the string
literal within the global array. These indices may take the form of hexadecimal literals or hexadecimal
numbers within a string value. The latter will be parsed as a number value before being used as an
index. The obfuscation software may use these two methods simultaneously within the same program.
The user of the obfuscation software may set a percentage that decides the chance at which a string is
copied to the global string array.

Even though this obfuscation might look trivial to undo, a few issues prevent it. The difference between
inlining literal values within (global) variables and inlining literal values from a global array is that
some methods may mutate the array in place before the index is read. Therefore, a deobfuscation
program would have to trace all paths starting from the declaration and initialization of the array to
each member access expression. While this may be feasible for small applications, it will lead to a
phenomenon known as path explosion if applied to more extensive programs. Considering the nature
of obfuscation programs to inflate code artificially and, therefore, the possible paths the control flow
could take along the way, it would be unfeasible to implement this, especially within the scope of this
thesis. This problem is further complicated because functions that cause an in-place mutation of the
array may themselves be obfuscated in a way that is not visible to the deobfuscation program.

In addition to the previously described complexity, the obfuscation software offers additional settings
to harden the array accesses further.

Among these settings is the option to replace the numeric or string values used to index into the
global string array with calls to functions. The parameters used in these calls are chosen so that the
function will determine the original index without having it directly in the function call’s parameters.
These function calls have a varying but configurable number of parameters, including unused param-
eters. These unused parameters serve as clutter to make the functions harder to read and make it
harder for a deobfuscation program to optimize the source code. Dead parameter elimination can be
tricky in some contexts, as the parameters may be unused in the base method of a class but will be
overwritten by an inheriting class.

Jan Frederick Walther 34

Deobfuscating JavaScript 30.05.2022

The global string array may also be randomly shuffled or rotated at the beginning of the program. This
technique further hampers an automatic deobfuscation as the shuffling and rotating is essentially
a black box due to the in-place nature of these mutations. As the code for the shuffle and rotation
routines will also be obfuscated, a reverse engineer could do a preliminary run of the deobfuscation
program. Afterward, they may manually analyze the code responsible for the mutations and apply the
transformations to the array statically or dynamically. They may then replace the original string array
with the manually calculated one.

Another technique employed by the obfuscation program is the encoding of entries of the string array.
The available encodings for this are Base 64 and RC4, along with the original plain text version. The
strings within the array may be encoded in a heterogeneous way. Some may be encoded using RC4,
while other values within the array are encoded using Base 64. While Base 64 is an encoding, RC4 is
a stream cipher, which requires recovering the encryption key before decoding the value is possible.
An issue with Base 64 is that the obfuscation program does not opt to use the built-in function to
convert between plain text and Base 64 but instead implements the routine using a template. This
custom implementation allows the obfuscation program to choose an arbitrary alphabet for the Base
64 encoding. Both methods, therefore, require the recovery of a critical value. Both values are critical
for decoding entries from the string array, which implies that they may not be themselves included in
the string array.

4.2 Malware samples

Malware samples provide a good way of acquiring different obfuscation techniques as their motivation
to hide the code is two-fold. Malware authors tend to obfuscate their code to evade traditional signature-
based malware detection, where patterns of text or bytes found in other malware are added to a
signature database. New files will trigger an alarm if a file matches any signatures. Another reason
malware tends to be obfuscated is to hamper reverse-engineering efforts. These efforts may be made
by good actors seeking to defuse the threat or other malware authors seeking to copy its techniques.

The samples discussed below were, according to their description, found in the wild between 2015
and 2019. Their relatively old age makes them negligibly dangerous to a modern system running an
up-to-date operating system.

The thesis will mention why a sample was picked to be analyzed and the description of the sample.
The repository contains over 40.000 entries, which means that this thesis can not analyze every sample
individually. Any names given to the samples are purely descriptive and do not reflect any official
naming.

4.2.1 Russian malware sample

The sample discussed in this section is called “Russian malware sample” because its filename is in
Cyrillic characters and translates to “Order information” according to automated translation software.
It contains a few obfuscation techniques that javascript-obfuscator is not utilizing, which qualify it

Jan Frederick Walther 35

Deobfuscating JavaScript 30.05.2022

to be analyzed within a dedicated chapter. This thesis chose it because it was previously used as a
sample in SAFE-DEOBS, which was discussed in section 2.4.

These techniques will be illustrated using a snippet from the obfuscated code.

1 function kKP(Oey)
2 {
3 var Rm = "charA";
4 var iMG = "t";
5 var ne = Rm + iMG;
6 return ne;
7 }

The above snippet is merely one of several functions within the obfuscated code, which calculate a
string value that is subsequently returned to the caller. The calculation of the string value itself is
trivially done using the previously discussed constant folding. Applying the mentioned techniques
results in a function that looks something like the following snippet.

1 function kKP()
2 {
3 return "charAt";
4 }

These functions essentially wrap string literals and worsen the readability. The deobfuscation program
can determine that the value of the return expression is side effect free in a static manner. It may,
therefore, simply copy the value to all call sites that see this definition of the function. This solution is
discussed in further detail in section 5.5.2.

Another technique used by this malware sample may be seen in the following snippet.

1 var fHC=String.fromCharCode(6688/88+0);
2 nDO = fHC + String.fromCharCode(2600/52-0);
3 vM = nDO + String.fromCharCode(736/16+0);

The declarations of the variables nDO and vM are not included as there are no separate declarations.
This implicit declaration is possible because assigning a value to a non-existent identifier will create a
new variable within the global scope in ECMAScript. However, the primary technique in this snippet is
using built-in functions to obfuscate string constants. The expressions used as parameters evaluate to
76, 50, and 46, respectively. They are then translated to the ASCII characters with equivalent indices.
The obfuscation program reverses this technique by replacing some invocations of built-in functions
with their result using the method described in section 5.5.1. This constant evaluation is limited to
functions that have no visible side effects.

Another phenomenon may be observed in this sample, although not strictly an obfuscation technique.
It may be seen in the following snippet of code. To showcase the phenomenon better the code has
been deobfuscated and manually shortened.

1 var w = new ActiveXObject("Scripting.Dictionary");
2 w.Add("a", "b");
3 if (w.Exists("a")) {

Jan Frederick Walther 36

Deobfuscating JavaScript 30.05.2022

A new ActiveXObject is being created. ActiveXObject is a built-in class in Microsofts propri-
etary ECMAScript implementation JScript. A programmer may use it to interact with the operating
system directly. It is used as an opaque predicate here. A new dictionary instance is created. Its
standardized counterpart is the ECMAScript built-in Map. A value for the key "a" is then assigned. The
subsequent if checks whether a value for the key "a" exists, which will continually evaluate to true.
The deobfuscation program could handle this case using heuristics, but a more generalized solution is
not feasible.

However, the deobfuscation has already solved another problem within this snippet. Namely, that
ActiveXObject is not referred to directly but instead returned as a value from a function. None
of the currently existing solutions account for the case of a non-standardized built-in object being
returned. This optimization should be safe in the same cases as regular identifiers are. However, as
they are never declared, they will not be inlined by the existing mechanisms. This case is handled in
section 5.7.

4.2.2 Static switch sample

This thesis chose the following sample because it was previously used as a sample for the case study
in SAFE-DEOBS, which was discussed in section 2.4.

The samples defining features are an overabundance of dead code and inlineable functions. The reader
may find an example of these functions in the following code snippet.

1 function elypa() {
2 var egnoqqy = null;
3 return egnoqqy;
4 }

The previously discussed inlining and constant evaluation mechanisms already cover these obfuscation
artifacts.

A more exciting technique is found in its use of switch statements. They take the form of a switch
statement, whose condition is an inlineable variable. All cases defined on the switch statements use
a literal value or one of the reserved identifiers as test expressions. This configuration allows the
deobfuscation program to determine which case will be taken statically. Special care has to be taken
to account for the fall-through nature of the switch cases in ECMAScript. This deobfuscation technique
was already showcased in SAFE-DEOBS[14, p. 4] and will be discussed in detail in chapter 5.9.

4.2.3 Array literals sample

This thesis chose the following sample because it showcases an edge case for solving a more complex
issue using a naive approach.

The sample contains many globally declared variables that are initialized using an array filled with
literal values. An example of those arrays is var foo = ["tr", 84];. The array’s name has been
shortened as it was previously 99 characters long and nonsensical.

Jan Frederick Walther 37

Deobfuscating JavaScript 30.05.2022

Most of these arrays are being used only once. This behavior is unlike the one discovered in javascript-
obfuscator in section 4.1, which composes all strings within a single global array. Being side effect
free and only used once allows the inlining mechanism to come into action and inline these arrays
to become array literals within the code. This transformation allows the deobfuscation program to
evaluate the array access operator statically. An example of this using the previous example would be
["tr", 84][0], which the deobfuscation program may transform to "tr".

ECMAScript defines two different ways of initializing an array. The first one is theArrayExpression,
which encloses zero-or-more elements in square brackets. The second one involves invoking the
built-in Array object to construct the array. Apart from the slightly different parameters that a user
may pass to the built-in object, the main difference between these paths is that an attacker may not
overwrite the former by patching a prototype object. The ArrayExpression does not invoke a
constructor[12, § 13.2.4.1]. Therefore, the transformation is safe to be applied if the expressions within
the array are side-effect free.

Jan Frederick Walther 38

5 Implementation

In this chapter, the necessary steps to deobfuscate ECMAScript will be discussed. This chapter will also
include some technical details to explain some decisions taken during this process.

5.1 Design choices

This chapter will focus on the software design choices taken while designing the deobfuscation pro-
gram.

5.1.1 Parsing infrastructure

At the foundation of the program is a robust open-source ECMAScript parser. Since it is in the best
interest of obfuscation programs to utilize quirks and edge cases, it is imperative to select a parser
that strictly adheres to the specification with optional support for well-known deviations from the
specification. As designing and implementing a dedicated parser for this thesis would have exceeded
the scope of this thesis, the decision was taken to embed an existing parser instead. The parser to be
used was decided before the programming language of the deobfuscation program was chosen.

A prototype implementation was done in the Rust programming language. The static and strict typing
discipline of that programming language made some aspects of this thesis exceedingly complex to
implement. The Rust programming language struggles with recursive data structures due to its strong
notion of data ownership. While this would not have made implementing all aspects of this thesis
impossible, it would’ve increased the required time for implementation.

ECMAScript, the only readily available scripting language in web browsers, inspired other languages to
be compiled to ECMAScript instead of being interpreted directly or compiled to machine code. These
languages are widely popular, which influenced the availability of tools that operate on ECMAScript
source code.

A community standard within this space is the ESTree specification, which a later chapter will ex-
plain more in-depth. It standardizes the structural layout of the abstract syntax tree and allows for
interoperability between tools. Support for this format is a critical requirement for a parser.

The prevalence of self-hosted parsers supporting the ESTree spec leads to only ECMAScript / TypeScript
parsers being considered.

The first part of the selection was done using a simple smoke test. The task was parsing an obfuscated
malware sample.

39

Deobfuscating JavaScript 30.05.2022

The first parser analyzed is called acorn. It is freely available under the MIT license. Attempting to parse
the malware sample yielded aSyntaxError because of a duplicated identifier violating ECMAScripts
scope rules within the malware sample. This error was indicative of the parser performing scope
analysis in addition to the parsing it was supposed to be doing. The obfuscated malware sample was
designed to exploit this fact as the definition was part of a branch that is never executed or parsed by a
real-world system in the first place. No obvious switch in the configuration of acorn was provided to
disable this behavior.

The second parser analyzed is called esprima. It is also freely available but under the BSD license
instead. Attempting the smoke test failed at first because of a strict mode violation but enabling the
tolerant mode made the parse succeed.

The final parser analyzed for this thesis is called meriyah. It is freely available under the permissive,
open-source ISC license. The smoke test parsed without having to set any additional flags.

Having established that two of the analyzed parsers can parse the malware sample, a secondary
criterion had to be utilized to select a parser. Both meriyah[31] and esprima[32] publish an automated
benchmark suite, which allows running multiple parsers on the same target and timing the execution.
These benchmarks are implemented as websites, allowing running these benchmarks quickly on both
major ECMAScript engines. The benchmark site of meriyah compares meriyah with Cherow, which
was excluded from the selection due to its apparent abandonment, acorn, and esprima. Meriyah
consistently outperforms the competition in the benchmark, requiring only about half the time of both
acorn and esprima.

The benchmark site of esprima compares esprima with acorn, among others. esprima outperforms
the competition in these benchmarks. Both benchmark sites feature “React 0.13.3” as a test program
for the parsers. Even though meriyah is not featured directly on the benchmark site of esprima, it may
still be compared using the timings for the “React 0.13.3” run. The results for this specific test on the
meriyah benchmark match the results of the benchmark site of esprima.

The superior benchmark results and the effortless passing of the smoke test made meriyah a sensible
choice. However, if meriyah ever ceases development, the adherence to the ESTree standard can be
used to replace it as a parser easily.

5.1.2 ESTree

This project uses a format for representing the ECMAScript abstract syntax tree known as ESTree,
which was in the past the format used by the SpiderMonkey ECMAScript engine that ships with the
browser Firefox. It has since been deprecated from the ECMAScript engine. However, the community
has adopted it as a standard, which is still updated to reflect changes in the ECMAScript standard[7].

All available nodes within the specification have a type field with a string value, which indicates the
type of the node. This field allows building a generic traversal method for the abstract syntax tree. The
built-in Object.entriesmethod is used to iterate over the properties of the abstract syntax tree
nodes. The recursive traversal is initiated by passing a root node.

Jan Frederick Walther 40

Deobfuscating JavaScript 30.05.2022

The properties are analyzed on whether they are of the type object. If not, they are skipped in the
iteration. A secondary type distinction is then made using the built-in method Array.isArray. If
the property value is an array, it is assumed to be an array of abstract syntax tree nodes. These nodes
are then visited in the order they appear in the property value. An example of this would be the body
of a statement list. If the value is not an array, it is assumed to be a direct reference to another abstract
syntax tree node. It is then visited directly.

The deobfuscation program defines an abstract class called DefaultASTWalker. It defines two
abstract methods that have to be implemented by classes that extend it. The first one isonNodeEnter
, which is invoked when a new node is visited but before its child nodes have been visited. The second
one is onNodeLeave, which is invoked for each node after its child nodes have been visited. Both
methods receive a reference to the node object as a parameter. In addition to that, a reference of the
parent node, the property key, and an optional index are supplied. Both the reference to the parent
node and the index may optionally be null as not all nodes have a parent node, and not all nodes were
found within an array.

A subclass of the DefaultASTWalker class, called FilterASTWalker, provides a convenient
interface to be notified only about a specific set of node types while still traversing the whole abstract
syntax tree.

These parameters uniquely identify a node within the abstract syntax tree. They are also required to
perform transformations that require knowledge of entire blocks. Suppose one were to replace all
identifiers using this generic visitation algorithm. The complex scoping rules of ECMAScript require
analyzing scopes entirely to account for var, let, and const declarations. Replacing or deleting a
node requires modification of the parent node. Therefore, saving references to the nodes will not work
since the abstract syntax tree defined by the ESTree specification may only be traversed top-down and
not bottom-up.

This problem is solved by extending the ESTree structures generated by meriyah. Knuth and Wegner
initially described this procedure in their 1968 research “Semantics of context-free languages”. In their
paper, Knuth and Wegner describe a method of transferring information bi-directionally within an
abstract syntax tree. The information is transferred by allowing terminals and non-terminals to be
annotated with attributes.

The deobfuscation program adds three attributes to each node to allow top-down and bottom-up
traversal of the abstract syntax tree. These attributes are called parent, next, and prev. parent
optionally contains a structure that consists of the three values introduced earlier. This structure allows
the replacement of nodes outside of the traversal process.

prev is only populated if the current node is part of a list of nodes in its parent node. If that is the case,
prev will contain the sibling node visited before the current node. It will also be empty if the current
node is the first element of the node list.

Analog to that, nextwill contain a reference to the sibling node visited after the current node.

These fields were added for convenience as the deobfuscation program may also calculate their value
from the parent node.

Jan Frederick Walther 41

Deobfuscating JavaScript 30.05.2022

These attributes are explicitly skipped in the property iteration process to prevent infinite loops and
double traversal. These attributes are re-calculated after each modifying traversal to prevent stale
connections from accumulating in the parent fields.

5.1.3 Design pattern

The deobfuscation program is implemented using the concept of passes. A pass describes one-or-more
entire traversals of the abstract syntax tree. The traversal is done to apply modifications to or gather
information from the abstract syntax tree. This design concept is taken from optimizing compilers as
they work using optimization passes.

Each pass is implemented as a class, which inherits from either DefaultASTWalker or a subclass
thereof.

DefaultASTWalker includes two methods for replacing and removing nodes within the abstract
syntax tree. The replacement of nodes is relatively trivial, consisting only of a type distinction to
differentiate whether the node to be replaced is part of an array in the parent node or not. This
distinction is then used to determine the correct way of assigning the new node in the place of the old
node. Theparentproperty of the replacement node is adjusted accordingly before the transformation
is applied. Theprev andnext fields of both the replacement node and the sibling nodes are modified
accordingly. This modification is done before the replacement to ensure that the abstract syntax tree
is always in a valid state.

However, removing a node from the abstract syntax tree requires more context. Suppose one
were to remove the declaration of a variable from the abstract syntax tree. A variable is declared
in the ESTree specification using a VariableDeclaration node containing one or more
VariableDeclarator nodes. This structure is used to implement the declaration of multiple
variables with the same declaration kind. An example for this would be let a = 3, b = 4;. This
example would be represented on the abstract syntax tree as a VariableDeclaration node con-
taining two VariableDeclarator nodes. If a pass removed both of the VariableDeclarator
nodes, the VariableDeclaration node would be pointless and would be invalid syntax.
Therefore, the removal method has to take the superordinate nodes into account when removing a
node. If the node to be removed is part of an array in its parent node, it may be handled by simply
removing the element from the array. The sibling nodes succeeding the removed element in the
parent node have their parent fields modified to account for the changed index. The prev and
next fields are also adjusted accordingly.

All passes are designed to be idempotent after one or more pass runs. They, therefore, implement
a field that tracks the number of transformations done during the current run. Every time a node is
modified, replaced or removed, the pass increases this transformation counter. The implementation
could automate this tracking by adding it to the pre-defined methods for replacing and removing nodes.
This automation would make implementing a pass less obvious, though, as modifying a node property
that is not a child node would still require manually incrementing the counter. It would also prevent
the implementation of passes from grouping transformations that form a single logical transformation.

Jan Frederick Walther 42

Deobfuscating JavaScript 30.05.2022

This verbosity would skew the number of modifications applied in the case of using them as a metric.
The pass is then executed anew until the number of transformations applied is zero.

5.2 Constant Folding

Steven Muchnik introduces Constant Folding (or Constant-Expression Evaluation) in his 1997 book
as “the evaluation at compile time of expressions whose operands are known to be constant”[26,
p. 329]. A few differences have to be taken into account to apply the processes from the book. The
main difference is that the book focuses on compiling and not interpreting code, as is the case for
ECMAScript. ECMAScript also does not throw an exception upon overflow or division by zero but will
instead return NaN.

The following chapter will examine all operations upon expressions defined in the ECMAScript specifi-
cation on their potential for constant folding. In some cases, this constant folding may transform the
source code without changing any semantics, while in other situations, the semantics may change in
rare edge cases. If the possibility of changing the program semantics exists for a given transformation,
the benefits of applying the transformation regardless usually far outweigh the downsides of risking a
faulty transformation. The user will be able to choose to disable the transformations in question using
a flag in the configuration. This probabilistic approach allows the program to fold some expressions
where only one operand out of two is known.

Additional technical foundations will be introduced as deemed necessary in this chapter. Embedding
the technical knowledge within this chapter serves the added cohesion and comprehensibility of the
chapter as some concepts only arise in this chapter and are rather complex.

5.2.1 Unary operators

The first class of operators that will be analyzed in this thesis are those that accept only a single operand.
The ECMAScript specification also defines a set of unary operators but excludes some operators with a
single operand.

5.2.1.1 Unary minus operator

In order to fold numeric constants that involve negative numbers, it is easiest to make use of the fact
that the standard numeric types in ECMAScript are always signed. The deobfuscation software can
use this to replace the unary minus operation on a numeric literal with the exact literal times minus
one. This optimization simplifies further interactions with the value, as it may be used directly without
traversing the tree further when, e.g., a multiplication involving the value is done. When the abstract
syntax tree is subsequently turned back into human-readable source code, this will be automatically
corrected into a unary minus operation if necessary. The particular case of a double negative (e.g. --x)
does not exist as such in ECMAScript as the preceding minuses will instead be interpreted as the prefix
decrement update expression.

Jan Frederick Walther 43

Deobfuscating JavaScript 30.05.2022

Even though this operation appears to be relatively trivial, special attention must be paid to the data
structure representing literal values in the abstract syntax tree.

The data structure used to represent literal values consists of its type as the string constant "Literal
" and a field called value. This example ignores the default fields like the beginning and end of the
node in the source code. The latter is defined as having a union type consisting of string, boolean,
null,number,RegExp, andbigint as of the 2020 version of the ESTree specification. In the library
used by this project, this is extended by a field called raw, which contains, as the name implies, the
unfiltered string representation of whatever value this literal represents. This raw value is helpful
in situations where a literal value can be represented in multiple ways, such as the different radixes
supported in ECMAScript.

The unary minus coerces the type of its operand tonumber, so a method is needed to emulate the type
coercion as the unary minus operator does it. The steps necessary to fold the unary minus operator
occurrences can be taken directly from the ECMAScript standard[12, § 13.5.5.1]. As a first step, the
value is passed to the abstract operation ToNumeric, which returns the passed value if it is of the
type BigInt or passes it on to the abstract operation ToNumber.

ToNumber then defines cases for each of the possible input types. The trivial case of the input type
being number returns the input value without any conversion. If the input value is of the null type,
it is converted into +0F. If the input value is of the undefined type, the resulting value will be NaN.
Instances of the boolean type are converted according to their value. true is converted to +1F and
false to +0F respectively.

String values pose a particular case in the conversion, albeit a relatively trivial one, as outlined in section
7.1.4.1 of the 2021 edition of the ECMAScript standard. In essence, the conversion is limited to string
values that follow the format of literal numeric values, so a string like "123" will be converted to the
numeric value 123. This parsing process also includes Infinity, -Infinity, and non-decimal
integer representations and the scientific notation of numeric values in either decimal or non-decimal
representation. BigInt values, however, are explicitly excluded.

Object type values are passed to the abstract operation ToPrimitive, which tries to convert “its input
argument to a non-Object type”[12, § 7.1.1]. A secondary argument called hint is used if the input
value can be converted into multiple primitive types. If no hint is present,"number" is assumed,
which can be overridden by objects. The exact mechanism can assign a numeric value for an object
instance to be converted to. The coercion caused by the unary minus operator passes "number" for
the hint parameter. If no override is present, the abstract operation OrdinaryToPrimitive is invoked
with the same parameters as ToPrimitive. It asserts that the hint is either "string" or "number".
Depending on the hint, it orders the invocation of two member functions. If the hint parameter is
"string", the toString function will be invoked to provide a primitive value before valueOf is
invoked. In the case of the hint being "number", the order of invocation is reversed. The result of the
abstract operation is then passed to ToNumber again.

Values of either the symbol type or the BigInt type throw a TypeError exception. The latter case can be
explained by the preliminary filtering of BigInt values in the abstract operation ToNumeric. In the
former case, the explanation is a bit less obvious. One argument is that the symbol type is a recent

Jan Frederick Walther 44

Deobfuscating JavaScript 30.05.2022

addition to the relatively small set of primitive types supported in ECMAScript. Except for BigInt, which
was added in the 2020 edition of ECMAScript, the primitive types of ECMAScript have not had any
additions since the conception of the language. While BigInt has an obvious identity mapping into the
numeric space, Symbol does not. So the reasoning could have been that instead of adding another less
than obvious implicit type conversion, as is the case with null and undefined, the better solution
would be to instead force an explicit type conversion by the user. ECMAScript does not define symbol
literals, and therefore it is not included in the union type of the value field of the literal either way.

The identifier for NaN can be folded in every case as it can not be reused for identifiers. A negative
variant of NaN does not exist as it is not a number. The absence of a negative NaN implies that every
instance of -NaN can be replaced with NaN regardless of its context[12, § 6.1.6.1.1].

5.2.1.2 Unary plus operator

The unary plus operator explicitly coerces an expression into a number. It uses most of the mecha-
nisms of the unary minus operator just without negating the result. Instead of the abstract operation
ToNumeric, ToNumber is invoked directly. Therefore, it is implied that the unary plus operator is
not defined on BigInt nor Symbol and will lead to a TypeError exception.

5.2.1.3 delete operator

The unary delete operator is used to delete a property from an object and, as such, does not have
meaningful optimization opportunities.

5.2.1.4 void operator

The void operator evaluates the targeted expression and returns undefined instead of the result of
the expression. It may be folded if the expression provably has no side effects. If that is the case, the
expression may be removed entirely. Removing the node is done by checking the type of the parent
node. If the parent node is an expression, the identifier for undefined is inserted to prevent invalid
code from being generated.

Determining whether the expression is pure requires a recursive search depending on the type of the
expression. All available expressions will be analyzed in the following to illustrate this. This side-effect
algorithm will be reused throughout this thesis.

The arrow function expression is side effect free as it does not change the program’s state by merely
existing. Only assigning or calling it might change the state. Assignment expressions (=, +=, %=, and so
forth) change the program’s state as they (re-)assign a value to a variable. They may be removed if the
assignment is proven to be a dead store and if the assigned value is side effect free. A dead store is an
assignment operation on a variable that is never read after the assignment. The newly assigned value
is therefore never used and may be discarded. This optimization needs more context than the abstract
syntax tree can provide on its own.

Jan Frederick Walther 45

Deobfuscating JavaScript 30.05.2022

Binary expressions are only pure if both the left and the right operand are side effect free. Conditional
expressions, also known as the ternary operator, are side effect free if the condition, the consequent,
and the alternative are side effect free.

Chain expressions allow chaining member access while checking whether a reference in the chain
is valid. An example of this would be value.field?.subfield. In this example, the property
subfield would only be accessed if the property field of value is valid. The ESTree specification
only allows SimpleCallExpression and MemberExpression as child expressions for chain
expressions. Both are hard, if not impossible, to prove as side effects free from a static perspective
as they could be accessor properties. Nevertheless, a chain expression can be considered pure if its
sub-expression is also pure.

Logical expressions are essentially the same as binary expressions but with the operators “logical or”
(||) and “logical and” (&&). The new expression invokes a constructor and, as such, does not qualify
as side effect free. This also includes the super expression. The sequence expression also called the
comma operator, allows chaining expressions. An example of this would be (x(), 3), where x()
would be evaluated first and then 3. The result of this expression is always the right sub-expression.
Therefore, a sequence expression is side effect free if all sub-expressions in the chain are side effect
free.

An await expression is only side effect free if whatever is awaited is also side effect free. The purity of a
promise can not be proven statically for every case and needs more context than an abstract syntax
tree could provide to eliminate even the most trivial of cases.

Call expressions could, in theory, be side effect free if the called function can be resolved statically,
and all statements within the function body are also side effect free. Doing static analysis would
require more information about control and data flow within the program, which is unavailable at this
optimization stage. Import expressions load modules into the program and may run arbitrary code
across module boundaries. It is unfeasible to extend the analysis outside the scope of the main module
at this time.

While the deobfuscation program may not reason about arbitrary functions, it may reason about a
subset of the built-in functions. These pure built-in functions are defined by name in a list within the
deobfuscation program. However, the dynamic nature of ECMAScript allows an adversary to overwrite
these functions in a manner that the deobfuscation program can not trace. Therefore, the user may
specify a value from the override tolerance enumeration to specify whether the program should assume
standard library functions to be overridden. If the value is set to ignore the possibility of these functions
being overwritten, the program will consider call expressions involving the pre-defined list of built-in
functions pure. A second requirement for this is that all arguments supplied are pure as well.

ECMAScript features two ways of specifying classes that work similarly to the declaration of functions.
Class expressions allow the declaration of anonymous classes and, similarly to function expressions,
do not execute any code merely by being defined, making them side effects free. On the other hand,
class declarations implicitly add identifiers to the global scope and, as such, are not side effect free.

Member expressions also referred to as the dot operator, allow property access to an object. For

Jan Frederick Walther 46

Deobfuscating JavaScript 30.05.2022

example, calling the function console.log involves a member expression on the global console
object. Accessing a property may result in code execution. A simple example of this would look like
this:

1 let v = {};
2 v.__defineGetter__('random', () => Math.random()));
3 console.log(v.random);

The __defineGetter__ allows associating an arbitrary function with an object’s property and, as
such, suffers from the same limitations as the call expression. The same reasoning leads to identifier
expressions not being side effect free. An example of this would be:

1 window.__defineGetter__('x', function() {return Math.random()})

To understand this, one must understand the global object in an ECMAScript engine works first. Both
V8, which is the ECMAScript engine of Chromium-based browser, and SpiderMonkey, which handles
ECMAScript within Firefox, respectively use thewindow global object. V8 is also used for node.js, which
runs standalone ECMAScript files instead of running them within the context of a website. Node.js,
however, uses the current ECMAScript file, also known as a module, as the global object instead.
Following the ECMAScript standard, the global object “is created before control enters any execution
context”[12, § 19]. The properties of the respective global object are added to the global scope and
can be accessed by their name without specifying member access on the global object.

The global object, precisely its properties, hosts most of the standard library. All built-in objects,
such as Math, JSON, or Object, are properties of the global object. Even built-in constants such as
undefined,null, andInfinity are properties of the global object. They are, however, marked as
non-writable, non-enumerable, and non-configurable and, as such, can not be modified[12, § 19.1].

However, a user may decide similarly to the handling of call expressions above to ignore the possibility
of this occurring by specifying a higher tolerance for overridden values.

Returning to the above example, it becomes apparent that while accessing regular variables may not
trigger side effects, properties of the global object may trigger a function and, as such, may have
arbitrary side effects. If x is used subsequently and has not been defined otherwise, it will run the
assigned function instead. One way of solving this issue would be to execute the constant folding that
involves identifiers after data flow analysis, and the known variables at a given point in the abstract
syntax tree are known. A local definition of x takes precedence over implicit member access to the
global object. Instances where a variable is known to be defined locally instead of globally could allow
all optimizations to be applied. This implicit access also works for this, which is implicitly added
in some contexts. While in the global scope, it is equal to the global object. Functions and classes
implicitly bind their own this. Arrow function expressions are exempt from this, and this may only
be bound explicitly.

Object expressions are side effect free if all assigned properties are side effect free. Checking this is
complicated as object expressions allow method definitions, properties, rest elements, and spread
elements. Method definitions themselves are side effects free. Properties are side effect free if both the

Jan Frederick Walther 47

Deobfuscating JavaScript 30.05.2022

key and the value are side effect free. Both spread and rest elements depend on their sub-expression
being side effect free.

Template literals embed expressions within a string literals. An example for this would be let
message = `Hello ${123} ${x()}`. The value of the message would be "Hello 123 "
concatenated with the result ofx(). Such a template literal is context-free if all embedded expressions
are side effect free.

Unary expressions are side effects free only for some operators. Thedelete operator is not side effect
free when the program runs in strict mode. If the program is not running in strict mode, some cases
may be side effect free. The remaining unary operators are side effect free if and only if the argument
is side effect free.

Update expressions are side effect free if their argument is also side effect free. Yield expressions are
not side effect free as they influence the control flow.

5.2.1.5 Bitwise negation operator

Returning to the unary operators, the unary, bitwise negation operator is relatively trivial as it is
analogous to the unary plus and minus operators in coercing its argument into a number and then
inverts all bits of the numeric value. The coercion into a number is done using the abstract operation
ToNumeric and supports BigInt values.

All bitwise operations on number values use the abstract operation ToInt32 before applying the
bitwise operations. This operation converts the number type values into a twos-complement integer
representation to apply bitwise operations as they appear in C-like languages. BigInt values are
preserved as they are already integers. It maps NaN, +0F, −0F, ∞F, and −∞F to +0F making the
operation idempotent[12, § 7.1.6]. After the bitwise operation, the resulting value is converted back
into the number type respectively, if necessary.

5.2.1.6 Logical negation operator

The unary, logical negation operator coerces its value into a boolean, using the abstract operation
ToBoolean instead of a numeric value as the previous operators did. This conversion obeys the
following rules:

• undefined is converted into false.
• null is converted into false.
• boolean is returned without conversion.
• number: +0F, −0F, and NaN are converted into false. All other values are converted into
true.

• string: an empty string will be converted to false, and all other strings are converted to
true.

• All values of the type symbol are converted to true.
• bigint: Only 0Z is converted to false, all other values are converted to true.

Jan Frederick Walther 48

Deobfuscating JavaScript 30.05.2022

• All values of the type object are converted to true.

The negation operator then inverts the value, so true becomes false and vice versa. This optimiza-
tion can be applied relatively easily following the above rules.

Exceptional cases for the immutable, global identifiers NaN and Infinity have been added to
simplify the source code further.

5.2.1.7 typeof operator

The typeof operator returns a string that indicates the type of the argument passed to it. This
definition leaves an easy opportunity for constant folding by folding the types of literal values. In a later
step, this could also include side-effect-free identifiers of known types. This additional optimization
would require type inference, however. The conversion from a value of a type into a string representing
the type works as follows:

• The values of the type undefined returns the string "undefined"
• null returns the string "object" due to legacy compatibility reasons. “In the first implementa-

tion of JavaScript, JavaScript values were represented as a type tag and a value. The type tag for
objects was 0. null was represented as the NULL pointer (0x00 in most platforms). Consequently,
null had 0 as the type tag, hence the typeof return value "object"”[36].

• Objects that implement [[Call]] (e.g., functions) return "function", while other objects
return "object".

• All other types return the name of the type in all lowercase characters, so for example, a value of
the BigInt type will return "bigint".

Another opportunity for folding can be applied if the user tolerates that the program ignores the
possibility of standard library functions and constants being overridden. If that is the case, the program
will analyze both MemberExpressions as well as CallExpression on whether they refer to elements
of the standard library. In this case, the program will apply the appropriate types for both the invocation
of functions and the access of constants. A few examples of this behavior:

• typeof Math.PIwill be folded to "number".
• typeof Math.random() will be folded to "number".
• typeof Math.randomwill be folded to "function".
• typeof Math.random(x) will not be folded since its arguments are not necessarily side

effect free.

5.2.1.8 Update expressions

This thesis will consider update expressions as unary expressions, even though newer versions of
the ECMAScript standard have a dedicated, separate chapter for update expressions. The operators
included in this category are the postfix and prefix variants of the increment (++) and decrement (--)
operators. While these update expressions can, according to the context-free grammar, be applied to

Jan Frederick Walther 49

Deobfuscating JavaScript 30.05.2022

UnaryExpression for the prefix operators or LeftHandSideExpression for the postfix operators,
they are limited by the syntax-directed operation AssignmentTargetType. It limits the expressions
that can be supplied to the update expressions to identifiers, member access, and the result of call
expressions. As such, the update expressions have no meaningful constant folding to be applied.

5.2.2 Binary operations

Binary operations have, as the name implies, two operands. As with the unary expressions, they will be
analyzed individually, listing opportunities for constant folding wherever possible. Contrary to unary
expressions, though, this section will also try to fold operations on identifiers and other expressions,
which may or may not have side effects. Most of these operations are relatively trivial on literal values
alone, so this extension is added. This behavior can be toggled in the software if faulty optimizations
are applied to the source code.

All binary operations that accept two numeric parameters will throw aTypeErrorwhen two differing
numeric types are passed to the operator unless it is explicitly stated that different types are accepted.
This inherent problem leads to all binary operations potentially throwing an exception, and as such,
most of the constant folding opportunities discussed in the following could not be applied if this were
to be followed strictly.

5.2.2.1 Exponentiation operator

The exponentiation operator ** allows exponentiating a base, which is supplied by the left-hand side
operand of the binary expression, by an exponent, which is supplied by the operator’s right-hand side.
The trivial case for constant folding is when both arguments are literal values and can be exponentiated
as they are in the abstract syntax tree. Special care has to be taken if the constant folding is not done
using ECMAScript as there is a derivation from the IEEE 754 floating-point standard. IEEE 754 dictates,
that the result of exponentiating 1F or −1F with either +∞F or −∞F results in 1F. ECMAScript differs
in its implementation from this in so far as that the result of this operation will be NaN instead of 1F.
This deviation from the IEEE 754 standard exists because this behavior was only specified in the 2019
revision of the IEEE 754 standard. ECMAScript predates this specification and has chosen to keep the
pre-existing behavior for legacy reasons[12, § 6.1.6.1.3].

The evaluation of the exponentiation operator begins with the abstract operation

EvaluateStringOrNumericBinaryExpression, which receives the base, the exponent, and the
operator (**) as parameters. It then extracts the values of both sides of the binary operation and passes
these on to the abstract operation ApplyStringOrNumericBinaryOperator, which will coerce both
parameters to a numeric type. If the numeric types of the sides do not match, e.g., the left side has
the type BigInt, and the right side has the type number, a type error will be thrown. After the type
check, the evaluation goes on to either BigInt::exponentiate or Number::exponentiate,
depending on the type of both parameters.

BigInt::exponentiate throws a RangeError if an exponent < 0Z is passed as BigInt can not

Jan Frederick Walther 50

Deobfuscating JavaScript 30.05.2022

represent the result correctly. A shortcut if both the base and the exponent are 0Z is defined with the
result 1Z. The absence of reserved values causes the default case to exponentiate the base by the
exponent and return the result.

Number::exponentiate has a few shortcuts and special cases at the beginning[12, § 6.1.6.1.3]:

1. ∀x ∈ F : xNaNF = NaNF

2. ∀x ∈ F, p ∈ {+0F, −0F} : xp = 1F
3. ∀x ∈ F : NaNx

F = NaNF

4. ∀x ∈ F : +∞F
x = +∞F, for x > +0F, otherwise the result is +0F

5. If the base is −∞F

1. If the exponent is larger than +0F
1. −∞F, if x is an odd integer, return −∞F.
2. Otherwise return +∞F

2. If the exponent is smaller or equal to +0F
1. −∞F, if x is an off integer, return −0F.
2. Otherwise return +0F

6. If the base is +0F

1. If the exponent is larger than +0F.
2. Otherwise return +∞F

7. If the base is −0F

1. If the exponent is larger than +0F
1. −∞F, if x is an odd integer, return −0F.
2. Otherwise return +0F

2. If the exponent is smaller or equal to +0F
1. −∞F, if x is an off integer, return −∞F.
2. Otherwise return +∞F

8. If the exponent is +∞F

1. If |x| > 1 ⇒ x+∞F = +∞F

2. If |x| = 1 ⇒ x+∞F = NaNF

3. If |x| < 1 ⇒ x+∞F = +0F

9. If the exponent is +∞F

1. If |x| > 1 ⇒ x+∞F = +0F
2. If |x| = 1 ⇒ x+∞F = NaNF

3. If |x| < 1 ⇒ x+∞F = +∞F

10. If base < −0F and the exponent is not an integral number, return NaN

Jan Frederick Walther 51

Deobfuscating JavaScript 30.05.2022

This list is sorted by priority, so the exponentiation Infinity ** 0 will result in +1F because rule
number two takes precedence over rule number five. Another non-obvious example is the case of
NaN ** 0. Intuitively the answer would probably be NaN since a value that is not a number can not
be turned into a number. However, since rule number two precedes rule number three, the result will
be +1F.

Not all of these rules are useful for the process of constant folding. The first rule allows the program
to fold all occurrences of x ** NaN to NaN, given that x is either an expression without side effects
or, in the case of the user setting the program to assume that identifier access is side effect free, an
identifier.

The second rule can also be used for constant folding by rewriting all occurrences of x ** 0 to a
numeric literal with the value +1F. While the third rule is similar to the first rule, it can only be used for
constant folding if the user is willing to accept a risk of a misfolding. Given the expression NaN ** x,
one could apply the third rule and fold this expression to NaN. This transformation would be valid
as long as x does not evaluate to either +0F or −0F as that would instead invoke the second rule.
Setting the assumption of x not evaluating to zero here would be sensible in the context of code
written by humans but considering that the target program is obfuscated to deliberately prevent it
from being readable, it would be unreasonable to assume it by default. The user may, however, enable
this behavior in the program’s settings.

While interesting for the evaluation, the remaining rules are of little importance for the current step
of the deobfuscation. In theory, a SAT solver like z3 could limit the possible values the exponents or
bases of the operations could take. This addition would require a significant amount of additional
context that the abstract syntax tree in its current form can not provide.

5.2.2.2 Multiplication operator

The multiplication operator * works in the same way as the exponentiation operator as it also
invokes the abstract operation EvaluateStringOrNumericBinaryExpression followed by
ApplyStringOrNumericBinaryOperator. Therefore, it also coerces both operands of the
operation into a numeric type and throws a TypeError if those types differ from each other.

Implementing the multiplication operator for values of the type BigInt is again relatively trivial. It
simply states that a value “that represents the product of x and y”[12, § 6.1.6.2.4] is returned, with x and
y being the names of the operands. In order to allow interoperability with the ECMAScript standard,
the operands of the multiplicative operator will also be called x and y in this thesis. The only form of
constant folding that may be applied here concerns the trivial case of both operands being BigInt
literal values.

The real opportunities for constant folding arise, as with the exponentiation operator, from implement-
ing the number type. Multiplication is handled in Number::multiply and includes the following
exceptional cases[12, § 6.1.6.1.4]:

1. If either of the operands is NaN the result will also be NaN

Jan Frederick Walther 52

Deobfuscating JavaScript 30.05.2022

2. If x is +∞F or −∞F

1. If y is +0F or −0F, return NaN.
2. If y > +0F, return x.
3. Otherwise return -x.

3. Since “finite-precision multiplication is commutative”[12, § 6.1.6.1.4], rule number two also
applies with x and y swapped.

Rule one allows constant folding of all occurrences of eitherx * NaNorNaN * x, withxbeing either
a side effect free expression or an identifier if the user has chosen to consider identifier access side
effect free. Another opportunity for constant folding is not derived directly from the exceptional cases
but instead from the mathematical properties of multiplication. The neutral element in multiplication
is the number one, and this is of use for constant folding in so far as that all expressions of the form x
* 1 or 1 * xmay be folded to simply xwith the above limitations placed on x. This transformation
works because even if x evaluates to NaN, the result will not change since 1 * NaN is equal to NaN.
Multiplication by zero, however, may not be folded unless x is proven not to be NaN, because of rule
one and not to be either +∞F or −∞F, due to rules two and three.

5.2.2.3 Division operator

The division operator / also follows the already established path of abstract operations and, as such,
also coerces both operands into numeric types. The operands are the dividend and the divisor, with
the former being on the left-hand side of the operator and the latter on the right-hand side. Unlike
the previous implementations for BigInt, it contains a particular case as with the implementations
for Number. If the divisor is zero, a range error will be thrown. This particular case can fold BigInt
division expressions by replacing them with a throw statement that directly throws a RangeError
instead of waiting for the exception to be thrown at runtime. The result of the BigInt division is
rounded to the next integer value.

The exceptional cases for number values are as follows[12, § 6.1.6.1.5]:

1. If either operand is NaN, the result will also be NaN.
2. If the dividend is +∞F or −∞F:

1. If the divisor is +∞F or −∞F, the result will be NaN
2. If the divisor is larger or equal to +0F, the result will be equal to the dividend
3. Otherwise, the result will be the dividend with the sign inverted.

3. If the divisor is +∞F

1. If the dividend is larger or equal to +0F, the result will be +0F
2. Otherwise, the result will be −0F

4. If the divisor is −∞F

1. If the dividend is larger or equal to +0F, the result will be −0F

Jan Frederick Walther 53

Deobfuscating JavaScript 30.05.2022

2. Otherwise, the result will be +0F

5. If the dividend is +0F or +0F

1. If the divisor is +0F or +0F, the result will be NaN
2. If the divisor is larger than +0F, the result would be equal to the dividend
3. Otherwise the dividend with inverted sign will be returned.

6. If the divisor is +0F:

1. If the dividend is larger than +0F, the result will be +∞F

2. Otherwise the result will be −∞F

7. If the divisor is −0F:

1. If the dividend is larger than +0F, the result will be −∞F

2. Otherwise the result will be +∞F

The opportunities for constant folding directly derived from these exceptional cases are scarce, as
most have many conditions. The most obvious is the first rule, and folding occurrences of x / NaN or
NaN / xwith NaN, with x being an alias for side effect free expressions or if the user enabled side
effect free identifier access. Another opportunity derives from the mathematical properties of division
over real (and floating-point) numbers. Division by one will always yield the dividend as a result. This
opportunity can be proven by applying the rules:

• Infinity / 1 or-Infinity / 1will evaluate toInfinity or-Infinity respectively
because of rule number 2.2.

• NaN / 1will evaluate to NaN as per rule number one.
• 0 / 1 or -0 / 1will evaluate to 0 or -0 respectively due to rule number five.

The default case comes from the mathematical properties of the division operator. Therefore, the
program may replace all occurrences of x / 1with x.

5.2.2.4 Modulo operator

The final operator from the category of the multiplicative operators is the remainder opera-
tor, also known as the modulo operator. ECMAScript uses the percent sign for this operator,
similar to other programming languages. As with the operators previously discussed, it invokes
EvaluateStringOrNumericBinaryExpression followed by ApplyStringOrNumericBinaryOperator

again. The operands are called n on the left-hand side and d on the right-hand side by the ECMAScript
standard[ECMA International [12], 6.1.6.1.6][12, § 6.1.6.2.6].

BigInt::remainder includes two exceptional cases. The first one is concerned with the case of
d being zero. Trying to determine the remainder using a zero divisor causes a RangeError to be
thrown. However, if n is zero, the result will be zero too. The opportunities for constant folding here
are similar to the ones found in the division operator on BigInt. Occurrences of x % 0 could be
replaced with ThrowStatement instead to preempt the exception being thrown implicitly at runtime.

Jan Frederick Walther 54

Deobfuscating JavaScript 30.05.2022

However, the latter case does not provide a straightforward opportunity of applying constant folding as
occurrences of 0 % x could lead to a RangeError being thrown if x evaluates to zero. The program
has added a switch to allow this folding regardless of its theoretical impact.

the exceptional cases become more numerous when moving on to Number::remainder, as with
the previous operators[12, § 6.1.6.1.6]:

1. If either operand is NaN, the result will also be NaN
2. If n is either +∞F or −∞F, the result will be NaN
3. If d is either +∞F or −∞F, the result will be n
4. If d is either +0F or −0F, the result will be NaN
5. If n is either +0F or −0F, the result will be n

The non-conditional nature of these exceptional cases provides a lot of constant folding opportuni-
ties:

• The first one can be derived from the first rule and allows the rewriting of all occurrences of
NaN % x or x % NaN to NaN, with x being either a side effect free expression or an identifier if
the user has chosen to consider them side effect free.

• Rule number two allows folding all occurrences of Infinity % x or -Infinity % x to
NaN.

• The following rule allows rewriting x % Infinity and x % -Infinity to simply x.
• The penultimate rule allows rewriting all occurrences of x % 0 and x % -0 to NaN.
• The final rule allows rewriting all occurrences of 0 % x and -0 % x to n if x is side effect free.

5.2.3 Additive operators

After concluding its section on multiplicative operators, the ECMAScript standard moves on to the
category of additive operators consisting of the addition and subtraction operator. Both of them reuse
the symbols for their operators as the addition operator uses the plus sign previously used in the
unary plus operation, which tries to coerce its operand into the number type explicitly. In turn, the
subtraction operator reuses the minus sign previously used by the unary minus operator.

5.2.3.1 Addition operator

The addition operator forms a particular case in contrast to the previously discussed operators as it
does not strictly operate on numeric types. It is also defined for the string type and will coerce both
operands to the string type if either operand is of the type string. This coercion happens because
it serves both as the operator for adding two instances of numeric types and the operator for string
concatenation.

This two-fold usage leads to some expressions with non-obvious results that have gained notoriety
among ECMAScript enthusiasts and its critics[23]. An example of this would be the expression [] +
[]. Intuitively the result might be an empty array, but the solution here is not quite as obvious. The

Jan Frederick Walther 55

Deobfuscating JavaScript 30.05.2022

Array object, as defined in the ECMAScript specification, does not provide a valueOfmethod by
default, so when passed to the previously introduced abstract operation OrdinaryToPrimitive, it
will invoke the toString method, which the Array object defines[12, § 23.1.3.31] in the absence of
a property with the@@toPrimitive symbol as a key. ThetoStringmethod, if not overridden, will
then invoke the join method with the separator "". Invoking this method causes all array elements
to be converted into a string representation and subsequently concatenated. Applying these steps
now means that the expression [] + [] will evaluate to ""+ "" which in turn will evaluate to the
empty string ("").

A particular case of this can be found in the expression{} + {}. If this expression is part of a statement
or an expression, it evaluates to "[object Object][object Object]", which is the result
according to the ECMAScript standard and the rules as explained in the previous example. However,
if the expression is evaluated using eval(), its result becomes NaN in both V8 and SpiderMonkey.
This quirk happens due to an ambiguity in the ECMAScript syntax. The code can be parsed both as
an expression and an empty code block, followed by a unary expression. The unary expression is the
unary plus invoked on an empty object, which will evaluate to NaN[33]. This explanation also applies
to {}+[] === 0, with the only difference being that an empty array defines a different conversion
to number than an object does by default. A compelling and similarly misleading expression is {foo:
"bar"}+{}. Instead of the first pseudo object literal defining an object with the property foo and

the value "bar", it defines another code block with a labeled statement. These labeled statements
are combined with continue or break in the context of nested loops. So the actual meaning of the
expression {foo: "bar"} is a code block containing a labeled statement with the label foo, which
in turn labels an expression statement containing the string literal "bar".

By coercing the other parameter into a string when the other side has the typestring, many constant
folding possibilities are prevented. For example, the expression 1 + x + 1 could be simplified
to x + 2 if only mathematical laws were applied. In ECMAScript, however, x could be of the type
string or could evaluate to a value of the type string when converted into a primitive value. An
example of this is the case of x evaluating to "foo". The result of the above example would then be
"1foo1". Even the expression x + 1 + 1 suffers from this limitation as it is evaluated left-to-right,
causing the result to become "foo11".

This paragraph will now focus on applying the addition operator to numeric values by first considering
the semantics of adding two values of the type BigInt. No exceptional cases exist for this opera-
tion, and the definition consists solely of returning a BigInt value that represents the sum of both
operands[12, § 6.1.6.2.7].

Number::add, which names its operands x and y, contains several exceptional cases[12,
§ 6.1.6.1.7]:

1. If either operand is NaN, the result will also be NaN
2. If one operand is −∞F and the other is +∞F, the result will be NaN
3. If either operand is +∞F, the result will be +∞F

4. If either operand is −∞F, the result will be −∞F

5. If both operands are equal to −0F, the result will also be −0F

Jan Frederick Walther 56

Deobfuscating JavaScript 30.05.2022

Figure 5.1: Simplified AST of a string concatenation

Figure 5.2: Simplified AST of a string concatenation after constant folding has been applied

All rules except for the first one either implicitly or explicitly require knowing both tangible values
to activate, and as such, they are of no use when it comes to constant folding. The first rule is only
applicable if it can be asserted that the other operand is not a string.

The overloading of the plus operator also introduces another problem. Consider the expression x +
"foo"+ "bar". The abstract syntax tree for this expression may look something like shown in figure
5.1. The nodes labeled with a plus represent a binary expression with the plus operator with its left
and right-hand side being displayed as child nodes. The issue with this expression is that the program
can not fold it by only visiting each binary expression node. If the root node is visited, the program will
analyze both child nodes and conclude that the root operation can be folded if the left-hand side can
also be folded. However, once the left-hand side of the root node is being analyzed, the program will
conclude that, since this expression includes an unknown value and none of the special rules outlined
above can be applied, this subexpression can not be folded either.

This particular case is where the program can use the associative property of string concatenation in
ECMAScript. Since the right side of the child’s expression is already known to be a string, the left side
will be coerced into a string. The program can use this to concatenate both strings "foo" and "bar"
despite not being in the same binary operation. The result of this transformation can be seen in figure
5.2

A simple lookahead accomplishes this behavior in handling the binary plus operator. The program
checks whether the left-hand side is also a binary expression with a plus operator and a literal string
on its right-hand side. This behavior does not work with addition since the coercion of the operands
into the string type can not be ruled out.

Jan Frederick Walther 57

Deobfuscating JavaScript 30.05.2022

5.2.3.2 Subtraction operator

The subtraction operator uses the same symbol for its operator as the unary minus operator. It also
uses the same abstract operations as the previous operators. Its implementation for values of the
type BigInt states that a value representing the difference between its operands is returned[12,
§ 6.1.6.2.8].

However, its implementation for values of the type Number has a peculiarity. It is the first operator
analyzed in this thesis that invokes another operator. To be precise, the operator to be invoked is
the binary plus operator. Internally, ECMAScript transforms the expression x - y, with both x and
y evaluating the number type values into x + (-y). It is explicitly stated that this transformation
will always yield the same result[12, § 6.1.6.1.8]. Because the binary plus operator is being invoked
here with arguments that have been coerced to be of the type number, it is safe to apply the constant
folding opportunities for the binary plus operator that were previously unavailable due to the string
coercion. The foremost folding opportunity resulting from this transformation is the ability to fold
expressions that have a NaN on either side to NaN.

An additional constant folding opportunity arises from the mathematical properties of subtraction. This
opportunity is the subtraction of zero from another value. This rule means that all expressions of the
formatx - 0may be folded to simplyx. Any potential side effects are preserved in this transformation.
Another opportunity for constant folding places the zero on the other side of the operation and allows
simplifying expressions that look like 0 - x to -x. This particular case may trigger the first rule of
the plus operator. However, if x evaluates to NaN and since there is no negative NaN, as explained in
section 5.2.1.1, the expression would not hold. However, this can be disregarded since NaN is never
equal to NaN.

The mathematical definition of the subtraction operator yields one more possible constant folding
opportunity. Expressions of the form x - -y can be simplified to x + y with some caveats. Since
the subtraction operator implicitly coerces its operands to a numeric type, it has to be assumed that
both operands are already of a numeric type for this constant folding opportunity to work. If either
operand is of thestring type and this folding is applied regardless, the result may be invalid. A simple
example would be if y evaluates to "foo". In the case of x - -y, it would lead to -y evaluating
to -NaN, which in turn evaluates to NaN, which will omit the initial value of y from the rest of the
evaluation. If this expression were now to be transformed to x + y, it would coerce x into the string
type, and the resulting value would be a string with the suffix "foo". The user may choose to enable
this folding in the settings regardless.

5.2.3.3 Bitwise operators

The following chapter will cover the bitwise shift operators, which allow shifting the binary values to
the left and right, and the bitwise operators, which allow direct manipulation of the underlying bits of
a numeric value. Using any of the operators analyzed in the following chapters with a value of the type
number on one side and a value of the type BigInt on the other will raise a TypeError exception,
as with the binary operators that were previously discussed.

Jan Frederick Walther 58

Deobfuscating JavaScript 30.05.2022

In order to apply any of these operations, values of the number type will need to be converted to
32-bit integers first. This conversion is done using the abstract operation ToInt32, which, as the name
implies, converts a value that has been passed to it into the ECMAScript internal integer data type. “It
converts argument to one of 232 integral Number values in the range F(−231) through F(231 − 1),
inclusive”[12, § 7.1.6]. Values unique to IEEE 754, like −∞F, +∞F, −0F, or NaN that do not have
a direct mapping to an integer are replaced by +0F before the conversion. The input value is then
rounded down to the largest integer that is not larger than the initial value [12, § 5.2.5] [12, § 7.1.6]
while keeping the sign. This calculation is done on the mathematical value, so restrictions of data types
do not apply. The remainder of the input value with the divisor 232 is then calculated to accommodate
for the fact that the number types allow for much larger values than a 32-bit integer can fit. This result
is then mapped back into a concrete data type. Because of the sign bit, values above 231 have 232

subtracted from them before the conversion to accommodate for the overflow. This for example causes
the expression (2 ** 32)- 1 | 0 to evaluate to -1 instead of (2 ** 32)-1 as it would have
in other programming languages.

Values of the type BigInt do not have to be converted to be used in a bitwise operation.

5.2.3.4 Bitwise AND

The bitwise AND operation takes two operands, x and y, and compares them bit-by-bit as the name
implies. For each bit set in both operands, the bit with the same index will be set in the result. An
example of this would be the operation 0b1000 & 0b1111, where the operation would leave 0
b1000.

Neither number nor BigInt define any special rules that would allow for constant folding. There are
two theoretical opportunities for constant folding regardless. The first is the neutral element, which
would be one side having all bits set to one. Having the neutral element on one side will lead to the
result being the value on the other side. However, there is a limitation to this, as the input value will
still be converted to a 32-bit integer when dealing with the number type. The number value with all
of its bits set is -1. An example of this behavior would be Infinity & -1, as Infinity will be
turned into zero by the abstract operation ToInt32.

To still apply constant folding here, the other operand would have to be turned into a 32-bit integer
explicitly. Since ToInt32 is an abstract operation that can not be called directly, another method must
be found to invoke it implicitly. An obvious solution would be to use a bitwise operator. However,
this leads right to where the transformation started and can, as such, be disregarded. Furthermore, it
would also ruin the idempotency of these transformations.

This restriction does not apply to the operation on BigInt as there are no special values or overflows
to account for. However, an issue that arises is concerned with the variable size of BigInt values
as there is no maximum value. This lack of a maximum value makes applying this constant folding
opportunity impossible without knowing the other value. The size of the result will be the size of the
highest bit set in both operands.

The second opportunity for constant folding that can be used is one of the values having no bits set.

Jan Frederick Walther 59

Deobfuscating JavaScript 30.05.2022

This condition is fulfilled for values of the type number by all values that are turned into zero by the
abstract operation ToInt32:

• +∞F

• −∞F

• +0F
• −0F
• NaN

If either side evaluates to either of these values and the other side is either side effect free or considered
to be side effect free by the user, the operation can be replaced with a number literal with the value
of +0F. This rule also applies to values of the type BigIntwith the limitation of there only being a
single value for zero (0Z).

5.2.3.5 Bitwise OR

Bitwise OR also takes two operands, x and y, and will calculate a value that has each bit set, that is set
in either x or y. Returning to the previous example values, the expression 0b1000 | 0b1111 can
be constructed. The result of the above expression would be 0b1111 as the right-hand side already
has every bit set.

There are no inherent exceptional cases defined for the bitwise OR operator, similar to the bitwise AND
operator. However, the first opportunity for constant folding can be derived from the above example.
When either side has all available bits set, applying the bitwise OR operator will always lead to the
resulting value having all bits set.

This rule allows folding all occurrences of x | -1 or -1 | x to -1 if x is side effect free. This
transformation also works for BigInt values, as negative values are implemented “as having bits set
infinitely to the left”[12, § 6.1.6.2].

A second opportunity for constant folding arises from the number zero or the values turned into zero
when operands of the type number are mapped to 32-bit integers. This opportunity suffers from the
same limitations the AND operator features when folding expressions where one side has every bit set.
To be correctly folded, the remaining side would still have to be converted into a 32-bit integer. The
shortest way of applying this would be another bitwise operation with a constant value.

This limitation, again, does not apply to values of the type BigInt with the same reasoning as there
is no implicit type conversion.

5.2.3.6 Bitwise XOR

Bitwise XOR takes two operands, x and y, and calculates a value with all bits set in one operand but
not the other one. If the bits of a numeric value were considered a set, the XOR operator would work as
the symmetric difference between the two sets. Returning to the established example of 0b1000 and
0b1111, this would yield the expression 0b1000 ^ 0b1111, which evaluates to 0b111.

Jan Frederick Walther 60

Deobfuscating JavaScript 30.05.2022

As with the other bitwise operators analyzed so far, the standard does not specify any special rules that
could be used to apply constant folding. The opportunities for this arise, again, from the mathematical
properties of the operator.

The first value is zero, as all bits set on one side would result in the result.

However, this particular case suffers from the implicit conversion to a 32-bit integer for values of the
number type again. Values of the BigInt type are, again, unaffected.

The XOR operator has a special rule when both sides are equal. This situation causes the result to
become zero, as every bit set on one side is also set on the other side. This rule is not limited to values
of the BigInt type as the resulting value is a constant that is unaffected by the conversion to a 32-bit
integer. This behavior has the somewhat non-obvious consequence that NaN ^ NaNwill evaluate to
zero. A limitation of this approach is that the type of the resulting zero will have to be guessed in most
cases. The deobfuscation program defaults to number here.

5.2.3.7 The Left Shift Operator

The left shift operator also takes two operands called x and y. Unlike the previous bitwise operators,
however, the left shift, and for that matter, all shift operators, are not commutative. That means that
x << y is not necessarily equal to y << x. The operator serves as both arithmetic, and logical left
shift as those operations are equivalent. This equivalence also explains the absence of an unsigned left
shift operator like <<<.

When considering the implementation of the operator for the number type, x, the left operand is
converted to a 32-bit integer using the previously introduced abstract operation ToInt32. However, the
right-hand side operand, y, is converted into an unsigned 32-bit integer using the abstract operation
ToUint32. Similarly to its signed counterpart, it also maps +0F, −0F, −∞F, +∞F, and NaN to 0Z.
All other values are rounded down to the nearest integer that is not larger than the input value.

After conversion, the remainder of y with the divisor 32 is calculated. This value is then used as the
actual value for shifting. The standard does not define any specific shortcut rules for this operator.
There are, however, a few that arise from the mathematical properties. One of them is the shifting of
zero as in 0 << x. If x is side effect free and evaluates to a value that is not of the type BigInt.

The implementation for values of the type BigInt requires, as with all previous operators, that
both sides are of the type BigInt. Otherwise, a TypeError exception will be thrown. A significant
difference between the implementations for both numeric types is that the one for BigInt allows for
the y parameter to be negative. The calculation result then depends on the sign of the left operand.
If y < 0Z, the result will be equal toR(x)/2−y. In all other cases, the result will be equal toR(x) ∗
2y. Applying this constant folding, which assumes that the binary operation is not used to throw
a TypeError exception implicitly, allows turning bit shifts into either division or multiplication.
The assumption here is that a human can intuitively understand multiplication and division, so this
transformation should be applied.

Another opportunity for constant folding for values of the number type arises from considering the

Jan Frederick Walther 61

Deobfuscating JavaScript 30.05.2022

case of a shift by zero or a shift by a number that divides by 32 with a remainder of zero. However, doing
this will still convert the left-hand side operand into a 32-bit integer, which leads to the same issues as
already explained with the bitwise operators. However, one simplification that can be done here is
to apply the modulo operation to y so that any values larger than 32 are converted to the equivalent
smaller value.

This zero shift optimization also applies to the BigInt implementation, except there is no wrap-
around for the y parameter. Because there is no conversion to a 32-bit integer, no transformation is
applied to the x parameter. The lack of this restriction means that expressions like x << 0n can be
folded to x. This risks x not evaluating to a value of the type BigInt, however, which would throw a
TypeError.

One more opportunity for values of the BigInt type that can be used for constant folding is the
equivalency of multiplication and left shifting. Essentially, a left shift like x << y may be rewritten as
x · by, with b being the base of the underlying numeric system. For ECMAScript, this is binary, so the
resulting equivalent expression is x · 2y. The expression 4n << 5n could be rewritten as 4n * (2n
** 5n), which can subsequently be simplified to 4n * 32n, which can then be further simplified

to 128. This transformation can not be applied if the exponent is negative, as negative exponents are
not allowed for values of the type BigInt.

Another opportunity exists for BigInt when the left-hand side is 0n. The result will always be 0n
regardless of which BigInt value is on the right-hand side.

5.2.3.8 The Right Shift Operators

The right shift operators (>> and >>>) act as the counterpart to the left shift operator discussed in
section 5.2.3.7. Both operands, x and y, are converted into a 32-bit signed and unsigned integer
respectively.

The constant folding opportunities for both number and BigIntwith y = 0 apply the same as with
the left shift operator.

The BigInt implementation for the signed right shift operator invokes the left shift operator while
inverting the sign of y. This means, that x >> y may also be written as x << -y, when x and y are
of the type BigInt. The program may also assume that both parameters are of the type BigInt if
one parameter is known to be of the type BigInt. This transformation is applied if a literal value for
either x or y is present to re-use pre-existing code for the left shift operator in a separate pass.

There exist two distinct right shift operators for values of the type number. The first is the signed
right shift, which will shift all bits right while filling empty slots with the sign bit. The sign bit itself is
preserved in the most significant bit. -(0x80000000)>>31will consequently evaluate to -1, the
number that has all 32 bits set.

However, the unsigned variant will shift in zero bits instead of the sign bit. -(0x80000000)>>31
will therefore evaluate to 1, the number with only the least significant bit set.

BigInt does not implement the unsigned right shift as the sign bit is considered to be infinitely far

Jan Frederick Walther 62

Deobfuscating JavaScript 30.05.2022

to the left in BigInt values. It is not involved in shift operations and will be ignored. x >>> ywill
throw a TypeError if either operand is of the type BigInt.

5.2.4 Binary Logical Operators

The following operators define the logical conjunction and disjunction operators, which can be used
on expressions.

5.2.4.1 Logical AND operator

The logical AND operator (&&) allows linking two expressions and will return true if both expressions
evaluate to true. It employs short-circuiting, which means that if the left expression evaluates to
false, the operator will short-circuit, and the right-hand-side expression will not be evaluated. Not
evaluating the right-hand side means the whole expression can be replaced with a literal boolean,
false. If the right side evaluates to false statically, the expression can be replaced by the left
expression. In some contexts, this might require explicit boolean coercion by prefixing the expression
with !! though. This explicit coercion works because of the nature of the unary logical negation
operator coercing its target into the type boolean. The second unary negation operator undoes the
first one’s negation of the target expression. Those extraneous operators may be removed if the outer
statement or expression already implicitly coerces the value to be boolean. The trivial folding would
be when the left-hand side and the right-hand side expressions are side effects free and evaluated
to true at compile time. In this case, the whole expression may be replaced with a literal boolean,
true.

5.2.4.2 Logical OR operator

The logical OR operator (||) takes two expressions and coerces them to the boolean type. If either
operand evaluates to true the whole expression will evaluate to true. It employs short-circuiting
when the left expression evaluates to true. Short-circuiting here leads to the right-hand side expres-
sion not being evaluated at all. The right-hand side not being evaluated can be used for constant
folding in that if the left-hand side expression statically evaluates to true the whole expression can
be replaced with a literal boolean true.

5.2.4.3 Conditional operator

The conditional operator, also known as the ternary operator in other programming languages, is a
way of expressing a condition within an expression. It is formed with a test expression x coerced to
boolean, an expressiony that is evaluated whenx evaluates totrue, and an expressionz that forms
the other part and is evaluated if x evaluates to false. Unlike the if statement, the else expression
is not optional. If x can be evaluated statically and without side effects, the conditional expression
may be replaced with the resulting expression. No special rules are defined for this operator.

Jan Frederick Walther 63

Deobfuscating JavaScript 30.05.2022

5.2.5 Relational operators

ECMAScript provides a range of relational operators that set two expressions in relation to each other.
The result of these expressions is always of the type boolean, even though the abstract operations
and algorithms invoked may return undefined.

5.2.5.1 Less than operator

The less-than operator, denoted by<, provides relational tests on whether the left-hand side expression
evaluates to less than the right-hand side expression. It is the first occurrence of the “Abstract Relational
Comparison” algorithm[12, § 7.2.13], which implements a less-than operation for all types. All other
relational operators can be derived from inverting and combining the result with an equality check.

The algorithm used to compare values has to be visited first to understand this operator and the ones
building off it. The following paragraphs will explain the steps the algorithm takes to come to a result.

The “Abstract Relational Comparison” accepts two values called x and y and a flag calledLeftFirst,
which defaults to true and specifies the order in which the arguments are evaluated. Depending
on the order defined using the LeftFirst parameter, the operands are passed to the previously
introduced abstract operation ToPrimitive. The possible return values of this algorithm are true,
false, and undefined.

If both x and y are of the string type after being passed to ToPrimitive, the abstract operation
IsStringPrefix[12, § 7.2.9] will be invoked. It also takes two operands,p andq, and returns a boolean
value indicating whether q “can be the string-concatenation of p and some other String r”[12, § 7.2.9].
If that is the case, true is returned and false otherwise. The first invocation of this operation is
done with the primitive versions of x and y in inverted order. y being a prefix of x implies that either x
and y are equal or that y is a prefix of x and shorter in length. Both cases lead to the less-than operator
evaluating to false. Therefore the algorithm returns false as well.

IsStringPrefix is invoked a second time afterward with the parameters in the same order as they
were passed to the operator. If this evaluates to true, the whole algorithm returns true because the
previous check already established that x is neither equal to nor longer than y. Therefore, x has to be
an actual prefix of y and is considered less than y by the semantics of ECMAScript.

If both checks fall through, the first index where both strings differ is determined. The code point at
this index is then compared to determine the result of the operation.

If one side is of the type BigInt and the other side of the type string, the algorithm will try to
transform the string value to BigInt. In the case of this transformation succeeding, the BigInt
operand and the transformed string value will be passed to BigInt::lessThan, where the

comparison is equivalent to the less than operator onZ.

If the algorithm has not returned a result so far, both operands will be transformed to one of the
numeric types using the previously introduced abstract operation ToNumeric. If the resulting types
of both operands are equal, either Number::lessThan or BigInt::lessThanwill be invoked.

Jan Frederick Walther 64

Deobfuscating JavaScript 30.05.2022

BigInt::lessThan, as per the previous definition, has no exceptional cases, and as such only
trivial constant folding where both values are known can be applied. Number::lessThan, however,
given the nature of IEEE 754 floating-point numbers, has a plethora of exceptional cases to consider
when evaluating[12, § 6.1.6.1.12]:

1. If either side evaluates to NaN, the result will be undefined
2. If both operands are the same Number value, the result will be false
3. If one side is +0F and the other side is −0F, the result will be false
4. If x is +∞F, return false.
5. If y is +∞F, return true.
6. If y is −∞F, return false.
7. If x is −∞F, return true.

If all of these exceptional cases fall through, the values of x and y are compared using the less than
operation while projected intoR.

The first constant folding opportunity derives from rule number one. If either side isNaN, the operation
may be replaced by a boolean literal of the value false. undefined is converted into false by
the semantics of the less-than operator after returning from the algorithm. This case is also limited to
expressions where the other side is side effect free.

The next opportunity that does not require knowledge of both parameters arises from rules 4 through 7.
The logic behind those rules is that no values are beyond infinity, so the less-than operation may short
circuit and end early. This behavior is consistent with the IEEE 754 standard. From this, expressions
like Infinity < x and x < -Infinity may be replaced with a boolean literal with the value
false if x is side effect free. In theory, it would also follow that expressions like x < Infinity
and -Infinity < x could be replaced with true given the same conditions on x. However, xmay
evaluate to NaN, which would make rule number one apply instead, which would make the operation
return false instead.

If the numeric types of x and y differ after their transformation, the same rules are repeated to filter
out NaN and ±∞. The values of x and y are then projected intoR and compared using the less-than
operator. This handling of type differences breaks with the previous behavior of binary operators
throwing a TypeError if the numeric types of the operands differ. The problem of a loss in precision
can be ignored since the result will be of the type boolean regardless.

5.2.5.2 Greater than operator

The greater than operator also invokes the “Abstract Relational Comparison” algorithm but switches
the order of its operands. In addition to that, it also sets the LeftFirst flag, which defaults to true,
to false so that xwill be evaluated first. This reversal is done to conserve the left-to-right property of
expression evaluation in ECMAScript[12, § 7.2.13]. A result ofundefined from the relational algorithm
will be transformed to false. In all other cases, the result of the algorithm is returned. The constant
folding opportunities and the compatibility of the two numeric types from the less-than operator also
apply to the greater-than operator.

Jan Frederick Walther 65

Deobfuscating JavaScript 30.05.2022

5.2.5.3 Less than or equal operator

The “Abstract Relational Comparison” algorithm also synthesizes the less-than-or-equal operator. The
opposite of the less-than-or-equal operator is the greater-than operator, which allows negating the
result of the greater-than operator. The greater than operator is not invoked directly but rather copied,
with the only difference being that the result of the algorithm is mapped to the return value of the
operator in a different way. undefined and true make the operator return false while a result of
false from the algorithm will make the operator return true.

Not doing a true equality check here leads to some logically inconsistent behavior where [] < []
evaluates to false, [] == [] evaluates to false, and [] <= [] evaluates to true. [] <
[] evaluating to false is due to both operands being passed to ToNumeric, which leads to both
values becoming +0F. The same transformation happens in the case of [] <= [], which makes
the operations trivially understandable because while +0F ≤ +0F is true, +0F < +0F is not. The
behavior of the equality operation not returning true in this case will be analyzed in section 5.2.6.
The constant folding opportunities and the compatibility of the two numeric types from the less-than
operator apply with the less than or equal operator.

5.2.5.4 Greater than or equal operator

The greater than operator is implemented in the same way as the less-than operator par for the switch-
ing x and y when they are passed to the “Abstract Relational Comparison” algorithm. LeftFirst
is not changed to false but instead left at its default value of true. The constant folding oppor-
tunities and the compatibility of the two numeric types from the less-than operator apply with the
greater-than-or-equal operator.

5.2.5.5 instanceof operator

The instanceof operator takes an object instance (V) and a constructor (target) as arguments
and follows a “generic algorithm for determining if V is an instance of [the] target either by consult-
ing target’s @@hasInstance method or, if absent, determining whether the value of target
’s”prototype” property is present in V’s prototype chain”[12, § 13.10.2]. A TypeError is thrown, if
target is not an object.

The constant folding opportunities for this operator are limited as it is usually used in conjunction with
two identifiers. Trivial cases, where the left-hand side is a literal value, may still be folded to false.

5.2.5.6 in operator

The in operator takes an object instance on the right-hand side and an expression on the left-hand
side, which will be transformed into a value of the type string if it is not already of the type string
or Symbol. The result of the operator is a boolean value indicating whether the object instance has a
property with the key passed in the left-hand side operand. If that is not the case, the prototype chain

Jan Frederick Walther 66

Deobfuscating JavaScript 30.05.2022

of the object instance will be traversed in search of the property. If the right-hand side is not an object,
a TypeErrorwill be thrown. There are no constant folding opportunities known to the author that
can be meaningfully applied here.

5.2.6 Equality operators

ECMAScript defines two kinds of equality operators. Strict comparison short-circuits and will imme-
diately return false if the types of the operands are not equal, while loose comparison allows for
differing types.

5.2.6.1 Strict equality operator

The string equality operator (===) has a left and a right-hand side operand and passes these to the
“Strict Equality Comparison” algorithm defined in section 7.2.15 of the ECMAScript standard. If the
types of both operands are not equal, the algorithm returns false immediately. If the left-hand
side operand is either of the type number or BigInt, Number::equal or BigInt::equal are
invoked, respectively. The right-hand side operand does not have to be checked separately since the
first check already ensured it is of the same type.

BigInt::equal returns true if the two operands have the same value when mapped intoR and
false otherwise.

Number::equal, on the other hand, defines special rules to deal with the special values found in
F[12, § 6.1.6.1.13]:

1. If either side is NaN, the result will be false.
2. If both operands are the same Number value, return true.
3. If one side is +0F and the other side is −0F, return true.

If none of these rules apply, false is returned.

In the case of the operands being of a non-numeric type, the operands are instead passed on to the
abstract operation SameV alueNonNumeric. Depending on the input type of the operands, a few
different paths are applied:

• undefined: the result will be true. All occurrences of undefined === undefined may
therefore be replaced with true.

• null: the result will be true. Therefore, all occurrences of null === nullmay be replaced
with true.

• string: the sequence of code units for both strings has to be equal for the operation to return
true.

• boolean: the operation acts as an XNOR by only returning true if both operands evaluate to
true or both operands evaluate to false.

• Symbol: only returns true if both operands are the same Symbol value.

Jan Frederick Walther 67

Deobfuscating JavaScript 30.05.2022

Values of the type Object are compared by their object value, which means the memory location of
the object. The expression {} === {} will evaluate to false because the two operands are two
distinct object instances. Given the example

1 let a = {};
2 let b = a;

, a === b will evaluate to true because both identifiers reference the same underlying object. This
also explains the curious behavior of [] == [] evaluating to false in section 5.2.5.3.

The most straightforward opportunity for constant folding here is if either side of the operator is NaN
since the other side will either also be of the typenumber, which will result in the comparison returning
false, or the other side could be of a different type, which would also make the comparison return
false.

5.2.6.2 Strict inequality operator

The strict equality operator (!==) simply acts as syntactic sugar for combining the unary minus operator
with the strict equality operator. The same abstract operation as the strict equality operator is invoked,
but the result is negated.

5.2.6.3 Loose equality operator

The loose equality operator (==) invokes the “Abstract Equality Comparison” algorithm to check its
operands, x and y, for equality. This algorithm returns true or false[12, § 7.2.14].

The first step in the algorithm is to check whether x and y are of the same type. If that is the case,
the “Strict Equality Comparison” algorithm is used to determine equality. Therefore, the remaining
cases assume that x and y have distinct types. The ECMAScript spec defines several rules to determine
equality[12, § 7.2.14]:

1. If either operand is null and the other is undefined, return true.
2. If either operand is of the type string and the other is of the type number, the string

operand will be converted to number using the abstract operation ToNumber. Strict compari-
son is then implicitly invoked because both operands are of the same type now.

3. If either operand is of the type string and the other is of the type BigInt, the string
operand will be converted to BigInt using the abstract operation StringToBigInt. Strict
comparison is then implicitly invoked because both operands are of the same type now.

4. If either operand is of the type boolean, the boolean value is converted to number using the
abstract operationToNumber and then compared again to the other side invoking the algorithm
from the start.

5. If either operand is of the type Object and the other is of any of the types string, BigInt,
number, or Symbol, the operand of the type Object will be passed to ToPrimitive. This
conversion guarantees that the Object value will no longer be of the type Object after trans-

Jan Frederick Walther 68

Deobfuscating JavaScript 30.05.2022

formation.
6. If the operands are of different numeric types (e.g., x is a BigInt and y is a number), the

numbers are projected intoR and then compared. If either side is NaN or ±∞, the result will be
false.

If none of the above rules apply, false will be returned instead. These rules do not allow for any
constant folding to be applied.

Comparing an expression to a boolean literal can be simplified if the boolean literal that is being
compared is false. An example would be x == false, which can be transformed to !x. The
other way, comparison to a boolean true literal does not work due to the implicit type conversion
to number. For example, the expression x == truewould evaluate to false if xwas 123, since
true would be converted into +1F making the comparison 1 == 123.

5.2.6.4 Loose inequality operator

Like the strict inequality operator, the loose inequality operator (!=) negates the associated equality
operator. This does invert the constant folding opportunity x == false to x != true.

5.2.6.5 Assignment operators

ECMAScript defines a plethora of assignment operators, which combine the assignment of a value to
an identifier with an operation. Since assigning a value is never free of side effects, it is of no use to
search for constant folding opportunities. The assignment operators are therefore only included for
the sake of completeness.

5.2.7 Comma Operator

The comma operator is a construct that allows the chaining of expressions using a comma character.
The result of the evaluation of the comma operator will be the result of the last expression in the chain.
Since this construct combines multiple expressions, there is little opportunity for constant folding that
is not handled further down the tree. One way of removing potential obfuscation here would be to
eliminate side-effect-free expressions from the chain as long as they are not the last expression in the
chain. This proof can be accomplished using the side effect algorithm defined in section 5.2.1.4.

5.3 Inlining

Inlining within this thesis describes the process of statically replacing a variable with its value. It only
makes sense to inline variables in scenarios where the variable does not store the result of an expensive
computation. In the context of programming languages that produce a native binary, this term also
refers to the process of inlining functions to improve the performance of a program.

Jan Frederick Walther 69

Deobfuscating JavaScript 30.05.2022

The effectiveness of this transformation will be demonstrated in the following code snippets.

1 const _0x5351 = function(url, whensCollection) {
2 /** @type {number} */
3 url = url - (9141 + 898 * 7 + -14939 * 1);
4 let _0x1e802f = _0x3806[url];
5 return _0x1e802f;
6 };

It becomes apparent immediately that the numeric constant has been artificially expanded to make
the code harder to understand. This expansion was caused by the obfuscation software’s “Numbers
To Expressions” setting. Using the strategies shown in the chapter on constant folding simplifies the
numeric constants to an easier-to-understand value. Since all operands are literal values, the result of
the expression can be determined trivially. These transformations applied to the code sample would
change it to the following:

1 const _0x5351 = function(url, whensCollection) {
2 /** @type {number} */
3 url = url - 488;
4 let _0x1e802f = _0x3806[url];
5 return _0x1e802f;
6 };

The current chapter will try to further simplify this code by inlining variables. In this example, the
variable url could be inlined to simplify the code as follows:

1 const _0x5351 = function(url, whensCollection) {
2 let _0x1e802f = _0x3806[url - 488];
3 return _0x1e802f;
4 };

Applying the inlining again the code could again be simplified by eliminating the temporary variable
_0x1e802f entirely:

1 const _0x5351 = function(url, whensCollection) {
2 return _0x3806[url - 488];
3 };

Inlining in this thesis is implemented using static scope analysis. This analysis essentially attempts to
rebuild what the known variables at a given point within the program are.

The implementation for this builds on the existing abstract syntax tree traversal infrastructure. It filters
the abstract syntax tree for all statements and expressions that allow introducing new variables or
those that create a new scope. The tree nature of the abstract syntax tree along a stack structure
facilitates this analysis as visiting a node may push new scopes onto the stack. The newly created
scope is visible to all child nodes of the node that created the scope. Once the visitor leaves a node
that created a scope, the scope is popped from the stack structure.

All statements and expressions that create new scopes will be listed in the following, beginning with
the BlockStatement. It already covers a large part of all available statements as it serves as a child

Jan Frederick Walther 70

Deobfuscating JavaScript 30.05.2022

node to many of them. No intrinsic variables are added to the scope it creates.

The root statement, which may either be a script or a module, functions virtually the same except
for the addition of the intrinsic global object. It takes different identifiers based upon the execution
environment. In browsers, for example, it is named window.

The following three scope-creating statements and expressions will be grouped as they function
similarly. The expressions and statements in question are the function expression, the arrow function
expression, and the function declaration. All of them allow the declaration of a new function with
an optional list of parameters. A new scope containing the parameters is created when a function
declaration is visited. These parameter variables are marked as parameters within their scope, as
inlining parameters is impossible because their values are never known at the point of declaration.
However, parameters may be inlined at the point of invocation if all invocations specify the same set of
statically evaluatable parameters. This behavior is explained in section 5.5.2.

Function declarations add their identifier to the scope that encloses them. They essentially become
variables of the type object.

In addition to the function parameters, there is also an intrinsic variable with the identifierarguments.
This variable does not exist for arrow functions. It provides array-like access to the function’s parame-
ters and is used in functions that accept a variable number of parameters, such as the console.log
function. Array access is, as previously explained, very hard to trace, and this thesis will therefore ex-
clude theargument object from its scope. The introduction of rest parameters has largely superseded
its usage. The deobfuscation software will abort with an error asking the user to manually replace the
argument access if its usage is detected.

The following statement in the list is the TryStatement, which consists of a block statement for the
try part. It must also have a catch clause, a finally block, or both. The finally block is also
a block statement and therefore needs no special handling if present. However, the catch clause
provides an optional parameter, an identifier that the programmer may specify to bind the exception
that caused the catch clause into its scope. This identifier is added to a separate scope and marked
as a parameter as it may not be inlined either.

The penultimate group of statements that may open a new scope consists of variations of the for
statement. ECMAScript provides two different derivations in strict mode for the for statement. The
first one consists of three optional expressions, with the first one being evaluated before the first
iteration is done. This expression is usually used to assign a starting value for the iteration to an
existing identifier. The second expression is the loop condition. Its absence will be interpreted as a
loop condition that continuously evaluates to true. for(;;){} is therefore an infinite loop. The
final expression will be evaluated whenever an iteration has been finished. This variant does not add
any intrinsic variables to the scope of its body.

The second variant has a non-optional list of variable declarations as its first part, followed by the same
two optional expressions from the previous variant. The variables declared within the for statement
are added as parameters as they may not be inlined trivially.

The final group is the iterating for statements, called ForInOfStatement within the ECMAScript

Jan Frederick Walther 71

Deobfuscating JavaScript 30.05.2022

specification. Both introduce a single variable into their child’s scope that may not be inlined. The
for of construct iterates over objects that define Symbol.iterator, such as the built-in classes
Map, Set, and String. for in constructs iterate over the keys of the supplied object instead.

The list of the statements that may create a new scope within ECMAScript is now concluded. A few
ways that an ECMAScript programmer may declare variables have already been mentioned, but that
list is not exhaustive. It is imperative to mention the declaration statement to finalize that list.

A declaration consists of a declaration type and a list of bindings. The declaration type may be var,
let, or const. The let type indicates that the variable is mutable and may be reassigned. A variable
declared as let may defer its initialization to a later point in the scope. Until it is initialized, its value will
be undefined. const indicates that the variable is constant and therefore immutable. Attempting
to defer the initialization of a variable that is declared as const will cause a syntax error to be thrown.
Variables declared as var are also mutable. The main difference to the let type is that the variable is
hoisted. This term means that the location of the variables’ declaration in the code does not matter.
It is equivalent to being declared at the beginning of the scope. This functionality works similarly to
how functions work in ECMAScript, where a function may be invoked before it is declared. Hoisting
is implemented by walking the abstract syntax tree twice and adding all variables declared as var
into their scopes on the first traversal. The deobfuscation program ensures that they are declared
before any potential usage of the variables on the second traversal. Every scope is assigned an id. This
id is then used to match the scopes of the first traversal with those from the second traversal. The
initialization of these variables is not hoisted, and the values of the variables will be undefined until
the initialization is reached.

The bindings may consist of an identifier or a binding pattern, which a programmer may use to de-
structure objects. Binding to an array and using the rest element is also possible.

Once a variable is used, the lookup works by traversing the stack of scopes starting from the topmost
stack. Any variable usage is recorded within a list associated with the variable on the scope object. It
is valid in ECMAScript to assign to an undeclared variable. This assignment will be interpreted as an
implicit declaration of the variable as a property of the global object. It is considered an error if this
process can not find a variable along the scope chain, which may cause the deobfuscation software to
generate invalid code.

If an already initialized variable is reassigned within the code, it is marked as not inlineable as doing so
would require intricate knowledge about the control flow within the program.

Scopes are tagged with the node that created them. This tagging ensures that scopes may only
be popped from the stack when the node it was created by is left. This safety measure allows the
deobfuscation software to prevent programming mistakes that imbalance the scope stack.

The actual inlining is performed once a scope is left. Leaving the scope will remove variables defined
within that scope from the set of known variables. Therefore, all usages of these variables must have
been visited already.

The current inlining implementation only inlines variables that have been used a total of once. This
limit is set to reduce the size of the source code instead of increasing it. The implementation considers

Jan Frederick Walther 72

Deobfuscating JavaScript 30.05.2022

only variables that were initialized using literal values. A user may optionally add identifiers to this
check, but this is done at the user’s risk as this may cause visible side-effects to be moved within the
control flow.

If a variable has been successfully inlined, the program will try to remove its declaration as it is now
unused.

Calculating the number of nodes on the abstract syntax tree inlining would save is not a fitting metric,
as only literal values (or identifiers) are currently being inlined. As such, the calculation would always
allow the inlining to happen since all usages are identifiers with a magnitude of one being replaced by
literal values (or identifiers) with an extent of one node. The positive result for the inline check would
stem from removing the declaration of the variable to be inlined.

5.4 Dead Code Elimination

Dead code elimination within this thesis is based upon the MIT-licensed implementation found in the
closure compiler, which was introduced in section 2.3. That implementation is based partly upon
Söderberg et al.’s paper “Declarative Intraprocedural Flow Analysis of Java Source Code”[30]. It is im-
plemented by constructing a control flow graph within the abstract syntax tree. In the paper, Söderberg
et al. describe a control flow analysis framework for the Java programming language implemented
in less than 300 lines of code. They scope their work, as the title implies, on intraprocedural analysis.
Therefore, they only construct a control flow graph within functions. This implementation is done by
extending the formal grammar using attributes. Söderberg et al. utilize an attribute grammar for the
Java programming language to extend the definition of all statement nodes through four additional
attributes. These attributes consist of two sets of links and two higher-order attributes. For this expla-
nation, higher-order attributes are attributes that may themselves have attributes. They are used to
signify the entries and exits of a method in the control flow graph as that simplifies the flow analysis,
according to Söderberg et al. ECMAScript does not offer multiple entries for methods, but a method
may contain numerous exits, e.g., by utilizing the return statement. Therefore, this thesis only utilizes
a virtual exit node to consolidate the exits of a method.

The two sets included as attributes are the successor and predecessor sets. The successor set contains
all statements that may follow this statement, while the predecessor set includes all statements that
precede a particular statement. Both of these sets may be calculated from the other one, so the closure
compiler elected to only implement the successor set. This thesis elected to include both sets explicitly
to simplify the processing of the resulting graph.

Implementing the control flow graph in such a way allows authors of syntax-directed transformation
tools to reason about the control flow of an application without having to transform the abstract syntax
tree into another structure. These transformations would significantly increase the complexity of the
tool as a way of transforming the control flow graph back into an abstract syntax tree would have to be
implemented as well.

Dead code elimination becomes trivial once the control flow graph has been constructed. The deobfus-

Jan Frederick Walther 73

Deobfuscating JavaScript 30.05.2022

cation program may purge all statements with an empty set of predecessors as they are never invoked.
The deobfuscation program may disregard the side effects of the purged code since the code is never
invoked in the first place. The only side effect that the obfuscated application could observe is the
previously encountered integrity checking using the enclosing function’s .toString() method. No
protection against this kind of integrity checking is provided by this thesis as it is considered an edge
case. A reverse engineer may manually overwrite the .toString()method to intercept attempts to
perform this integrity check.

The following chapter will describe the construction of an intraprocedural control flow graph in EC-
MAScript by explaining how the successor sets are calculated per statement. While not explained
explicitly, the predecessor set is calculated simultaneously by inverting the direction of each generated
link between nodes.

5.4.1 Constructing a control flow graph

To explain the construction of a control flow graph, all statements defined in the ECMAScript standard
will have to be examined for their control flow altering properties.

The BlockStatement groups zero or more statements together and operates them in sequence. The
control flow moves on to the subsequent statement. “No matter how control leaves the Block the
LexicalEnvironment is always restored to its former state”[12, § 14.2.2].

DeclarationStatements consist of either the let or const keyword and one or more bindings in a
binding list. Each binding in the binding list may have an initializer expression, which, when evaluated,
forms the initial value for the variable. Variables marked const produce a SyntaxError if no
initializer is provided. A DeclarationStatement jumps to the following statement after completion.
This statement can be taken from the next attribute. Still, a link to a potential exception handler will
have to be established as the initializer expressions may throw through various means. The link to the
exception handler may be skipped if no initializer expressions are provided or if the expressions can
not throw.

A VariableStatement works the same way as the previous statement from a control flow perspective
but uses the var keyword instead of let or const.

The EmptyStatement does nothing and jumps to the following statement. The deobfuscation program
may eliminate it from the control flow graph and the abstract syntax tree.

ExpressionStatements can be used to evaluate an expression while discarding the result. It simply
jumps to the following statement after completion. However, the expression may throw, which would
lead to the execution jumping to an exception handler or a program abort. The construction of the
control flow graph may omit this link if the expression can not throw.

The IfStatement provides a test expression, a then block, and optionally an else block. The then
block is executed if the expression evaluates to true and optionally. The else block is executed if the
condition expression evaluates to false. Both blocks receive a link on the control flow graph to the
statement following the if statement. The condition expression receives two links, one on true and

Jan Frederick Walther 74

Deobfuscating JavaScript 30.05.2022

one on false to the respective blocks. Another link is added if an exception handler is present in
combination with a conditional expression that may throw.

DoWhileStatements consist of an expression and a block statement. The block statement is executed
once and then repeated until the condition evaluates to false. One link is added from the preceding
statement to the block statement. One link is added to the expression, and a conditional link from the
expression back to the block statement. A supplemental link is added in the presence of an exception
handler to accommodate the possibility of the condition throwing an exception. A final conditional
link is added from the expression to the following statement since the condition will either evaluate to
true forever or evaluate to false at some point. Infinite loops that may occur if a condition never
evaluates to false are not handled during the control flow graph construction. Every expression,
even a literal true value, is considered to become false eventually.

The WhileStatement works similarly to the previous statement. The main difference is that the
statement’s body is not run unconditionally before the condition is evaluated. The control flow graph
construction must add a link from the expression to a possible exception handler if the expression
could throw an exception. A conditional link, followed if the condition evaluates to true, is added
from the expression to the block statement. Another conditional link is added from the expression to
the following statement of the WhileStatement. A final link is added from the block statement to the
condition, which builds the looping property of the WhileStatement.

The control flow within a ForStatement depends on the three expressions supplied to it. The header
of a for loop consists of zero-or-more variable assignments or declarations. However, a programmer
may not mix declarations and assignments within the samefor loop. The second expression is the test
expression. It is also optional, and its absence will be interpreted as continuously evaluating to true.
The third expression is the loop expression. It is most commonly used to increment or decrement the
variables from the first expression. It is also optional. The control flow goes from the declarations or
assignments to the loop expression. From there on, two links are added. If the condition evaluates
to true, the control flow is transferred to the body of the for loop. If the condition evaluates to
false, the control flow instead transfers to the statement following the for loop. These scenarios
are represented accordingly by conditional links on the respective nodes. After reaching the end of the
for loops body, the control flow is transferred to the loop expression and subsequently to the loop
condition. All three conditions must be connected to the exception handler if one is present, and the
deobfuscation program can not rule out that the expression will not throw.

Another variant of for loops is provided by the so-called ForInOfStatement. The differences between
for in and for of loops are discussed in another chapter. The distinction does not matter here.
The control flow initially transfers to the header of the ForInOfStatement, which may throw. The control
flow may then be transferred to the statement’s body if any objects are left to iterate or to the statement
following the ForInOfStatement. The end of the ForInOfStatements body is connected to the expression
to model this statement’s looping nature correctly.

The ContinueStatement allows skipping to the next iteration of a loop. “It is a Syntax Error if this
ContinueStatement is not nested, directly or indirectly (but not crossing function boundaries), within
an IterationStatement”[12, § 14.8.1]. As such, the enclosing iterating statement should always be able

Jan Frederick Walther 75

Deobfuscating JavaScript 30.05.2022

to be located statically. A single link is drawn from the ContinueStatement to the condition of the
enclosing iteration statement. If the control flow graph construction can find no enclosing iteration
statement, an error is thrown, and the processing is halted as the program expects valid ECMAScript
code as input. A ContinueStatement has an optional parameter containing a label of an enclosing loop.
This label allows skipping an iteration in an outer iteration statement by explicitly specifying the label
of the outer iteration statement.

The BreakStatement allows aborting an enclosing iteration statement. It requires the same enclosing
iteration statement, which does not cross function boundaries[12, § 14.9.2]. Similar to the ContinueS-
tatement, it also provides an optional parameter containing a label of an iteration statement. The
execution moves to the following statement of the iteration that has been aborted.

A ReturnStatement is the equivalent for functions of what a break statement is for iteration statements.
It always returns a value to the caller of the function. If the programmer does not specify a value,
undefined is returned as a default value. The control returns to the caller, but as this thesis does not
construct inter-procedural control flow graphs, the branch of the graph ends when a return statement
is encountered.

The WithStatement has an expression and a statement as parameters. The expression is evaluated,
and the properties are added to the front of the unqualified name lookup mechanism. An example of
this would be

1 with (console) {
2 log("Hello World!");
3 }

This statement makes it exceedingly hard to analyze variable data flow statically or to perform liveness
analysis and will, as such, lead to an error in the deobfuscation program. This limitation is justified as
the statement is not recommended to be used either way. The ECMAScript standard underlines this, as
using this statement in strict mode code will lead to aSyntaxErrorbeing thrown[12, § 14.11.1]. If the
deobfuscation program included the with statement, the control flow would go from the preceding
statement to the expression and then to the enclosed statement.

The SwitchStatement provides a C-likeswitch construct that requires an expression as an argument
and accepts zero or more case clauses with an optional default clause, which is executed if none of the
cases apply. A link is created to the switch expression, which is then linked to the expression of the first
case. The control flow then branches on the switch clause to the enclosed statement if the condition
evaluates to true and to the following switch clause if the condition was false. If the case clause
has no enclosed statement, the control flow will instead move on to the following enclosed statement
it finds regardless of the case clause expressions along the way. An example for this behavior would be
the following snippet.

Jan Frederick Walther 76

Deobfuscating JavaScript 30.05.2022

1 let value = 5;
2 switch (value) {
3 case 5:
4 case 6:
5 case 7:
6 case 8:
7 console.log('value was between 5 and 8');
8 break;
9 }

Special consideration must be taken if the case clause encountered is the default case, as the link
will instead be non-conditional and alone. Thedefault case does not implicitly terminate. The switch
statement will continue executing after the traversal encountered with the same fallthrough behavior
as standard case clauses. Fallthrough links will also have to be added as the control will move from
one switch case to the block of the following case unless a break statement is inserted. Alternatively,
the fallthrough behavior may also be interrupted by returning instead. If a switch statement defined
no case clauses, the control instead moves to the statement succeeding the switch statement.

LabelStatements may act as a prefix for any statement except for function declaration statements
which will cause a SyntaxError to be thrown instead[12, § 14.13.1]. In conjunction with the break
andcontinue statements discussed previously, the label statement may be used as a replacement for
the absent goto functionality. A single link is created from the label statement to the inner statement
to calculate its impact on the control flow graph.

The ThrowStatement causes an exception, which is generated from an expression, to be thrown. A
value generated by this expression does not have to be of a specific type. ECMAScript does not provide
any kind of Error interface that has to be inherited. Calculating the control flow for this expression is
challenging as the exception handler may cross function boundaries. If an exception handler within
the function can be found, the control flow graph construction will create a link to it. Otherwise, the
throw statement will be considered an exit to the current function.

A TryStatement consists of a block statement executed unconditionally and at least a catch clause
or a finally clause. A try statement may also provide both. While the first block will be executed
unconditionally, the block enclosed by the optional catch clause will only be executed if an exception
was thrown during the execution of the first block.

The DebuggerStatement acts as a manual breakpoint that a programmer may insert into a piece of
ECMAScript source code. Its impact on the control flow is unpredictable as a user with an attached
debugger may alter the control flow unpredictable. It will simply create a link to the following statement
in the control flow. There is no method for an ECMAScript program to attach a debugger to itself known
to the author at the time of writing. Self-debugging would enable an application to abuse a breakpoint
as, for example, a multi-threaded native application could. A program could then use it to alter the
control flow arbitrarily. The single-threaded nature of ECMAScript halts the execution of everything if a
debugger statement is encountered. This statement has no effect if a debugger is unavailable or not
enabled[12, § 14.16.1].

Jan Frederick Walther 77

Deobfuscating JavaScript 30.05.2022

5.5 Constant Evaluation

Another simple optimization that may be done statically is the so-called constant evaluation. It is
related to constant folding from section 5.2 in so far as that expressions with a constant result are
evaluated statically and the expression is then replaced with a constant value instead. While constant
folding focused on expressions that contain unary or binary operators, constant evaluation focuses on
the evaluation of functions instead.

Two types of functions will be looked at in this chapter. The first one dealing with call expressions,
which reference a function within the standard library of ECMAScript and how they may be evaluated
at constant time. The second category deals with functions defined by the obfuscated code and under
which conditions they may be evaluated at a constant time.

5.5.1 Standard library functions

The main issue regarding built-in functions is, as alluded to in previous chapters, that they may be
overwritten by the obfuscated application. This can be done without ever referencing the original
function explicitly. To illustrate this we first need a way of expressing a string in a non-obvious way
so that it may not be evaluated by the deobfuscation program. A simple way of doing this would be
to hide the value behind a member expression. The access of the built-in function would then be
accomplished by indirectly accessing it over the global object of the engine. In a web browser this
would look like this:

1 const a = {
2 b: "console",
3 c: "log"
4 };
5 window[a.b][a.c] // This evaluates to console.log

In order to hijack this built-in function a new function may simply be assigned to e.g. window[a.b][
a.c]. At the time of writing, there is no method known to the author to restore hijacked functions to
their original value without first storing a reference to the original function.

In order to evaluate calls to functions from the standard library, the user has to accept the risk that
the functions may have been patched in the obfuscated code. The deobfuscation program does not
attempt to trace or warn the user if patches are detected.

A further limitation on the standard library functions is that they have to be free from side effects.
console.log has the side effect of writing to the console, for example. This effect can obviously not
be replaced by a constant value.

The deobfuscation program contains a list of functions from the standard library that are known to
be side effect free. Since the deobfuscation program is written in TypeScript, which is transpiled to
ECMAScript during the build process, it may simply pass references to the functions within the standard
library to the list.

The deobfuscation program then walks the abstract syntax tree of the input program and analyzes

Jan Frederick Walther 78

Deobfuscating JavaScript 30.05.2022

every call expression to determine both the callee and the arguments. All interesting call expressions
for this step are using a member expression consisting of two identifiers as their callee. The arguments
to the call expressions are evaluated on whether they are exclusively literal values. Therefore, this
optimization should be executed after the constant folding and inlining passes to maximize the potential
for constant evaluation.

An example for an easy to evaluate function would be String.fromCharCode, which takes one-
or-more UTF16 code points as values of the type number and returns a value of the type string
which contains the textual representation of the code points. String.fromCharCode(100), for
example, evaluates to "d" as 100 is the ASCII index character for the lowercase D character. This
behavior has been observed in real world malware samples[16].

Another example, which has also been observed to occur in malware samples, is the use of parseInt
() to obfuscate numeric values. The function requires one parameter, which is either already of the
type string or will be converted to string using the abstract operation ToString. It also accepts
an optional second parameter to specify the radix of the first parameter.

The issue with this trivial looking function is the optional nature of the radix parameter. If no value is
passed, it will default to10 in most cases. An exception for this behavior is, if the first parameter begins
with 0x or 0X as the base will then default to 16. Previous versions of the ECMAScript specification
also defined the special case of the string beginning with 0 as that would indicate the beginning of an
octal number and as such the radix would be 8 instead of 10 for decimal. This would the somewhat
paradoxical situation of parseInt('08') evaluating to 0 as 08 is not a valid octal number.

5.5.2 User defined functions

The constant evaluation of user-defined functions leverages the pre-existing scope analysis infras-
tructure introduced in section 5.3. Constant evaluation for user-defined functions also requires two
traversals of the abstract syntax tree since a program may reference a function before it is declared. An
example of this is contained within the following code snippet.

1 function a() {
2 console.log("foo");
3 }
4
5 {
6 a();
7 function a() {
8 console.log("bar");
9 }

10 }

The function a is defined twice within the global scope and once in a local scope. It is then called in the
local scope but before the local declaration of a was done. The result is that the local declaration has
precedence over the global declaration and will be called in its stead.

This behavior changes if the local version of a is instead bound to a variable, as shown in the following

Jan Frederick Walther 79

Deobfuscating JavaScript 30.05.2022

code snippet.

1 function a() {
2 console.log("foo");
3 }
4
5 {
6 a();
7 const a = () => {
8 console.log("bar");
9 }

10 }

In this version, a ReferenceError is thrown. This error happens because a program may not access
variables declared as let or const before being declared in their scopes.

Eligible functions are functions that only consist of a single return statement. The argument for this
return statement has to be free of side effects as a distinction may be made by creating a new instance
of the Error built-in and reading the stack trace to determine the calling function. This decision was
taken to avoid having to map identifiers from the old function into the new function and ensure that
the resulting code’s size is reduced.

As with the constant evaluation of built-in functions, all arguments passed at call sites must be literal
values. The deobfuscation program may replace the occurrences of the parameter identifiers within
the function to be evaluated as scope analysis has already been performed.

5.6 Member expression cleanup

Obfuscation software, like the one discussed in section 5.3, tends to obfuscate member expressions by
abusing the fact that ECMAScript allows for member expressions that utilize identifiers to be replaced
by equivalent member expressions that use string values. The simplest form of this replaces a member
expression like console.logwith its equivalent string version console['log']. As long as the
parameter is kept as a string literal, the deobfuscation program can trivially return it to its original
form.

The deobfuscation program traverses the abstract syntax tree and analyzes every member expression
for two properties. At first, the program checks whether the object accessed is referenced using an
identifier. If that is the case, the program then checks whether the property is supplied using a literal.

Special care has to be taken concerning the literal’s type as primarily numeric types are prone to be
used in conjunction with arrays.

Another potential issue is that object keys allow more characters than identifiers do. For example,
assigning a value to an object using the key "1foo"only works if the string version of the member
access is used. This restriction exists because identifiers may not start with numbers.

Keywords and other reserved names may be used as the production used by MemberExpression

is IdentifierName and not Identifier. IdentifierName, unlike Identifier[12, § 13.1], does not

Jan Frederick Walther 80

Deobfuscating JavaScript 30.05.2022

exclude the ReservedWord production[12, § 12.6].

The literal value in the abstract syntax tree is then replaced by a newly created identifier, which carries
the value of the string literal as its name. In addition to that, the computed attribute of the member
expression is also set to false. This transformation is done to change the representation of the
expression from console['log'] to console.log.

5.7 Well-known globals

Well-known globals are, within this thesis, the set of non-standard intrinsic objects within an EC-
MAScript engine. Malware samples, as seen in section 4.2.1, may use these objects for persistence
or opaque predicates. Therefore, the deobfuscation program keeps a user-extensible list for these
well-known global objects. Adding an entry to this list will cause it to be considered a variable declared
in the global scope without a concrete declaration being added. This declaration makes the built-in
objects eligible for inlining and a valid return statement for constant evaluation.

The currently implemented well-known globals are ActiveXObject, which may be used to interact
with the Microsoft Windows operating system, and WScript, which similarly allows interaction but
furthermore contains meta-information about the currently running script. Malware has been observed
using these global objects to delete the currently running file after the persistence of another piece of
malware has been ensured.

A user may add more values to this list to accommodate particular use-cases or new versions of the
ECMAScript standard.

5.8 Identifier recovery

A programmer may decide to rename identifiers for a multitude of reasons.
One of them is that it serves as an easy, lossless compression. The lossless, of course, only applies
to the semantics of the program. Information is still unrecoverably lost when this transformation is
applied. Another reason is to harden the program against reverse engineering, as a reverse engineer
may deduce a lot of the meaning of a piece of code from its identifiers.

This problem is an established problem field with multiple competing solutions as outlined in chapter
2. Therefore, this thesis elected to embed an existing solution rather than inventing a novel one. The
chosen solution is Bavishi et al.’s Context2Name[4], which provides similar accuracy to the already
introduced solutions JSNice and JSNaughty but improves on these solutions in terms of efficiency.

This chapter will briefly outline how Context2Name works without diving too deep into the details of
its machine learning, as that would exceed the scope of this thesis.

Context2Name was trained on the same dataset already used with JSNice. It provides 150.000 EC-
MAScript files, which are, similarly to both JSNice and JSNaughty, processed with UglifyJS to simulate
obfuscation within Context2Name. UglifyJS does not cover the range of transformations supported by

Jan Frederick Walther 81

Deobfuscating JavaScript 30.05.2022

the deobfuscation program described in this thesis. However, the impact of this should be minimal,
as the identifier restoration routine is only invoked once all other deobfuscation passes have been
executed.

Context2Name uses the usages of an identifier to recommend a better name. The deobfuscation
program already collects usages of identifiers as a part of its scope analysis routine. This detail differen-
tiates this implementation from the original one published with Context2Name as, e.g., identifiers used
as properties in member accesses are filtered before reaching the renaming stage. These usages are
then iterated, and the lexical tokens surrounding the identifiers are sent to Context2Name via an HTTP
request. The necessary mapping from abstract syntax tree nodes to tokens is done by slightly modifying
the parser to extend the built-in support for interacting with the lexical tokens. The deobfuscation
program will skip the renaming without a running Context2Name server. The number of surrounding
tokens also referred to as width, defaults to five. Therefore, the deobfuscation program will send the
five preceding tokens and the five succeeding tokens of every identifier occurrence to the server. The
identifier itself is not included in the tokens, but the transmission may contain other identifiers.

The Context2Name server returns an object in the JSON format upon success. This object contains
multiple suggestions with an accompanying value between 0F and 1F indicating the accuracy of the
proposed identifier. This accuracy may be utilized by the user of the deobfuscation program to filter
suggestions by specifying a threshold.

An example of identifier recovery applied to the previously discussed malware sample from section
4.2.1 is shown in the following code snippet. This snippet shows the best-case scenario and does not
represent the average success rate of this method.

1 var xhr = new ActiveXObject("MSXML2.XMLHTTP");
2 xhr.open("GET", src, 0);
3 try {
4 xhr.send();
5 } catch {
6 return false;
7 }
8 if (xhr.Status != 200) {
9 return false;

10 }

The variable xhr, an acronym often used as a variable name for instances of the built-in
XMLHttpRequest object, was renamed from zs. The deobfuscation program performed
this renaming because Context2Name suggested it with an accuracy of 62% based upon five analyzed
usages. Instead of XMLHttpRequest, the object is a proprietary way of performing HTTP requests
within ECMAScript.

5.9 Static switch case evaluation

Another deobfuscation technique implemented in the deobfuscation program is the static evaluation
of switch statements. The implementation is adapted from the implementation in SAFE-DEOBS[14].

Jan Frederick Walther 82

Deobfuscating JavaScript 30.05.2022

It works on a subset of all possible switch statements, namely those with a literal value as the
discriminant and literal values in all cases test conditions par for the default case.

Once an appropriate switch statement has been identified, the cases will be analyzed for matches. If
no case matches the discriminant, the entire switch statement is removed from the abstract syntax
tree. This removal is valid because no case will ever be executed.

However, if a case matches the discriminant, all preceding cases are eliminated from the switch
statement as they are essentially dead code. Determining the end of live code is not as trivial due to the
fallthrough semantics of theswitch statement. If the end of a case is reached without an intermittent
break statement, the execution will go into the succeeding case even though the test expression
of the case might not evaluate to true. The deobfuscation program merges the statements of the
case that matched with the statements of the succeeding cases. This merge allows the deobfuscation
program to search the resulting array for the index of the first break statement. It then removes all
statements from the array that succeed the break statement.

SAFE-DEOBS now replaces the switch statement with the statement array. This behavior does not
always yield the correct code, however. An example of this can be seen in the following snippet.

1 switch (123) {
2 case 1:
3 break;
4 case 123:
5 if (Math.random() > 0.5) {
6 break;
7 }
8 case 124:
9 console.log("Hehe");

10 break;
11 }

Following the algorithm from SAFE-DEOBS would yield the following code:

1 {
2 if (Math.random() > 0.5)
3 {
4 break;
5 }
6 console.log("Hehe");
7 }

It becomes apparent that the naive approach misses abreak statement that is only executed condition-
ally. Attempting to execute this code will yield a SyntaxError. In a different context, it might even
silently change the semantics of the program. An example of this would be if the switch statement
were enclosed within a loop.

The implementation in the deobfuscation program introduced in this thesis prevents this by adding a
check on whether the statement list contains a break statement on any level. This way of addressing
the issue prevents some edge cases whereswitch statements could still be statically evaluated. These
cases could be addressed in a future version by utilizing the control flow graph.

Jan Frederick Walther 83

6 Evaluation

The evaluation of this thesis will be two-fold. The first part will consist of a case study that focuses
on the same piece of obfuscated code that was used as the case study for SAFE-DEOBS, which was
introduced in chapter 2.4.

The second part will present a study that attempts to capture programmers’ opinions on the usefulness
of the applied deobfuscations. The study will include a few of the deobfuscation passes parameters
previously mentioned. A significant reason for the study is that formal methods may not measure
some aspects of code. For example, the renamed identifiers can only be judged on their accuracy by a
human or another machine-learning-based solution.

6.1 Case study

The code sample used for the case study is the same code used in the evaluation of SAFE-DEOBS. Using
the same code allows a direct comparison of code metrics between the two deobfuscation solutions.
Some of the obfuscation techniques present have already been discussed in previous chapters. The
defining characteristics of this sample are the frequent use of statically evaluatableswitch statements
and extensive amounts of dead code.

SAFE-DEOBS replaces identifiers with animal names, annotating the original name as a comment on
the declaration. The names are assigned deterministically, so sequential deobfuscation runs yield the
same identifiers. This approach might remove meaningful identifiers in some code samples, but the
current sample is unaffected.

SAFE-DEOBS reduces the source lines of code from 474 to twelve, which constitutes a reduction of
around 97.5%. The deobfuscation program introduced in this thesis reduces the 474 lines of code to
fifteen lines of code which constitutes a total reduction in lines of code of 96.8%. The lines of code
were measured using the UNIX tool wc.

All functions were inlined in both programs.

Reading the output from either tool lets a reverse engineer deduce that the sample is designed for the
JScript engine as it references the non-standard built-in WScript.

The deobfuscation program introduced in this thesis uses Context2Name to recover identifiers, which
allows the program to rename the variable uvacdykadq to isNode. The value assigned to this
variable is the result of the expression typeof window == "undefined". window is the global
object used by browsers. If it is of the type undefined, the execution environment is likely not a
browser. While a more appropriate name would have been isJScript, the intent of the variable

84

Deobfuscating JavaScript 30.05.2022

remains clear.

Both tools still leave superfluous code within the program. The code that is left differs between
programs, however. The deobfuscation program introduced within this thesis leaves a lot of dead
stores. An example of this can be seen in the following snippet.

1 var expected = "996719";
2 expected = expected + "ofvy";

Since the variable is used more than once, the inlining pass will not inline "996719". Utilizing the
control flow graph more extensively could allow removing these dead stores. SAFE-DEOBS eliminates
them.

SAFE-DEOBS explicitly hoists var declarations by moving all declarations to the top of the function
scope. The initialization of these variables is not moved to preserve the semantics of the code. This
explicit hoisting leads to an increase in the lines of code as every declaration that was previously done
in a single line now requires two lines of code.

Another moment where SAFE-DEOBS gains lines of code are the elimination of superfluous block
statements. The deobfuscation program introduced in this thesis flattens block statements contained
within other block statements if they contain no block-scoped declarations.

Combining the two solutions does not improve the results in this case because the deobfuscation
program introduced in this thesis can not handle the split declaration and initialization that SAFE-
DEOBS introduces. SAFE-DEOBS, on the other hand, does not support non-standard built-ins such as
WScript and aborts the deobfuscation process.

Both solutions allow a reverse engineer to extract the main properties of the sample, however. It
checks whether it runs within a browser and then attempts to launch the Windows command processor,
launching the Windows PowerShell to execute a payload.

The escomplex tool used in evaluating SAFE-DEOBS has not been maintained and could therefore not
be executed and thus used as part of this thesis.

6.2 Survey

The study accompanying this thesis is meant to measure the increase in readability and legibility
created by the deobfuscation program. The separation between legibility and readability is according
to the definition in Oliveira et al.’s literature analysis in “Evaluating Code Readability and Legibility: An
Examination of Human-centric Studies”[27].

According to their definition, legibility defines how easily understood the code is based on its layout.
An example of code layout would be code style guidelines such as limiting the length of a single line of
code. This criterion may be complied with automatically by the use of a linter.

They define readability, on the other hand, as “the structural and semantic characteristics of the source
code of a program that affect the ability of developers to understand it while reading the code”[27,

Jan Frederick Walther 85

Deobfuscating JavaScript 30.05.2022

p. 2].

The deobfuscation techniques implemented by the deobfuscation program address legibility and
readability, and their effects intertwine. Legibility is also restored by the routine that generates source
code from the abstract syntax tree. This routine eliminated virtually all formatting-based obfuscation
techniques.

The study consists of subjects being given code samples of both obfuscated, unobfuscated, and
deobfuscated source code. The task is then comprised of extracting properties from the given source
code sample within a time limit of 15 minutes. The accuracy of the extracted properties is measured
using a predefined schema. Extracting all properties defined by the schema will not yield the full amount
of points for the obfuscated and deobfuscated samples. As both samples are well-known algorithms, it
is necessary to name the algorithm to receive full marks. No negative scoring is applied as that would
require accounting for every possible mistake and evaluating its impact on the understanding of the
user.

The survey was conducted with the participants remaining anonymous to avoid the implications of
storing personally-identifying information.

Measuring readability is challenging, though, as it is a very abstract concept. In order to design an
accurate study, the 2021 article “Considerations and Pitfalls in Controlled Experiments on Code Com-
prehension” was taken into account. In this article, Feitelson performed a comprehensive analysis
to provide considerations and problems that may occur during a study on code comprehension. It
concludes with a helpful checklist of things to keep in mind. Some of the items on the checklist do not
apply to this thesis in particular. This deviation follows from the objective of this thesis which includes
measuring the readability of intentionally obfuscated code.

The checklist is divided into four groups by their relation to the elements of such a study. As such, there
is a group of items related to the code itself, one related to the tasks, one related to the measurement
of results, and the final group deals with items related to the study subjects.

The following paragraphs describe where this thesis has to deviate from the recommendations of
Feitelson.

Feitelson warns about including misleading code within the first group of items. Examples of this
described within the article, such as using non-decimal representations for numbers, are actively
employed by many obfuscation programs. Another example of this introduced by Feitelson includes
misleading variable names. This checklist item is challenging for this thesis as it includes obfuscation
programs that intentionally obfuscate variable names. The names generated by these obfuscation
programs can include random characters and commonly used variable names from different projects.
As described in the case study, the counter-measures employed by this thesis are not flawless either,
as Context2Name is not necessarily trained to expect malware in particular.

The same restrictions apply to the suggestion to use variable names such as a, b, or c. A core part of
this thesis is the restoration of identifiers, and as such, it would be counter-productive to obfuscate
them again.

Another point is the inclusion of dead code. Especially the obfuscated code shown to users will include

Jan Frederick Walther 86

Deobfuscating JavaScript 30.05.2022

dead code. Feitelson warns that the inclusion of dead code may give the subjects of the study hints
to aid in comprehending the source code. However, this warning can be ignored as the dead code
introduced by obfuscation programs is intended to mislead instead of aid.

Unlike the previous group, not all items apply to all studies in the group of items related to the tasks
given to the subjects. Feitelson suggests that an interpretation task should be chosen to gauge the
subjects’ semantics comprehension. This requirement has been fulfilled by letting the user extract
properties of a given code sample.

The three samples chosen for this study were a piece of code that issues an HTTP request to fetch a list
of tasks and count the total and completed tasks for a given user. The first sample is unobfuscated
and is intended to gauge the subjects’ general ability to understand a given piece of code. Unlike the
remaining two samples, extracting all properties for a subject to receive the full amount of points
suffices. In order to receive points for this exercise, the subject has to identify the following points:

• Identify that an HTTP request is being issued.
• Identify what type of data is being returned
• Identify what is being calculated from the context
• Identify that it counts both the total as well as the completed

The sample is also considerably more complex than the remaining ones.

The second sample prompts for a number and outputs the Fibonacci sequence until the index equals
the given number. This sample is obfuscated using the previously introduced javascript-obfuscator.
The obfuscation settings used in javascript-obfuscator for this and the deobfuscated sample included
the following:

• The renaming of local and global variables
• Compact & Simplify
• Numbers to expressions
• Transform object keys

While these settings only present a small sample of the available ones, they already significantly impair
the readability of the code while not increasing its size as other obfuscation techniques would.

The following is the code for the Fibonacci series after the obfuscation has been applied.

1 const _0x34dcdc=parseInt(prompt('Enter\x20the\x20number\x20of\x20terms
:\x20'));let _0x4b671c=-0xf85+-0x287*0x3+0x171a,_0x4e8322=0x1f54+-0
x16fc+-0x857,_0x1995d0;for(let _0x2d63ca=0x87e+-0x2*0xa9+-0x72b;
_0x2d63ca<=_0x34dcdc;_0x2d63ca++){console['log'](_0x4b671c),
_0x1995d0=_0x4b671c+_0x4e8322,_0x4b671c=_0x4e8322,_0x4e8322=
_0x1995d0;}

To receive the full points, correctly identifying the sequence as the Fibonacci series would be sufficient.
Partial points are awarded for:

• Identifying that the user is providing a number
• The loop

Jan Frederick Walther 87

Deobfuscating JavaScript 30.05.2022

• That a calculation is being performed involving the input value
• That results are printed on the console

The final sample is the deobfuscated sample that calculates the digit sum of a number. The deobfus-
cated code can be seen in the following code sample.

1 function _0x3fc2aa(data) {
2 if (typeof data !== 'string') {
3 data = data.toString();
4 }
5 if (data.length < 2) {
6 return parseInt(data);
7 }
8 return _0x3fc2aa(data.split('').reduce((_0x5f4c55, fraction) =>

_0x5f4c55 += parseInt(fraction), 0));
9 }

Full points are awarded if the subject successfully recognizes that the digit sum is being calculated.
Partial points are awarded for:

• Recognizing that the parameter is supposed to be a string value
• The trivial case of the input being smaller than two characters
• That the input is being split so that it becomes a list of characters
• Recognizing the recursion

6.2.1 Results

The survey received a total of 51 anonymous replies. The average score in the sample meant to gauge
the subjects’ proficiency in reading code was 3.29 points, with a median of four out of four.

The average score for the obfuscated sample was 2.61, with a median score of three out of five. 8 out of
51 participants (15.69%) identified the code sample as an implementation of the Fibonacci series. The
exact score distribution can be seen in figure 6.1.

The average score for the deobfuscated sample was 3.08, with a median score of four out of five. 25 out
of the 51 participants (49.02%) were able to identify the sample as an implementation of calculating
the digit sum. The exact score distribution can be seen in figure 6.2.

These values suggest an increase in the average readability of the code by 17.65%. The number of
participants who could fully identify the code sample increased by 212.5%. This result might be skewed,
as the timer of 15 minutes was for the entire survey and not per task due to technical limitations. This
limitation could skew the result and will have to be examined in a future study.

The result of the first sample meant to gauge the subjects’ ability to read code was disregarded as
correlating it with the scores of the deobfuscated sample led to no clear indication in either direction.
A graph of this can be seen in figure 6.3. This result might stem from some subjects’ unwillingness to
list all aspects found in the first sample in the required level of detail.

The ability to decipher the obfuscated code, however, appears to correlate strongly with the thorough-

Jan Frederick Walther 88

Deobfuscating JavaScript 30.05.2022

Readability score

P
eo

pl
e

0

5

10

15

20

0 1 2 3 4 5

Obfuscated

Figure 6.1: Distribution of scores in the obfuscated sample

Readability score

P
eo

pl
e

0

5

10

15

20

25

0 1 2 3 4 5

Deobfuscated

Figure 6.2: Distribution of scores in the deobfuscated sample

Jan Frederick Walther 89

Deobfuscating JavaScript 30.05.2022

Points in the normal sample

P
oi

nt
s

in
 th

e
de

ob
fu

sc
at

ed
 s

am
pl

e

0

1

2

3

4

5

0 1 2 3 4

Normal vs. Deobfuscated

Figure 6.3: Scatter plot of results in normal and deobfuscated sample

ness of the control sample analysis. A graph of this can be seen in figure 6.4.

Points in the normal sample

P
oi

nt
s

in
 th

e
ob

fu
sc

at
ed

 s
am

pl
e

0

1

2

3

4

5

0 1 2 3 4

Normal vs. Obfuscated

Figure 6.4: Scatter plot of results in normal and obfuscated sample

Two out of the 51 participants were misled by the renamed second parameter of the reduce function
fraction. This misdirection presumably led them to misidentify the function. Statistically, this
misidentification is negligible, especially considering the number of participants who correctly identi-
fied the deobfuscated sample despite the renamed variable. This problem may also be addressed by
modifying the threshold value to filter the suggestions from Context2Name more aggressively.

An interesting observation in the data is that some subjects misinterpreted data.length < 2 as
data.length <=2 in the deobfuscated code sample. This result raises the question of whether a
more explicit comparison like data.length <= 1 should have been used instead.

One of the subjects followed up on the survey, criticizing that they were actively looking for purposefully

Jan Frederick Walther 90

Deobfuscating JavaScript 30.05.2022

placed misdirections in the deobfuscated code. The survey could have been more clear about its intent
here.

Another criticism arose from the technical limitation on the amount of time given for the exercise. This
global limit instead of a limit per exercise could skew the results either way. Some subjects may feel
pressure in the obfuscated sample to move on rather quickly with the timer continuously ticking down,
while others may only reach the deobfuscated sample with little time to spare. This problem should be
addressed in future explorations of this work.

The recursive property of the last code example was often missed by subjects, indicating that keeping
the hexadecimal identifiers when Context2Name did not provide a better name was not optimal.

The higher-order function reduce was also sometimes incorrectly identified by subjects, presumably
due to a lack of knowledge in functional programming.

Jan Frederick Walther 91

7 Future work

This chapter will focus on the opportunities for future work derived from this thesis.

More deobfuscation techniques besides dead code elimination may be derived from a control flow
graph. A future expansion of the deobfuscation program described in this thesis may utilize it to reason
more in-depth about variable inlining. The closure compiler, which this thesis discussed at various
points, already implements a more aggressive, control flow-based inlining algorithm that may be
adapted to fit this thesis.

This improved inlining algorithm may also attempt to tackle the issues surrounding the inlining of
values within an array.

Another use for the control flow graph would be to attempt to remove control-flow flattening, which
was deemed to be out of scope for this thesis.

Another opportunity for future work would be to provide a graphical user interface similar to a visual
source code merge tool. This addition would allow the users of the deobfuscation tool to understand
the process more in-depth. It would also allow the users to interact with the process and fine-tune the
obfuscation passes. This user interface could then, for example, be used by a user to vet the variable
name suggestions from Context2Name on an individual basis.

The use of comments could also implement this fine-tuning. It is a well-established way of excluding
certain parts of the code from static source code analysis tools.

Another angle for future work would be to explore whether a deobfuscation program may utilize
machine learning for further deobfuscation. JSNice already established that type annotations may be
generated using machine learning with acceptable accuracy. A future version of the deobfuscation
program could use these inferred type annotations to bridge the gap currently filled by probabilistic
methods in constant folding. This approach becomes more interesting with the proposed adoption of
type annotations into the ECMAScript standard[34].

Replacing or combining Context2Name with JSNaughty would also be an exciting approach to further
developing the deobfuscation program described in this thesis.

Another path for improving on this thesis would be to add a few heuristics to the constant folder to
prevent the folding of, e.g., well-known bitflags as that could potentially be harmful to the readability.
This addition would require research into detecting those bitflags first, however.

92

8 Conclusion

This thesis provides a comprehensive overview of the state of the art of ECMAScript obfuscation
and deobfuscation. This obfuscation overview is complemented by an analysis of publicly available
obfuscation software.

In addition, the extensive analysis of constant folding within ECMAScript provides new insights into a
probabilistic approach to deobfuscation.

Meanwhile, the overview in deobfuscation is accompanied by appropriate countermeasures and a
fully working implementation.

The deobfuscation software introduced as part of this thesis was evaluated with the result of improving
the average understanding meaningfully while increasing the complete understanding of the tested
code samples significantly.

The direct comparison with the state-of-the-art tool SAFE-DEOBS yielded a clear direction where the
deobfuscation program introduced in this thesis can be taken. While it has already performed compa-
rably with SAFE-DEOBS, it can still be improved by utilizing the control flow graph more extensively. In
addition to its performance, it also fixed a flaw found in the logic of SAFE-DEOBS.

The question introduced at the beginning of the thesis was whether the deobfuscation program
would be able to improve the readability of ECMAScript code can confidently be answered with yes.
The case study, in particular, provided evidence that the renaming process, which is powered by
machine learning, can help in understanding foreign or obfuscated code. However, this success must be
combined with the complaints from the two subjects within the study. The potential for improvement
depends massively on the code sample at hand and the threshold chosen for Context2Name. The
survey results indicate success, but they should be validated in a future iteration with the already
levied criticisms. In addition to that, it could be interesting to perform an interdisciplinary evaluation
with experts in cognition.

While this question may have been answered, a plethora of new and exciting questions have come up
as part of this thesis. Some of which are discussed in section 7.

While the deobfuscation program introduced in this thesis can deobfuscate many different obfuscation
techniques, its limitations have been clearly defined. Especially boundaries that make static analysis
unfeasible, like eval(), have been highlighted and elaborated.

The generalizability of this approach is limited in its current form as most of the rules apply only
to ECMAScript in particular. However, the concepts introduced and applied in this thesis are tried
and tested for the most part and can be transferred to other programming languages. Especially the
functionality of Context2Name could be easily transferred given enough sample data in the target

93

Deobfuscating JavaScript 30.05.2022

language.

Jan Frederick Walther 94

Bibliography

[1] Mar. 2022. URL: https : / / developer. mozilla . org / en - US / docs / Web / JavaScript / Reference /
Statements/let#temporal_dead_zone_tdz.

[2] Stefano Crespi Reghizzi (auth.) Formal Languages and Compilation. 1st. Texts in Computer Sci-
ence. Springer London, 2009. ISBN: 9781848820494; 1848820496; 9781848820500; 184882050X.

[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman. Compilers: principles, techniques, &
tools. 2nd ed. Pearson/Addison Wesley, 2007. ISBN: 9780321486813.

[4] Rohan Bavishi, Michael Pradel, and Koushik Sen. Context2Name: A Deep Learning-Based Approach
to Infer Natural Variable Names from Usage Contexts. 2018. DOI: 10.48550/ARXIV.1809.05193. URL:
https://arxiv.org/abs/1809.05193.

[5] Mihai Bazon. Uglify-JS. URL: https://www.npmjs.com/package/uglify-js.

[6] Eli Benderskys. How clang handles the type / variable name ambiguity of C/C++. July 2012. URL:
https://eli.thegreenplace.net/2012/07/05/how- clang- handles- the- type- variable- name-
ambiguity-of-cc.

[7] P.W.D. Charles. The ESTree Spec. https://github.com/estree/estree. 2022.

[8] N. Chomsky. “Three models for the description of language.” In: IRE Transactions on Information
Theory 2.3 (1956), pp. 113–124. DOI: 10.1109/TIT.1956.1056813.

[9] Noam Chomsky. “On Certain Formal Properties of Grammars.” In: Information and Control 2
(June 1959), pp. 137–167. DOI: 10.1016/S0019-9958(59)90362-6.

[10] Christian Collberg, Clark Thomborson, and Douglas Low. “Manufacturing Cheap, Resilient, and
Stealthy Opaque Constructs.” In: Conference Record of the Annual ACM Symposium on Principles
of Programming Languages 184–196 (Nov. 1997). DOI: 10.1145/268946.268962.

[11] Curly. URL: https://eslint.org/docs/rules/curly.

[12] ECMA International. “Standard ECMA-262 - ECMAScript Language Specification.” In: 12th. June
2021. URL: https://www.ecma-international.org/wp-content/uploads/ECMA-262_12th_edition_
june_2021.pdf.

[13] Lars Marius Garshol. BNF and EBNF: What are they and how do they work? Aug. 2008. URL: https:
//www.garshol.priv.no/download/text/bnf.html.

[14] Adrian Herrera. “Optimizing Away JavaScript Obfuscation.” In: CoRR abs/2009.09170 (2020).
arXiv: 2009.09170. URL: https://arxiv.org/abs/2009.09170.

[15] History. June 2021. URL: https://www.ecma-international.org/about-ecma/history/.

95

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let#temporal_dead_zone_tdz
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let#temporal_dead_zone_tdz
https://doi.org/10.48550/ARXIV.1809.05193
https://arxiv.org/abs/1809.05193
https://www.npmjs.com/package/uglify-js
https://eli.thegreenplace.net/2012/07/05/how-clang-handles-the-type-variable-name-ambiguity-of-cc
https://eli.thegreenplace.net/2012/07/05/how-clang-handles-the-type-variable-name-ambiguity-of-cc
https://github.com/estree/estree
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1016/S0019-9958(59)90362-6
https://doi.org/10.1145/268946.268962
https://eslint.org/docs/rules/curly
https://www.ecma-international.org/wp-content/uploads/ECMA-262_12th_edition_june_2021.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA-262_12th_edition_june_2021.pdf
https://www.garshol.priv.no/download/text/bnf.html
https://www.garshol.priv.no/download/text/bnf.html
https://arxiv.org/abs/2009.09170
https://arxiv.org/abs/2009.09170
https://www.ecma-international.org/about-ecma/history/

Deobfuscating JavaScript 30.05.2022

[16] Hynek Petrak. Javascript Malware Collection. https://github.com/HynekPetrak/javascript-
malware-collection. 2019.

[17] “IEEE Standard for Floating-Point Arithmetic.” In: IEEE Std 754-2019 (Revision of IEEE 754-2008)
(2019), pp. 1–84. DOI: 10.1109/IEEESTD.2019.8766229.

[18] Google Inc. Closure Compiler Compilation Levels. 2019. URL: https://developers.google.com/
closure/compiler/docs/compilation_levels (visited on 04/19/2022).

[19] Google Inc. Closure Tools. URL: https://developers.google.com/closure (visited on 04/19/2022).

[20] ISO. ISO/IEC 14882:2020 Information technology — Programming languages — C++. Geneva,
Switzerland: International Organization for Standardization, Dec. 2020, p. 1853. URL: https :
//www.iso.org/standard/79358.html.

[21] Rajeev Motwani John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata theory, lan-
guages, and computation. 3rd ed. Pearson/AddisonWesley, 2006. ISBN: 9780321455369.

[22] DONALD KNUTH and LUIS PARDO. “The Early Development of Programming Languages.” In: Dec.
1980. DOI: 10.1016/B978-0-12-491650-0.50019-8.

[23] Brian Leroux. WTFJS. YouTube. 2012. URL: https://www.youtube.com/watch?v=et8xNAc2ic8.

[24] Peter Linz. An Introduction to Formal Languages and Automata. 3rd ed. Jones and Bartlett, 2001.
ISBN: 9780763714222.

[25] Fabrício S. Matté. Temporal dead zone (TDZ) demystified. Jan. 2015. URL: http://jsrocks.org/2015/
01/temporal-dead-zone-tdz-demystified.

[26] Steven Muchnick. Advanced Compiler Design Implementation. Jan. 1997. ISBN: 9781558603202.

[27] Delano Oliveira et al. “Evaluating Code Readability and Legibility: An Examination of Human-
centric Studies.” In: CoRR abs/2110.00785 (2021). arXiv: 2110.00785. URL: https://arxiv.org/abs/
2110.00785.

[28] Axel Rauschmayer. “Speaking JavaScript.” In: London: O’Reilly, 2014.

[29] Veselin Raychev, Martin Vechev, and Andreas Krause. “Predicting Program Properties from "Big
Code".” In: ACM SIGPLAN Notices 50 (Jan. 2015), pp. 111–124. DOI: 10.1145/2775051.2677009.

[30] Emma Söderberg et al. “Declarative Intraprocedural Flow Analysis of Java Source Code.” In:
Electronic Notes in Theoretical Computer Science 238 (Oct. 2009), pp. 155–171. DOI: 10.1016/j.
entcs.2009.09.046.

[31] Speed Comparison adapted from Esprima’s Speed Comparison. URL: https://meriyah.github.io/
meriyah/performance/.

[32] Speed Comparison keeps everything in perspective. URL: https://esprima.org/test/compare.html.

[33] Abhinav Suri. The why behind the wat- an explanation of JavaScript’s type system. Jan. 2018. URL:
https://abhinavsuri.com/blog/2018/watjs/.

[34] Gil Tayar et al. ECMAScript proposal: Type Annotations. https://github.com/tc39/proposal-type-
annotations. 2022.

Jan Frederick Walther 96

https://github.com/HynekPetrak/javascript-malware-collection
https://github.com/HynekPetrak/javascript-malware-collection
https://doi.org/10.1109/IEEESTD.2019.8766229
https://developers.google.com/closure/compiler/docs/compilation_levels
https://developers.google.com/closure/compiler/docs/compilation_levels
https://developers.google.com/closure
https://www.iso.org/standard/79358.html
https://www.iso.org/standard/79358.html
https://doi.org/10.1016/B978-0-12-491650-0.50019-8
https://www.youtube.com/watch?v=et8xNAc2ic8
http://jsrocks.org/2015/01/temporal-dead-zone-tdz-demystified
http://jsrocks.org/2015/01/temporal-dead-zone-tdz-demystified
https://arxiv.org/abs/2110.00785
https://arxiv.org/abs/2110.00785
https://arxiv.org/abs/2110.00785
https://doi.org/10.1145/2775051.2677009
https://doi.org/10.1016/j.entcs.2009.09.046
https://doi.org/10.1016/j.entcs.2009.09.046
https://meriyah.github.io/meriyah/performance/
https://meriyah.github.io/meriyah/performance/
https://esprima.org/test/compare.html
https://abhinavsuri.com/blog/2018/watjs/
https://github.com/tc39/proposal-type-annotations
https://github.com/tc39/proposal-type-annotations

Deobfuscating JavaScript 30.05.2022

[35] Timofey Kachalov. JavaScript obfuscator. https://github.com/javascript-obfuscator/javascript-
obfuscator. 2022.

[36] Typeof - JavaScript: MDN. Feb. 2022. URL: https://developer.mozilla.org /en- US/docs/Web/
JavaScript/Reference/Operators/typeof#typeof_null.

[37] U.S. Trademark Serial No. 75026640. Dec. 1995. URL: https://tsdr.uspto.gov/#caseNumber=
75026640&caseType=SERIAL_NO&searchType=statusSearch.

[38] Bogdan Vasilescu, Casey Casalnuovo, and Premkumar Devanbu. “Recovering Clear, Natural
Identifiers from Obfuscated JS Names.” In: Proceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering. ESEC/FSE 2017. Paderborn, Germany: Association for Computing
Machinery, 2017, pp. 683–693. ISBN: 9781450351058. DOI: 10 . 1145 / 3106237 . 3106289. URL:
https://doi.org/10.1145/3106237.3106289.

[39] William Vincent. Aug. 2017. URL: https://wsvincent.com/javascript-temporal-dead-zone/.

[40] Chenxi Wang et al. “Software Tamper Resistance: Obstructing Static Analysis of Programs.” In:
(June 2000).

[41] K Zuse. “Über den Plankalkül.” In: it - Information Technology 1 (Dec. 1959). DOI: 10.1524/itit.
1959.1.14.68.

Jan Frederick Walther 97

https://github.com/javascript-obfuscator/javascript-obfuscator
https://github.com/javascript-obfuscator/javascript-obfuscator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/typeof#typeof_null
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/typeof#typeof_null
https://tsdr.uspto.gov/#caseNumber=75026640&caseType=SERIAL_NO&searchType=statusSearch
https://tsdr.uspto.gov/#caseNumber=75026640&caseType=SERIAL_NO&searchType=statusSearch
https://doi.org/10.1145/3106237.3106289
https://doi.org/10.1145/3106237.3106289
https://wsvincent.com/javascript-temporal-dead-zone/
https://doi.org/10.1524/itit.1959.1.14.68
https://doi.org/10.1524/itit.1959.1.14.68

