
University of Bremen

Faculty 3 – Mathematics and Computer Science

Design and Implementation of an IoT Device
Description Converter between SDF and WoT TD

by

Jan Romann

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science (B. Sc.)

First Supervisor: Dr. Olaf Bergmann
Second Supervisor: Prof. Dr. Carsten Bormann

Bremen, July 1, 2022

Abstract

The W3C Web of Things Thing Description (WoT TD) and the Semantic Definition
Format (SDF) are two device description specifications for the Internet of Things (IoT).
They both aim at solving interoperability issues in the IoT: A WoT TD describes metadata
and interfaces of Things, while SDF provides a universal format for data and interaction
model definition and conversion. However, although both specifications attempt to solve
similar problems, there is not yet a canonical mapping between the two description
formats.

This bachelor thesis proposes such a mapping and provides a flexible converter written
in Python as an implementation, which can be used from the command line, as a library,
and as a web application for converting SDF models to WoT documents and vice versa.

Based on our mappings and our implementation, we were able to identify gaps in both
specifications which previously prevented a comprehensive conversion between the two
formats. Using new concepts for adding instance- and ecosystem-specific information to
SDF and describing nested WoT data structures in a single document, we have been
able to bridge the gap between the two specifications, making contributions to the
standardization process in both cases. In this context, we have found that WoT Thing
Models (TMs), a variant of TDs similar to SDF models used to describe device classes,
can act very well as intermediaries when converting between SDF models and TDs.

iii

Zusammenfassung

Die W3CWeb of Things Thing Description (WoT TD) und das Semantic Definition Format
(SDF) sind zwei Gerätebeschreibungsspezifikationen für das Internet of Things (IoT).
Beide zielen auf die Lösung von Interoperabilitätsproblemen im IoT ab: Eine WoT TD
beschreibt Metadaten und Schnittstellen von IoT-Geräten, während SDF ein universelles
Format für die Definition und Konvertierung von Daten- und Interaktionsmodellen bietet.
Obwohl beide Spezifikationen versuchen, ähnliche Probleme zu lösen, gibt es noch keine
kanonische Abbildung zwischen den beiden Beschreibungsformaten.

Diese Bachelorarbeit schlägt eine solche Abbildung vor und stellt einen flexiblen, in
Python geschriebenen Konverter als Implementierung zur Verfügung, der von der Kom-
mandozeile, als Bibliothek und als Webanwendung zur Konvertierung von SDF-Modellen
in WoT-Dokumente und umgekehrt verwendet werden kann.

Basierend auf unserer Abbildung und unserer Implementierung konnten wir Lücken
in beiden Spezifikationen identifizieren, die bisher eine umfassende Konvertierung
zwischen den beiden Formaten verhinderten. Mit neuen Konzepten für das Hinzufügen
von instanz- und ökosystemspezifischen Informationen zu SDF und die Beschreibung
von verschachtelten WoT-Datenstrukturen in einem einzigen Dokument konnten wir
die Lücke zwischen den beiden Spezifikationen schließen und in beiden Fällen zum
Standardisierungsprozess beitragen. In diesem Zusammenhang haben wir festgestellt,
dass WoT Thing Models (TMs), eine Variante von TDs, die ähnlich wie SDF-Modelle der
Beschreibung von Geräteklassen dienen, sehr gut als Vermittler bei der Konvertierung
zwischen SDF-Modellen und TDs fungieren können.

v

Contents

Abstract iii

Zusammenfassung v

List of Acronyms xi

List of Tables xiii

List of Figures xv

List of Listings xvii

1 Introduction 1

2 Foundations 5

2.1 Standards and Specifications . 5
2.1.1 Web of Things . 5
2.1.2 Semantic Definition Format . 10

2.2 Related Work . 13

3 Mappings between WoT TD and SDF 15

3.1 General Considerations . 15
3.2 Mapping between SDF Models and WoT TMs 16

3.2.1 Atomic Units and Nesting . 19
3.2.2 Context Extensions and Namespaces 22
3.2.3 Data Schemas and Data Qualities . 24
3.2.4 schemaDefinitions and sdfData . 25
3.2.5 Interaction Affordances . 26
3.2.6 References . 28
3.2.7 Mapping of Additional Properties . 28

vii

Contents

3.2.8 WoT-specific Mappings . 28
3.2.9 SDF-specific Mappings . 31

3.3 Mappings between WoT TMs and WoT TDs 33

4 Implementation Requirements 35

4.1 Functional Requirements . 35
4.2 Non-Functional Requirements . 37

5 Design 39

5.1 Structure . 39
5.2 Components . 40

5.2.1 Library . 40
5.2.2 Command Line Interface . 42
5.2.3 Web Application . 45

6 Implementation 47

6.1 Technologies Used . 47
6.2 Library Implementation . 49

6.2.1 Internal Conversion Functions . 49
6.2.2 Testing . 55

6.3 CLI Tool . 56
6.4 Web Application . 57

7 Evaluation 59

7.1 Requirements Evaluation . 59
7.1.1 Comprehensive Mapping . 60
7.1.2 Roundtripping . 61
7.1.3 Conversion between TDs and TMs 62
7.1.4 Deployment Capabilities . 62
7.1.5 Other Requirements . 63

7.2 Quantitative Criteria . 63
7.2.1 Code Metrics . 63
7.2.2 Performance Comparison . 64

7.3 Possible Specification Improvements . 66

8 Conclusion 69

viii

Contents

A Mapping Examples 73

A.1 SDF Data Qualities and WoT Data Schemas 73
A.2 References and Required Elements . 75

B Evaluation Results 77

B.1 Code Metrics . 77
B.2 Performance Comparison . 81

Bibliography 89

Technical Specifications . 89
Additional References . 92

ix

List of Acronyms

API Application Programming Interface. 13, 14, 39, 41, 49, 50, 63, 69

CDDL Concise Data Definition Language. 11, 48, 65

CI Continuous Integration. 56, 64, 65

CLI Command Line Interface. 36, 37, 39–44, 55–57, 62, 63, 69, 71

CSS Cascading Style Sheets. 57

CURIE Compact URI. 22

DTDL Digital Twin Definition Language. 13, 14

GUI Graphical User Interface. 69

HTML Hypertext Markup Language. 48, 57

HTTP Hypertext Transfer Protocol. 29, 36, 63

HTTPS Hypertext Transfer Protocol Secure. 63

IETF Internet Engineering Taskforce. 2, 6, 89–91

IoT Internet of Things. iii, v, 1, 2, 5, 13, 67, 69

IP Internet Protocol. xi, 14

IPSO IP for Smart Objects. 14

IRI Internationalized Resource Identifier. 22, 23, 28

ISO International Organization for Standardization. 37

xi

List of Acronyms

JSON JavaScript Object Notation. xii, 6–12, 14, 17, 20, 24–26, 28–30, 33, 36, 37,
39–43, 45, 47–52, 54, 60, 61, 63, 67, 69

JSON-LD JSON Linked Data. 6, 7, 12, 14, 15, 19, 22, 23, 28, 33, 55, 60, 67, 70

OCF Open Connectivity Foundation. 2, 13, 14

OMA Open Mobile Alliance. 2, 13, 14

OneDM One Data Model. 2, 13, 43, 63, 65, 81

RDF Resource Description Framework. 6, 23, 61, 70

REST Representational State Transfer. 49, 63, 69

RFC Request for Comments. 6, 70

SBC Single-board computer. 62

SDF Semantic Definition Format. iii, v, xvii, 2, 3, 5, 7, 8, 10–37, 39–43, 45, 47, 48,
51–53, 57, 59–63, 65, 66, 69, 70, 73, 75, 81

SDO Standards Developing Organization. 1, 2, 13

SPDX Software Package Data Exchange. 31

TD Thing Description. iii, v, xvii, 1–3, 5–17, 22–24, 27, 29, 30, 32–36, 39–44, 47, 48,
54, 55, 59–62, 66, 67, 69, 70

TM Thing Model. iii, v, xvii, 3, 7–11, 13, 15–25, 27–34, 36, 39–44, 51–55, 59–62,
64–67, 69, 70

URI Uniform Resource Identifier. xi, 12, 20, 22, 31, 36, 49

URL Uniform Resource Locator. 17, 33, 43, 44, 60, 64

W3C World Wide Web Consortium. iii, v, 1, 5, 89–92

WoT Web of Things. iii, v, xvii, 1–3, 5–37, 39–44, 47, 48, 52–54, 59–63, 65–67, 69, 70

WWW World Wide Web. 1, 5

YANG Yet Another Next Generation. 14, 65, 70

xii

List of Tables

Table 3.1: Overview of mappings of the most important SDF keywords to WoT. . 17
Table 3.2: Overview of mappings of the most important WoT classes and keywords

to SDF. 18
Table 3.3: Directly convertible data schema/data quality fields. 25

Table 5.1: Internal module structure of our converter library. 42
Table 5.2: Available Parameters for the Sub-Commands of the CLI 44

Table B.1: Performance comparison between our converter and the SDF-YANG-
Converter. 81

xiii

List of Figures

Figure 3.1: High-level view on our conversion process 16

Figure 6.1: Screenshot of our Converter’s Web Interface. 58

xv

List of Listings

Listing 2.1: Example of a WoT TD. 7
Listing 2.2: Example of a WoT TM. 8
Listing 2.3: Example of a WoT TM using import, extension, and composition. . . 9
Listing 2.4: Example of an SDF model. 11
Listing 2.5: Example of an SDF mapping file. 12

Listing 3.1: Example for a Thing Model Collection. 21
Listing 3.2: SDF model of the Thing Model Collection Example in Listing 3.1. . . 21
Listing 3.3: SDF Namespaces Block example. 23
Listing 3.4: Mapped TM created from the SDF example in Listing 3.3. 23
Listing 3.5: SDF Information Block example (without URIs). 31
Listing 3.6: Mapped TM created from the SDF example in Listing 3.5. 32

Listing 6.1: Code of our main conversion function map_field. 50

Listing 7.1: Example for a valid but unsatisfiable schema in [I-D.-jso-draft-7] . . 67

Listing A.1: SDF model for illustrating the conversion of dataqualities. 73
Listing A.2: Mapped TM created from the SDF example in Listing A.1. 74
Listing A.3: SDF example for the mapping sdfRef and sdfRequired. 75
Listing A.4: Mapped TM created from the SDF example in Listing A.3. 76

Listing B.1: Cyclomatic Complexity values for all elements of our library imple-
mentation. 77

xvii

1 Introduction

The term Internet of Things (IoT) describes the integration of a wide variety of devices
such as sensors, smart lamps or industrial machines into the internet. The interoperability
of such IoT devices is currently quite limited as many manufacturers tend to create
their own ecosystems and standards which are not necessarily compatible with those of
other manufacturers. Besides not being able to interoperate due to differing or even
proprietary communication protocols, devices from different manufacturers often rely
on different description frameworks, preventing them from identifying the features and
capabilities their peers offer. Furthermore, manufacturers and Standards Developing
Organizations (SDOs) tend to use their own data modeling approaches for IoT devices,
creating further interoperability and re-usability problems.

Over the last couple of years, there have been increasing efforts to tackle both the
problem of missing device interoperability and incompatible data models with open
standards. Analogous to how the World Wide Web (WWW) operates on top of the
Internet at the application layer, giving users a simple yet secure way to interact with
web resources via a web browser, the World Wide Web Consortium (W3C) tries to
establish a similar relationship between the Internet of Things and the Web of Things
(WoT).

Just as browsers commonly access websites using an index.html1 file on a web server as
an entry point, Things in the WoT architecture [wot-architecture] are supposed to be
accessed using a so-called Thing Description (TD) [wot-td]. The TD serves as the entry
point to the Thing, exposing both device and communication metadata. Consumers
can use the information contained in a TD to interact with the Thing based on their
application logic or use the human-readable information in the TD for rendering user
interfaces. While IoT devices can host their own TDs, already existing or constrained

1 Note that this a convention, not a standard.

1

1 Introduction

[RFC7228] devices which cannot offer a TD themselves can also be integrated into the
Web of Things by letting an intermediary provide a TD instead.

Another open standard that deals with the second described problem of incompatible
data models is the Semantic Definition Format (SDF) [I-D.-asdf-sdf]. Developed by the
Internet Engineering Taskforce (IETF), SDF has the goal of defining a common language
for data and interaction models which can be used as a translation medium for models
from different ecosystems.

The development of SDF was initiated by the Liason Group One Data Model (OneDM)
which is endorsed by the Open Connectivity Foundation (OCF) and OpenMobile Alliance
(OMA) SpecWorks, two important SDOs not only in the area of IoT data modelling.
SDF aims at providing a universal format for describing IoT devices, thus being able to
serve as an intermediary between different ecosystems and data modeling frameworks.
Similar to WoT, SDF’s primary goal is not to create a new standard to make existing
solutions obsolete, but rather to describe them in order to bridge the gap between the
different ecosystems. Bridging this gap requires the specification of mappings between
SDF and the data model framework of interest as well as the implementation of a
corresponding converter.

As both SDF and WoT TD try to provide solutions for the interoperability problem in
the IoT a conversion between these two formats is particularly interesting. This way,
vendor or SDO-specific formats could be easily integrated into the Web of Things, given
that a converter between SDF and the format in question exists. This way, WoT TD
could serve as a medium for realizing interoperability at the consumer level, while SDF
can act as a mediator between different ecosystems, thus providing a broader sense of
interoperability.

However, there are still a number of obstacles that have to be cleared before this goal can
be achieved. The most important problem that has to be solved is the general mapping
between SDF and WoT TD, i.e., defining how an SDF model should be converted into a
Thing Description and vice versa. While there have been activities in creating converters
between the two formats, there is still no canonically defined mapping. How such a
mapping can look like is therefore the main question this thesis deals with, making a
concrete proposal in the process. As both SDF and WoT TD are still in development
at the time of writing of this thesis, another related question is which gaps need to be
closed in order to actually produce a complete mapping between the two formats. A
third problem arises from the different purposes of SDF and WoT TD: While SDF mostly

2

deals with classes of devices, the main purpose of WoT TD is the description of device
instances. As WoT TD defines its own format for device classes called Thing Models
(TMs), these can be used as a direct equivalent of SDF models. The question of how to
also cover the instance information of TDs in SDF (using, for example, the newly defined
concept of mapping files [I-D.-sdf-mapping]) is, therefore, another aspect we deal with
in this thesis. Lastly, we will deal with the question of how well conversions between
WoT TD and SDF can be reversed or roundtripped, and under which circumstances the
same document can or cannot be obtained when transforming a conversion result back
to its original format.

In the remainder of this thesis, we will first lay the groundwork for the rest of this
thesis by presenting the relevant specifications and related work (chapter 2). Then, we
will specify the mappings between SDF and WoT TD (chapter 3) before deriving the
requirements for our implementation (chapter 4), which will inform the design of our
converter (chapter 5). After describing our actual converter implementation (chapter 6),
we will then evaluate it in chapter 7. Finally, in chapter 8 we will draw a conclusion
and outline potential avenues for future work.

3

2 Foundations

This chapter gives an overview of the standards and specifications (section 2.1) relevant
for this thesis, as well as relevant related work (section 2.2).

2.1 Standards and Specifications

Despite the fact that both WoT and SDF focus on providing data and interaction models
for the Internet of Things, both specifications follow different approaches and philoso-
phies. In this section, we explore the two specifications in more detail while outlining
their differences, which will serve as the foundation for the development of mappings
between them in chapter 3.

2.1.1 Web of Things

The WoT family of standards tries to apply principles of the World Wide Web (WWW)
to the Internet of Things (IoT). Similar to how the Web enables users to easily use the
internet and access resources hosted on a server, the Web of Things tries to make IoT
devices more accessible and increase their interoperability. Within the Web of Things
(WoT) architecture [wot-architecture], the Thing Description (TD) is the most important
building block. Published as a World Wide Web Consortium (W3C) Recommendation
[wot-td], the first version of the TD specification is an official Web Standard since 2020.
The WoT working group, however, is currently working on improving the standard,
which will be published as version 1.1 in the upcoming months. The latest working draft
[wot-td11] of this new version also serves as the basis for this thesis and the presented
mappings.

5

2 Foundations

Being compared to the (commonly used) index.html file of a website [wot-architecture],
the TD is supposed to serve as an “entry point” of a Thing, by exposing its so-called
interaction affordances (properties, actions, and events) as well as metadata. In order
to be able to communicate with a Thing, TDs must provide protocol bindings linking an
affordance to a concrete resource provided by the Thing as well as security information,
such as the requirement for basic authentication [RFC7617] or the use of OAuth 2.0
[RFC6749].1

Serialized as JSON [RFC8259], a TD is a JSON-LD document [json-ld], which allows
for the linking to other documents for importing additional vocabulary as well as the
inclusion of machine-readable, semantic annotations which are compatible with the
Resource Description Framework (RDF) [rdf].

Using vocabulary from the popular, yet not formally standardized2 JSON Schema (Draft 7,
specified in [I-D.-jso-draft-7]), TDs allow for defining data schemas, which can be used
to validate input and output data. A WoT consumer that wants to interact with a Thing,
for example, can use schema information to both know beforehand which kind of input
data a Thing expects and to make sure that it received a valid payload in a response
from a Thing.

Listing 2.1 shows an example of a TD. It contains the most important TD elements,
namely the JSON-LD @context, metadata (security definitions, a human-readable title,
and an ID), and interaction affordances (a property, an action, and an event) with
protocol bindings (in this case all three affordances use HTTPS) in the forms member.
The type member in the status property is one of the vocabulary terms borrowed from
[I-D.-jso-draft-7] and can be used to prescribe a range of different mostly JSON-inspired
data types.3 Additional vocabulary can be used to further constrain the set of valid data,
indicating, for example, the minimum or maximum of numeric values, a certain pattern
for the formatting of a string, or the structure of complex data types (for instance, the

1 The security schemes defined in the TD specification are currently limited to a number of HTTP-specific
mechanisms, some of which (such as basic authentication) can be adapted to other protocols like
MQTT (requiring a username and password for the communication with a broker). For TD 2.0, it is
planned to overhaul this part of the specification by making it easier to extend and less HTTP-specific.

2 While the JSON Schema authors have submitted the different versions of their specification as IETF
Internet-Drafts, none of these drafts have reached the status of a Request for Comments (RFC) yet.
Furthermore, all the drafts intend to only have an informational status, that is, they do not intend to
become Internet Standards. This makes them unfit for being referenced in a normative context by a
technical specification.

3 Namely null, boolean, string, integer, number, array, and object.

6

2.1 Standards and Specifications

Listing 2.1: Example of a WoT TD describing a simple smart light. The TD contains one
interaction affordance of each kind (one action, property, and event) as well
as basic metadata (a title, an identifier, and a security scheme specifying
basic authentication [RFC7617]).

1 {
2 "@context": "https ://www.w3.org /2022/ wot/td/v1.1",
3 "id": "urn:dev:ops :32473 - WoTLamp -1234" ,
4 "title": "MyLampThing",
5 "securityDefinitions": {
6 "basic_sc": {"scheme": "basic", "in": "header "}
7 },
8 "security": "basic_sc",
9 "properties": {
10 "status": {
11 "type": "string",
12 "forms": [{"href": "https :// mylamp.example.com/status "}]
13 }
14 },
15 "actions": {
16 "toggle": {
17 "forms": [{"href": "https :// mylamp.example.com/toggle "}]
18 }
19 },
20 "events":{
21 "overheating":{
22 "data": {"type": "string"},
23 "forms": [{
24 "href": "https :// mylamp.example.com/oh",
25 "subprotocol": "longpoll"
26 }]
27 }
28 }
29 }

maximum length of an array). Just as TDs can be validated using a (non-normative)
JSON Schema definition provided alongside the TD specification, the data schema
definitions inside a TD can be used as inputs for JSON Schema validators for validating
input and output data.

Version 1.1 of the WoT TD specification adds a number of new features, of which the
so-called Thing Model (TM) is probably the most important one for this thesis and the
design of the SDF WoT converter. TMs provide reusable templates for TDs. Similar to
SDF models, TMs can be used to describe classes of Things, which can be instantiated
by converting the respective TM to a TD. TMs are near supersets of TDs4 and allow
omitting instance-specific information such as protocol bindings and security information.

4 TMs do require an additional JSON-LD type annotation, which is the main reason why not every Thing
Description is also Thing Model. In the other direction, however, each Thing Model that provides the
required instance-specific definitions and does not use the import or extension mechanisms qualifies
as a Thing Description.

7

2 Foundations

Listing 2.2: Example of a WoT TM, based on the TD shown in Listing 2.1, with all
instance-specific information omitted and with a placeholder for the id
field.

1 {
2 "@context": "https :// www.w3.org /2022/ wot/td/v1.1",
3 "id": "urn:dev:{{ IDENTIFIER }}",
4 "title": "MyLampThing",
5 "properties": {
6 "status": {
7 "type": "string"
8 }
9 },
10 "actions": {
11 "toggle": {}
12 },
13 "events":{
14 "overheating":{
15 "data": {"type": "string "}
16 }
17 }
18 }

An example for a TM can be seen in Listing 2.2. Here, we omit all instance-specific
information (i.e., the affordances’ forms and the security definitions) and include a
so-called placeholder (denoted by a double-pair of curly braces) in the id field. These
placeholders are supposed to be replaced during the conversion process from a TM
to a TD and allow for any data type to be used as a replacement value in a so-called
placeholder map [wot-td11, section 10.3.3]. Therefore, TM fields which normally do
not allow for using strings allow for them in this special case if the string only consists
of the placeholder itself.

Similar to SDF models (as we will see in the next section), TMs feature a vocabulary for
importing from other Thing Models, using JSON Pointers [RFC6901] and the keyword
tm:ref. Furthermore, they allow for extending other TMs using a special relation-type
called tm:extends in a link object. The WoT TD specification describes a process for
deriving Thing Descriptions from Thing Models, resolving all references and extensions
and therefore instantiating it. Using the tm:required keyword, interaction affordances
can be defined as mandatory, making it obligatory to take them over into the resulting
TD during the derivation process.

WoT also includes a mechanism for nesting TMs and TDs by using links. In the case
of TMs, this is achieved with a special link-relation tm:submodel, which also allows
for reusing the same TM with a different instanceName, which is applied during the
conversion from TMs to TDs, a process well-defined in the WoT TD specification [wot-

8

2.1 Standards and Specifications

Listing 2.3: Example of a WoT TM using an import (with the tm:ref keyword), the
extension mechanism (with the link-relation tm:extends), and the compo-
sition mechanism (using tm:submodel).

1 {
2 "@context": "https ://www.w3.org /2022/ wot/td/v1.1",
3 "title": "MyLampThing",
4 "property": {
5 "status": {
6 "tm:ref": "https :// example.org/reference -tm#status"
7 }
8 },
9 "links": [
10 {
11 "href": "https// example.org/sub -tm",
12 "rel": "tm:submodel",
13 "instanceName": "Sub -Lamp"
14 },
15 {
16 "href": "https// example.org/parent -tm",
17 "rel": "tm:extends"
18 }
19]
20 }

td11, section 10.4]. In the case of TDs, the relation-type item is supposed to be used to
indicate that a TD has subordinates. The semantic difference between tm:submodel
and item is not entirely clear, which becomes apparent when considering the conversion
of a (nested) TD to a TM, where we could imply the same kind of relationship between
the resulting TMs using item instead of tm:submodel as relation-type. This is one
aspect where future versions of the WoT TD specification need a bit of clarification.

An example for a TM that uses all three available mechanisms for re-using definitions
from other models can be seen in Listing 2.3. Here, we “import” the content of the
status property from another TM, while inheriting definitions from another TM as a
whole using a link with tm:extends relation-type. For the resolution of imports, the
use of the JSON Merge Patch algorithm [RFC7396] is prescribed by the specification for
updating the current definition with the contents of the referenced one. For the extension
mechanism, however, the specification only defines a number of assertions but no formal
algorithm, which leaves room for how the extension mechanism should be handled in
practice. Lastly, in our example, we also use a link with the tm:submodel relation-type,
referencing another TM as a submodel and indicating a hierarchical relationship between
the two. The instanceName indicates here that this is other model is a “Sub-Lamp”,
but could be used in other scenarios, where we reference one TM multiple times, to

9

2 Foundations

differentiate between different instances of the underlying class.5

During the description of our mapping between WoT documents and SDF in chapter 3,
we will explore and describe the defined TD vocabulary (which is listed and described
in detail in the specification itself) in more depth. First, however, we will turn to the
other major specification relevant for this thesis.

2.1.2 Semantic Definition Format

The Semantic Definition Format (SDF, [I-D.-asdf-sdf]) strives to be a universal format
for describing IoT data models, thus trying to solve the interoperability issue of IoT
modelling languages and their corresponding ecosystems. Its current focus lies on the
description of classes of components and devices. Therefore, SDF models are supposed to
only contain abstract information that is independent of protocols or manufacturers, in
order to maximize their reusability. Ecosystem, protocol or instance-specific information
is supposed to be included in companion documents, such as mapping files [I-D.-sdf-
mapping], which augment the definitions of an SDF model specified by JSON pointers.
An SDF model and one or more corresponding mapping files can be merged to create a
consolidated model, which can serve as the basis of ecosystem-specific conversions.

Listing 2.4 shows a simple example of an SDF model that describes a switch. Similar to a
WoT TD or TM, the SDF model contains interaction affordances—an action, a property,
and an event—which indicate the possibilities for the outside world to interact with
the device. However, a key difference between SDF and WoT lies in the fact that the
affordances are part of an sdfObject or sdfThing, which serve as their container.6

The sdfObject class is the main reusable component in SDF and forms the “leaf nodes”
of SDF models. In order to create hierarchies in SDF models, the sdfThing can be
used, which is syntactically equivalent to the sdfObject class but can also contain

5 One example here could be a traffic light consisting of three individual lamps, which are derived
from the same class of device differing with regard to their (instance-specific) color. In this case, the
instance-name can be used to differentiate between the three lamps. Note, however, that it is not
possible to pass “arguments” to the other model this way. The concrete information for the color values
has to be provided during the TD derivation process. This is another aspect that could be improved in
the next major version of the specification.

6 While it is also possible to define “global” interaction affordances as well as sdfData definitions at
the top of an SDF model, these are only supposed to be referenced/imported from inside sdfObjects
and sdfThings.

10

2.1 Standards and Specifications

Listing 2.4: Example of an SDF model.
1 {
2 "info": {
3 "title": "Example file for OneDM Semantic Definition Format",
4 "version": "2019-04 -24",
5 "copyright": "Copyright 2019 Example Corp. All rights reserved.",
6 "license": "https :// example.com/license"
7 },
8 "namespace": {
9 "cap": "https :// example.com/capability/cap"
10 },
11 "defaultNamespace": "cap",
12 "sdfObject": {
13 "Switch": {
14 "sdfProperty": {
15 "value": {
16 "description": "The state of the switch; false for off and true for on

.",
17 "type": "boolean"
18 }
19 },
20 "sdfAction": {
21 "on": {
22 "description": "Turn the switch on; equivalent to setting value to true

."
23 },
24 "off": {
25 "description": "Turn the switch off; equivalent to setting value to

false ."
26 },
27 "toggle": {
28 "description": "Toggle the switch; equivalent to setting value to its

complement ."
29 }
30 }
31 }
32 }
33 }

sdfObjects and sdfThings as children. Both the sdfThing and the sdfObject class
can be arranged as arrays with the minItems and maxItems members, which can be
used to describe devices such as outlet strips which consist of a number of identical
elements (in this case sockets). This is a major difference to WoT documents, which
only for linking but no comparable nesting within the same TD or TM.

Similar to WoT TD, SDF uses JSON Schema [I-D.-jso-draft-7] inspired qualities for
the definition of data schemas used as properties or interaction inputs or outputs.
However, for validation of models, SDF relies primarily on the standardized Concise
Data Definition Language (CDDL) [RFC8610], while also offering an equivalent JSON
Schema in its appendix. Besides the JSON Schema inspired terms, both SDF and WoT
add their own vocabulary for data qualities, which does not have a direct equivalent in
the other specification. While WoT allows for extending the allowed vocabulary in a TM

11

2 Foundations

Listing 2.5: Example of an SDF mapping file, augmenting the SDF model in Listing 2.4
with @type annotations from JSON-LD.

1 {
2 "info": {
3 "title": "Example file for OneDM Semantic Definition Format",
4 "version": "2019-04 -24",
5 "copyright": "Copyright 2019 Example Corp. All rights reserved.",
6 "license": "https :// example.com/license"
7 },
8 "namespace": {
9 "cap": "https :// example.com/capability/cap",
10 "saref": "https :// w3id.org/saref #"
11 },
12 "defaultNamespace": "cap",
13 "map": {
14 "#/ sdfObject/Switch": {
15 "@type": "saref:LightSwitch"
16 },
17 "#/ sdfObject/Switch/sdfProperty/value": {
18 "@type": "saref:OnOffState"
19 },
20 "#/ sdfObject/Switch/sdfAction/toggle": {
21 "@type": "saref:ToggleCommand"
22 }
23 }
24 }

or TD by using a context extension, SDF does require an additional document like the
aforementioned mapping files to augment a model using JSON pointers, which indicate
where the additional qualities belong. An example for a mapping file augmenting the
SDF model in Listing 2.4 is shown in Listing 2.5. Here, we let the mapping file add
JSON-LD-specific vocabulary (the semantic @type annotations) to the sdfObject itself,
the property, and the toggle action.

Just like the augmented SDF model itself, the mapping file contains top-level metadata
(a title, licensing and copyright information, and a version indicator) in an info block.
Similar to the JSON-LD context, we can refer to namespaces in both document types,
mapping prefixes like cap or saref to a URI. SDF also allows setting a default namespace,
indicating where the definitions of a model belong to. However, SDF does not define
the exact semantics of namespaces yet, which is why qualities prefixed with a colon
in their quality name or “given name” (e.g., cap:foo, forming a so-called [CURIE],
which can be expanded to a URI) are forbidden in SDF models at the moment, but are
supposed to be added as a feature at a later point in time. The next major version of
SDF will probably provide more clarity in this regard. SDF mapping files can provide a
workaround here, as they do not forbid the use of prefixed qualities, which we will rely
on later when converting WoT definitions to SDF.

12

2.2 Related Work

SDOs like OMA SpecWorks, OCF or the Zigbee Alliance have contributed a number
of (non-official) SDF models in a “playground” under the aegis of OneDM, hosted on
GitHub.7 We used these models both for developing and refining the mappings between
SDF and WoT, and as a benchmark for how well the converter performs as part of our
evaluation in chapter 7.

2.2 Related Work

There are a number of pre-existing projects which also deal with the conversion between
SDF and other formats. The onemost closely related to this thesis is a converter by Roman
Kravtsov8 written in JavaScript (for the Node.js ecosystem), which is able to convert
SDF models to WoT Thing Models. Kravtsov dealt with the conversion between the two
formats in the context of his master’s thesis [Kra21], comparing, besides SDF, multiple
formats for semantic descriptions of IoT devices with the newly added Thing Model
feature. Besides his SDF converter, he also provides implementations for Oracle Device
Models9, Eclipse Vorto models10, and Microsoft’s Digital Twin Definition Language
(DTDL)11.

While working in general, Kravtsov’s converter between SDF and WoT has a number
of limitations: It does not support the backwards conversion of WoT documents to
SDF, can only convert SDF models to Thing Models (there is no support for Thing
Descriptions), and only accepts a single sdfObject within a model as an input. This
also means that Kravtsov’s converter does not support roundtripping, i.e., translating
a conversion result back into its original format. Furthermore, there is no validation
of both inputs and outputs, while the actual mapping of SDF affordances is a simple
copy operation, potentially resulting in WoT TMs containing definitions only specified
for SDF (e.g., the sdfChoice quality, a more expressive enumeration type based on
key-value pairs). Besides these limitations for the actual conversion, the converter has a
number of usability issues, neither providing a library API nor a command line interface

7 https://github.com/one-data-model/playground (retrieved: May 5, 2022).
8 https://github.com/roman-kravtsov/sdf-object-converter (retrieved: May 3, 2022).
9 https://github.com/roman-kravtsov/oracle-device-model-converter (retrieved: June 23, 2022).
10 https://github.com/roman-kravtsov/vorto-model-converter (retrieved: June 23, 2022).
11 https://github.com/roman-kravtsov/digital-twins-converter (retrieved: June 23, 2022).

13

https://github.com/one-data-model/playground
https://github.com/roman-kravtsov/sdf-object-converter
https://github.com/roman-kravtsov/oracle-device-model-converter
https://github.com/roman-kravtsov/vorto-model-converter
https://github.com/roman-kravtsov/digital-twins-converter

2 Foundations

that allows for specifying input and output file names.

Another relevant SDF converter12 covers the conversion between SDF and the data
modelling language YANG (Yet Another Next Generation, [RFC7950]). Written by Jana
Kiesewalter in C++, her converter can be used as a standalone command line application,
which also allows the integration in web applications.13 Her converter resembles a more
sophisticated approach to SDF conversion than Kravtsov’s, also supporting bidirectional
conversion and roundtripping. Kiesewalter’s converter, which is part of her Master’s
thesis [Kie21], also features a comprehensive mapping between the two data modelling
approaches, which she also codified in an Internet-Draft [I-D.-yang-sdf]. However, there
are a number of small issues with the converter which are related to the flexible nature
of the JSON Schema inspired vocabulary and are going to be discussed in more detail
when formulating our requirements in chapter 4.

Furthermore, there are two converters by Ericsson Research: The first one14 allows the
conversion between SDF and IPSO15 data models, which is the data modelling approach
of OMA SpecWorks. The second converter16 also allows for a conversion between SDF
and DTDL, which is used for the company’s Azure Digital Twins models and is, like
WoT TD, based on JSON-LD. Finally, OCF provides tools17 to convert between SDF and
OpenAPI, a popular format for describing web APIs.

Through a growing number of converter implementations, we can observe an integra-
tion between different ecosystems and data modelling approaches fostered by SDF
as a common description framework. However, both comprehensive support for the
WoT document formats and the description of instance-specific information have been
underdeveloped so far.

On the basis of the foundations outlined in this chapter, we now first define the mappings
between SDF and WoT necessary for our converter before describing the requirements
for its design and implementation, informed by the existing conversion approaches.

12 https://github.com/jkiesewalter/sdf-yang-converter (retrieved: May 4, 2022).
13 See http://sdf-yang-converter.org/ (retrieved: May 3, 2022).
14 https://github.com/EricssonResearch/ipso-odm (retrieved: May 5, 2022).
15 IP for Smart Objects
16 Although the converter is accessible through a web interface hosted by Ericsson http://wishi.
nomadiclab.com/sdf-converter/ (retrieved: June 16, 2022), alongside a number of other SDF convert-
ers, its source code and/or project description seems unavailable to the public at the moment.

17 https://github.com/openconnectivityfoundation/SDFtooling (retrieved: June 16, 2022).

14

https://github.com/jkiesewalter/sdf-yang-converter
http://sdf-yang-converter.org/
https://github.com/EricssonResearch/ipso-odm
http://wishi.nomadiclab.com/sdf-converter/
http://wishi.nomadiclab.com/sdf-converter/
https://github.com/openconnectivityfoundation/SDFtooling

3 Mappings between WoT TD and SDF

For the design and implementation of a converter between WoT TD and SDF it is
necessary to lay out the mapping between the definitions of both specifications. This
chapter proposes such a mapping, which will also serve as the foundation for the
requirements outlined in the next chapter, as well as our converter’s design (chapter 5).

As we discussed in the last chapter, this mapping does not only include WoT TDs but
also TMs, which will serve as an important intermediary between Thing Descriptions
and SDF models.

3.1 General Considerations

WoT Thing Descriptions and SDF models have different purposes: TDs describe concrete
instances of Things, while SDF models describe classes of Things. The fact that TDs can
contain instance-specific information which cannot be expressed in SDF is a challenge
for creating a mapping between the two formats, as this information cannot be included
directly in SDF models. Therefore, the concept of mapping files has to be used, where
the additional information from TDs can be stored. This means that the conversion of
a TD creates two documents: An SDF model and an additional mapping file. For the
other direction, we also need both kinds of SDF documents as an input as otherwise the
resulting TDs will not be valid since some fields in a TD are mandatory.

Due to these limitations, we decided to use Thing Models (TMs), the second kind of WoT
document, as an intermediary for the conversion between Thing Descriptions and SDF
models. As Thing Models do not require instance-specific information and have a limited
number of mandatory fields—a JSON-LD @context importing the WoT vocabulary and
an @type of tm:ThingModel—, they can be mapped to a single SDF model if they do
not contain fields which have no equivalent in SDF. The fact that WoT TMs are very close

15

3 Mappings between WoT TD and SDF

to being a superset of TDs further qualifies them as an intermediary, as a conversion
between TDs and TMs can be achieved easily, as we will see below.

Thus, the conversion between the three formats only requires the specification of two
concrete mappings: The one between SDF and WoT TMs, and the one between WoT
TMs and WoT TDs. The conversion between SDF and WoT TDs can be derived from
these two mappings as a corollary. A high-level view on our conversion process can be
seen in Figure 3.1. Notice how TMs are serving as an intermediary between TDs on the
one hand and SDF models and mapping files on the other here. When using TMs as an
input, they can be augmented with additional protocol bindings or metadata, as well as
replacement values for potential placeholders.

In the next two sections, we will first outline our mapping between SDF and WoT TMs
(section 3.2) before we describe additional mappings between WoT TDs and WoT TMs
(section 3.3), building upon the conversion process already described in the WoT TD
specification.

Figure 3.1: High-level view on the conversion process for WoT TMs, WoT TDs, and
Thing Models.

3.2 Mapping between SDF Models and WoT TMs

As already mentioned in the last chapter, SDF and WoT documents have a lot of con-
ceptual similarities, while following a different purpose and philosophy in a number

16

3.2 Mapping between SDF Models and WoT TMs

of aspects. Table 3.1 shows an overview of the most important SDF concepts and their
equivalent in WoT Thing Models, underlining how similar some parts of the terminology
are. The most striking similarity is of course the interaction affordances (actions, prop-
erties, events, also see section 3.2.5), but the keywords for referencing (sdfRef, tm:ref)
and for indicating required definitions (sdfRequired, tm:required) also show not only
the parallels between the two specifications, but also hints at how they influenced each
other during the standardization process. However, as Table 3.2 gives an overview of
the mapping from WoT TDs to SDF, we can see that there are quite a few concepts with
no equivalent in SDF.

Table 3.1: Overview of mappings of the most important SDF keywords to WoT.

SDF Keyword WoT Class/Keyword

sdfThing TM with tm:submodel links
sdfObject TM without tm:submodel links
sdfProperty PropertyAffordance
writable readOnly (negated)
readable writeOnly (negated)
sdfAction ActionAffordance
sdfOutputData output
sdfInputData input
sdfEvent EventAffordance
sdfOutputData output
sdfData schemaDefinitions (at the TM level)
sdfRef tm:ref
sdfChoice Enum of JSON objects with sdf:choiceName
sdfRequired tm:required
namespaces @context
defaultNamespace sdf:defaultNamespace
info Multiple targets:
version model field in Version class
title sdf:title
copryright sdf:copyright
license If URL: link with relation-type

Else: sdf:license

While the mapping of many definitions is relatively straightforward due to these parallels
(SDF actions become WoT actions, SDF properties become WoT properties, WoT data

1 This is the base class of the three affordance types.

17

3 Mappings between WoT TD and SDF

Table 3.2: Overview of mappings of the most important WoT classes and keywords
[wot-td11, section 5] to SDF.

WoT Class/Keyword SDF Keyword

Thing sdfThing (TM has tm:submodel links), sdfObject
title label
description description
schemaDefinitions sdfData
@context namespaces of the SDF model (with exceptions)
DataSchema dataqualities
readOnly Mapping File
writeOnly Mapping File
InteractionAffordance1 —
title label
description description
PropertyAffordance sdfProperty
readOnly writable (negated)
writeOnly readable (negated)
observable observable
ActionAffordance sdfAction
input sdfInputData
output sdfOutputData
EventAffordance sdfEvent
tm:ref sdfRef
tm:required sdfRequired
Link Mapping File, except for special link types (e.g.,

license, tm:extends, tm:submodel)

18

3.2 Mapping between SDF Models and WoT TMs

schemas become SDF data qualities, and so on), the mapping becomes more complex
when taking into account hierarchical models as well as the mechanisms for referencing
and extending present in both specifications.

In the following, we will first focus on the mapping of concepts which have equivalents
in both specifications, before discussing aspects that are either WoT- or SDF-specific and
therefore require a specific treatment before being able to map them to the other format.
In general, we will observe that TM fields with no equivalent will become part of an SDF
mapping file, while additional SDF fields become part of a resulting TM directly, with
an added sdf: prefix, indicating that the field is part of an SDF vocabulary extension.2

This not only ensures that we translate as much of the original document into the other
format, but also enables roundtripping, as we will discuss throughout this chapter.

3.2.1 Atomic Units and Nesting

As we realized during the writing of this thesis, the most crucial difference between
the two specifications lies in the way both specifications approach hierarchical data
models, describing Things which consist of multiple components integrated by a parent
component. A simple example for such a Thing also used in the SDF specification would
be a combination of a freezer and fridge, forming a fridge-freezer combination with
global properties such as a status.

SDF and WoT would describe such a device completely differently. In SDF, it is possible
to describe this kind of Thing with a single model, using an sdfThing for describing
the device as a whole and two sdfObjects for the fridge and the freezer, respectively.
In WoT, the three components of the device need to be described with their own TM,
creating the hierarchy with the linking approach described in the last chapter.

Both specifications designate affordances as part of a container, which resembles the
associated Thing or a subordinate part of it. In WoT TMs, these containers are the Thing
Models themselves, which can link to “submodels” to create a hierarchy of TMs. A direct
inclusion of subordinate TMs in a WoT document is not intended by the specification.

SDF follows a different philosophy, specifying two containers affordances can be as-
sociated with: The sdfObject serves as a “leaf node” for SDF models which cannot

2 This extension has yet to be formally defined in a JSON-LD compatible format.

19

3 Mappings between WoT TD and SDF

contain any subordinate containers (i.e., other sdfObjects). The sdfThing, however,
has nesting capabilities and can contain both other sdfThings and/or sdfObjects,
which can be used to create SDF models of arbitrary depth.

Although being vastly different, the two approaches can be mapped to each other:
When mapping from WoT to SDF, each link can be dereferenced and converted into an
individual TM. Should a TM link to at least one submodel, we decided that it becomes an
sdfThing during the conversion process; otherwise, it becomes an sdfObject. Finally,
all resulting sdfThings and sdfObjects are collected in one SDF model, in accordance
with their position in the hierarchy of links.

A special challenge for the conversion between SDF and WoT TMs lies in the fact that an
SDF model does not need to have a clear hierarchy with a single “entry point”. Instead,
there can be multiple “top-level” sdfThings or sdfObjects, which result in more than one
TM with no parent TM. A comprehensive mapping with support for roundtripping needs
to take this into account by allowing more than one TM as an input for the conversion
process. Furthermore, we saw the need to be able to collect all conversion output TMs in
a single document, in order to have a self-contained result, usable for further processing.
These considerations led us to the introduction of a concept which we call Thing Model
Collections. These JSON documents are essentially a map where each value is a TM. The
map keys can be used to convert or export each contained TM to a single JSON file.

An example for a ThingModel Collection can be seen in Listing 3.1. Here, we demonstrate
how we can map a hierarchical relationship between two Thing Models within the same
collection, having the Lamp TM point to the Switch TM using a corresponding JSON
pointer in a link with the relation-type tm:submodel. In the link, we also indicate an
instanceName, which is a special addition to the Link class for naming submodels,
making it possible, for example, to differentiate multiple instances of the same TM with
different purposes.3 Note that the contained TMs can of course also have submodels
which are located externally, i.e., under a URI or a relative path on the file system.

While in theory, an sdfRef could also be used to reference a definition that is not part
of an SDF model (this is not explicitly forbidden in the SDF specification), we chose to
specify that all submodels must be dereferenced before the conversion process. This
way, the resulting SDF model can be processed directly, without creating a consolidated

3 One example could be a traffic light with three lamps—red, yellow, and green—as submodels. These
could share the same TM, but could be differentiated by their instanceName.

20

3.2 Mapping between SDF Models and WoT TMs

Listing 3.1: Example for a Thing Model Collection.
1 {
2 "Lamp": {
3 "@context": ["https ://www.w3.org /2022/ wot/td/v1.1"],
4 "@type" : "tm:ThingModel",
5 "links": [
6 {
7 "rel": "tm:submodel",
8 "href": "#/ Switch",
9 "instanceName": "SubmodelSwitch"
10 }
11]
12 },
13 "Switch": {
14 "@context": ["https ://www.w3.org /2022/ wot/td/v1.1"],
15 "@type" : "tm:ThingModel"
16 }
17 }

Listing 3.2: SDF model of the Thing Model Collection Example in Listing 3.1.
1 {
2 "sdfThing": {
3 "Lamp": {
4 "sdfObject": {
5 "SubmodelSwitch": {}
6 }
7 }
8 }
9 }

SDF model (that might contain WoT-specific vocabulary) first. Using the newly defined
SDF relations extension [I-D.-sdf-relations], however, it might be possible to provide
information about the origin of, for example, an SDF object, preserving the tm:submodel
link with an altered relation-type in the process.4

If there is more than one TM provided as input to the TM-to-SDF conversion process
(e.g., as part of a Thing Model Collection), one must either explicitly state which TMs
are the “top-level” documents or a reference-counting algorithm has to be applied in
order to determine which documents are the top-level ones. This algorithm needs to
go over each TM and check if any other TM is linking to it. If not, then the TM in
question will be moved to the top of the hierarchy and will be placed in the top-level
sdfObject or sdfThing member after the conversion process has finished. If a TM
contains definitions which do not have a direct equivalent in SDF, we include these
fields in a mapping file.

4 [I-D.-sdf-relations] was published too late in the process of writing this thesis to be considered as part
of the actual mappings.

21

3 Mappings between WoT TD and SDF

In the SDF-to-WoT direction, we first apply all SDF mapping files (if any) provided as
input to SDF model, creating a consolidated SDF model as a result. We then convert
all top-level sdfObjects within the model directly to TMs. Afterwards, we iterate
recursively over the sdfThings in the model and convert each one to a TM, doing the
same for its child sdfThings and sdfObjects. If an sdfThing contains sdfObjects
or other sdfThings, we reestablish the hierarchical relationship in the conversation
results by adding a link in the resulting parent TM, pointing to the resulting child TM.
In order to make roundtripping possible, we add a special member field to the resulting
TMs or TDs which either has a key of sdf:objectKey or sdf:thingKey, depending
on the kind of SDF definition the TM or TD originated from, containing the key of the
original sdfObject or sdfThing. If the SDF-to-WoT conversion creates more than one
TM, we create a Thing Model Collection from the results. Otherwise, the result is a
single TM.

3.2.2 Context Extensions and Namespaces

Both WoT TMs and SDF documents feature definitions for namespaces and additional
vocabularies, using a (restricted) JSON-LD @context or a namespaces map, respec-
tively. In both approaches, the document maps terms to either IRIs (WoT) or URIs
(SDF), which are then supposed to be used in compact IRIs or Compact URIs (CURIEs)
[CURIE], making it possible to import vocabulary from another source, using the terms
as prefixes.

In contrast to WoT, however, SDF’s namespaces are not as well-defined yet and do
not allow for vocabulary extensions in the current version of the draft [I-D.-asdf-sdf,
section 2.3.3]. Instead, currently the main purpose of namespaces is for using them
in sdfRef definitions when referring to external documents, as SDF forbids the use
of absolute URIs here [I-D.-asdf-sdf, section 4.3]. Another important difference is
that WoT’s @context not only allows for mapping terms to IRIs, but also for including
special keywords like @language (which sets the document’s default language) and
also singular IRIs with no mapping from a term. These IRIs can be used to import one or
more namespaces into the document, when resolving the IRI with a JSON-LD processor5

5 For example, https://www.w3.org/2022/wot/td/v1.1 is the IRI used to identify WoT TD/TM version
1.1 documents and contains namespaces for all the vocabulary terms defined in the specification,
including the ones for TMs.

22

https://www.w3.org/2022/wot/td/v1.1

3.2 Mapping between SDF Models and WoT TMs

and are somewhat comparable to SDF’s defaultNamespace vocabulary term, as they
also set the default context of the document and import the WoT TD vocabulary to
be used as such. However, as SDF’s defaultNamespace is rather used to express that
an SDF model adds additional definitions to that namespace [c. f. I-D.-asdf-sdf, section
4.2], there is an important semantic difference, making it impossible to map these two
concepts to one another.

Therefore, while translating those entries in WoT’s @context that map terms to IRIs to
SDF namespace members and vice versa, SDF’s defaultNamespace becomes a prefixed
sdf:defaultNamespace in the resulting WoT TM in order to make roundtripping
possible. As there is no JSON-LD document containing an SDF vocabulary yet, we let
the sdf context extension point to https://example.com/sdf, indicating that this
IRI is supposed to be replaced once an RDF or JSON-LD document for SDF vocabulary
is available.

Listing 3.3: Example for the Namespaces Block of an SDF model which also defines a
default namespace it contributes to.

1 {
2 "namespace": {
3 "cap": "https :// example.com/capability/cap",
4 "zcl": "https :// zcl.example.com/sdf"
5 },
6 "defaultNamespace": "cap",
7 "sdfObject": {
8 "Example": {
9 "label": "Example Object"
10 }
11 }
12 }

Listing 3.4: Mapped TM created from the SDF example in Listing 3.3.
1 {
2 "@context": [
3 "https :// www.w3.org /2022/ wot/td/v1.1",
4 {
5 "cap": "https :// example.com/capability/cap",
6 "zcl": "https :// zcl.example.com/sdf",
7 "sdf": "https :// example.com/sdf"
8 }
9],
10 "@type": "tm:ThingModel",
11 "sdf:objectKey": "Example",
12 "sdf:defaultNamespace": "cap",
13 "title": "Example Object"
14 }

An example for the mapping between SDF namespaces and a WoT @context can be
seen in listings 3.3 and 3.4. However, as we noted above, not every WoT @context

23

3 Mappings between WoT TD and SDF

entry can be included in an SDF model. Therefore, when mapping from WoT to SDF we
also include the original @context in a mapping file, making it possible to restore it
when converting back from SDF to WoT.

3.2.3 Data Schemas and Data Qualities

Both SDF and WoT TMs use vocabulary from [I-D.-jso-draft-7] for defining schemas
for properties and for validating input and output data. This is a key reason for a
great amount of overlap between WoT’s DataSchema class and SDF’s dataqualities
(c.f. Table 3.3), allowing us to map most of the vocabulary directly between SDF and
WoT (see Appendix A.1 for an example mapping between SDF data qualities and WoT
DataSchemas). There are a number of cases, though, which require special attention
and are specific to the two specifications.

SDF fields which have no direct equivalent in WoT TMs are nullable, sdfType,
uniqueItems, and sdfChoice. nullable, uniqueItems6, and sdfType are mapped
directly to a WoT DataSchema, prepending an sdf: prefix to the key of the mapping re-
sult. We need a different strategy, however, for the sdfChoice field, which can actually
be integrated into the enum field of a WoT data schema. To do so, we convert each entry
in the sdfChoice object field into an individual DataSchema instance, where we add
the entry’s key to an additional sdf:choiceName field in order to enable roundtripping.
Should the SDF definition also contain an enum, the conversion process is supposed to
be aborted with a validation error in order to prevent inconsistencies. In future mapping
versions, this aspect should be revisited once the relationship between sdfChoice and
enum, in the case both are present alongside each other, has been clarified.

One key difference between WoT and SDF is the use of JSON Schema’s readOnly and
writeOnly qualities in WoT data schemas. In the latest version of the SDF draft, the SDF
equivalents writable and readable have been limited to properties, which inherit from
the WoT data schema class and SDF data qualities, respectively, making it necessary to
include readOnly and writeOnly in a mapping file when used in a data schema which
is not also a property. The problems with mapping the semantics of these two qualities
to SDF are discussed in more detail in section 3.2.5.1.

6 SDF borrows the uniqueItems term from the newer JSON Schema draft 2019 [I-D.-jso-draft-2019-09],
which might also be supported in future versions of WoT TD.

7 Might also contain values from sdfChoice when converting from SDF to WoT.

24

3.2 Mapping between SDF Models and WoT TMs

Table 3.3: Directly convertible data schema/data quality fields.
Field Name

pattern
format
required
maximum
minimum
exclusiveMaximum
exclusiveMinimum
maxItems
minItems
maxLength
minLength
multipleOf
default
const
enum7
unit
type

3.2.4 schemaDefinitions and sdfData

Besides the usage in properties and for defining schemas of input and output data, both
WoT and SDF also define special qualities—sdfData and schemaDefinitions—which
primarily serve for being referenced from other definitions using sdfRef or tm:ref,
respectively.8 While sdfData can be mapped to WoT’s schemaDefinitions, a major
difference for the use of the qualities is that sdfData can not only be used on the
sdfThing or sdfObject level, but also in SDF’s actions and events. Mapping these
sdfData fields to a WoT TM schemaDefinitions field poses the problem that there
are potential naming conflicts if there is a definition with the same key in another
sdfData object. Furthermore, roundtripping problems appear as it is not clear where
the mapped sdfData originated from without providing an additional JSON pointer to
the affordance or the original definition in the SDF model. Therefore, we map the entries
of affordance-level sdfData fields schemaDefinitions entries, with a key composed

8 WoT’s schemaDefinitions also serve the purpose of being referenced from a special
AdditionalExpectedResponse class, not using a JSON pointer but the key of the schema defi-
nition that is supposed to be referenced. WoT also uses this pattern for its security schemes (described
in section 3.2.8.1).

25

3 Mappings between WoT TD and SDF

of an escaped JSON pointer [c.f., RFC6901, section 3], replacing / characters with
~1. That is, an sdfData entry called foo in an sdfAction called bar would become
sdfAction~1bar~1sdfData~1foo.

While this approach allows for roundtripping due to the encoded JSON pointer, it is
not a very elegant solution. As an alternative, we considered using an additional field
sdf:sdfData in order to replicate the original structure of the sdfData placements,
which has the drawback of requiring an additional vocabulary term. This aspect of our
mapping probably requires more discussion in the future.

3.2.5 Interaction Affordances

Both SDF and WoT use a concept called affordances to describe how consumers can
interact with a Thing. Both specification divide them into properties, actions, and
events, although SDF uses slightly different object keys in its models (sdfProperty,
sdfAction, and sdfEvent). Therefore, a direct mapping of affordances is generally
possible, with only minor differences in semantics, which will be outlined below for the
three affordance types.

3.2.5.1 Properties

In both SDF and WoT, properties can be considered subclasses of the Data Qualities
and Data Schema definitions, respectively, adding a number of fields which are relevant
for interactions. In both cases, this includes an observable field which indicates that
consumers are able to signal to the Thing that they wish to be informed about state
changes of the property in question.9 This field is directly mappable, as it is both
syntactically and semantically equivalent. Observable has a different default value in
SDF (true) and WoT (false), though, which has to be taken into account when the value
is unset. This has minor implications for roundtripping, as the initial implicit default
will become set explicitly during the conversion process, reproducing a document which
is not strictly equivalent to the original.

9 In practice, this could be implemented, for example, using CoAP’s observe option, as specified in
[RFC7641].

26

3.2 Mapping between SDF Models and WoT TMs

As mentioned in section 3.2.3, a more important difference lies in the semantics of
WoT’s readOnly and writeOnly compared to SDF’s writable and readable. While
the use case of data qualities which are neither readable nor writable might not be very
relevant in practice, in SDF it can still be expressed by setting both fields to false.
The writable (readable) field set to false and readOnly (writeOnly) set to true are
equivalent on their own. Semantically, however, readOnly and writeOnly cannot both
be true at the same time, while they can be syntactically. Therefore, this aspect of WoT
properties is not directly mappable to SDF. However, there is an ongoing discussion in
the WoT TD taskforce regarding this topic10, which might lead to an alignment with
SDF in the next major version of the WoT TD specification.

3.2.5.2 Actions

The sdfInputData and sdfOutputData fields of SDF’s actionqualities can be
mapped to WoT TD’s input and output ActionAffordance fields, respectively. In
the process, the associated SDF data qualities are WoT data schemas. As there is
no direct equivalent for sdfData in ActionAffordances, we map this field to the
schemaDefinitions of the resulting TM, using the action name as a prefix in order to
avoid name collisions if multiple sdfData definitions should be present.

Three WoT-specific fields with no equivalent in SDF are safe, idempotent, and syn-
chronous, which need to be mapped to a mapping file when converting actions to
SDF.

3.2.5.3 Events

An sdfEvent can contain an sdfOutputData field, which we map to the data field
of WoT TD’s EventAffordance class, once more converting SDF data qualities to a
WoT data schema. However, WoT’s events provide additional fields for providing data
schemas for message formats, namely for subscription and cancellation messages
as well as for dataResponses given by the consumer. If present, these fields need to be
mapped to a mapping file to be used in SDF. For the next major version of SDF, it is worth
discussing if definitions like these should also be included in the SDF vocabulary.

10 https://github.com/w3c/wot-thing-description/issues/1541 (retrieved: June 16, 2022).

27

https://github.com/w3c/wot-thing-description/issues/1541

3 Mappings between WoT TD and SDF

3.2.6 References

Mapping becomes a bit more complex when it comes to the remaining common qualities:
All sdfRequired fields have to be mapped the top-level tm:required field of a Thing
Model [wot-td, section 10.3.4]. For sdfRef, another distinction can be made: If the
reference points to the same SDF model, the JSON pointer itself can be converted
so that it points to the converted target (see Appendix A.2 for a simple conversion
example). If an sdfRef is referencing another model, then the pointer cannot be
properly converted and has to resolved before the conversion. The same holds for
referenced top-level sdfProperty, sdfAction, and sdfEvent definitions as they do
not belong to an sdfObject.

3.2.7 Mapping of Additional Properties

Using JSON-LD @context extensions, TMs are quite flexible when it comes to adding
additional vocabulary. The additional terms, however, should be prefixed to refer to
a @context entry, forming so-called compact IRIs in the process. WoT TMs allow the
inclusion of additional properties in their definitions via context extensions.

While namespaces exist in SDF which could also be used for vocabulary extensions,
there is currently no specified way of integrating additional properties in SDF qualities.
Instead, mapping files have to be used, where additional properties fromWoT documents
can be mapped to. In the other direction, additional definitions in mapping files can be
mapped to prefixed definitions in the resulting WoT document.

3.2.8 WoT-specific Mappings

In this section, we will describe how we handle the features supported by WoT TMs
which currently do not have an equivalent in SDF and therefore either need to be
resolved before the conversion or become part of an SDF mapping file.

3.2.8.1 Security Schemes

In WoT, there are a number of pre-defined security schemes, which can be included
to indicate which kind of security mode shall be used in order to interact with a

28

3.2 Mapping between SDF Models and WoT TMs

Thing.11 While the actual credentials used are instance-specific, security schemes
can be defined for classes of devices and, therefore, at the Thing Model level using
the securityDefinitions key with a map of security definitions as the value. In a
security member, only the keys used in the securityDefinitions map can appear,
applying the corresponding security definition either at the top level as the Thing’s
default or the Form-level for a specific affordance.

SDF currently does not allow for the definition of security information at all. Therefore,
we need to include this information in a mapping file. Once such a vocabulary is available
for SDF, the mapping needs to be updated accordingly.

3.2.8.2 TM Extension Mechanism

WoT Thing Models support an extension mechanism which is comparable to class inher-
itance in object-oriented programming languages. Similar to the reference mechanism
(using tm:ref, see section 3.2.6), TMs can indicate that they extend another TM by
including a link object with the relation type tm:extends in their links container,
pointing to the extended TM’s location in the href field. In contrast to references, this
URI cannot contain a JSON pointer [RFC6901] as a fragment identifier, but has to point
to the document itself.

While the extensionmechanism can be reproduced for individual SDF containers using an
sdfRef in an sdfObject or sdfThing pointing to another definition of the same kind,
the semantics are not exactly the same, given that WoT TMs also apply the extension to
metadata which is located at the model level in SDF. Another challenge for the mapping
of this mechanism lies in the fact that the extended TM itself cannot be referenced
by an SDF model without prior conversion, as this will otherwise lead to an invalid
consolidated SDF model.12 Therefore, in our mapping, extensions in WoT TMs must
be resolved prior to the conversion, as we described in the case of external references
in section 3.2.6. This prevents TMs with an extension link from being roundtrippable,
which is undesirable, but unavoidable with the current SDF vocabulary. Alternatively,

11 The WoT TD specification has borrowed these schemes in part from OpenAPI (https://swagger.io/
specification/ (retrieved: June 16, 2022)). They will probably be reworked in the next major version
of the WoT TD specification, as they are in part incorrectly specified and too HTTP-specific in general.

12 Referencing documents from other ecosystems out of SDF models might be an interesting discussion
point for future work on SDF.

29

https://swagger.io/specification/
https://swagger.io/specification/

3 Mappings between WoT TD and SDF

the extension link could not be resolved but added to a mapping file instead, which
would preserve the possibility to regenerate the original TM. However, this would mean
losing the ability to actually use the definitions from the extended TM in the resulting
SDF model. For these reasons, we decided to resolve TM extensions in our mapping by
default, while allowing for the inclusion of the original tm:extends link in a mapping
file as an alternative. A more direct mapping of the extension mechanism to SDF is
probably not possible since it would also require a translation of TM semantics.

3.2.8.3 Links

In contrast to WoT, the current SDF draft does not specify a way for modelling links
(i.e. web links as defined in [RFC2288]) in its vocabulary. Except for a few special
cases like composition (section 3.2.1), the extension mechanism (section 3.2.8.2), and
licenses (section 3.2.9.1), we treated links as generally not directly mappable to SDF,
which is why we included them in a mapping file instead. However, with relations, the
aforementioned [I-D.-sdf-relations] draft defines a possible SDF equivalent for WoT links,
which should be integrated in future versions of mappings between WoT and SDF.

3.2.8.4 Placeholder Maps

WoT TMs allow defining placeholders which can be replaced during a conversion process
using a so-called placeholdermap. Placeholders use the format {{PLACEHOLDER_NAME}},
wrapping the name of the placeholder inside curly braces. During conversion, the place-
holder as a whole (including the braces) is replaced with the value specified in the
placeholder map. As the WoT TD specification defines placeholders to only be usable
within string values, fields which are supposed to have a numeric or complex value need
to be temporarily typed as string.13 As there is no equivalent for placeholder maps in
SDF, yet, they are currently not supposed to converted but to be replaced before the
actual conversion process.

13 An example would a data schema like {"maximum": "{{MAX_VALUE}}"}, where maximum must
have a numeric value after the placeholder replacement. Due to the limitations of the JSON format,
the placeholder cannot be used directly as a value without wrapping it in a string. As the converter
knows the target data type from the value inside the placeholder map, however, we can avoid adding
strings in places where we expect a non-string-based value, by using the placeholder value directly if
the string containing the placeholder name does not have additional padding whitespace.

30

3.2 Mapping between SDF Models and WoT TMs

3.2.9 SDF-specific Mappings

Both SDF and WoT allow for certain metadata in definitions. This subsection deals with
the mapping of global (i.e., model-related) and definition-level metadata.

3.2.9.1 Info Block

The optional information block of an SDF model can contain metadata (namely a
title, a version, copyright information, and/or a license). These fields are optional, so
an information block can be empty or, for instance, only contain a title. As an info
block’s title applies to the SDF model as a whole, we map it to a prefixed field labelled
sdf:title in each resulting TM, as the title of individual TMs corresponds to the
label of the original sdfObject or sdfThing (see the next section). Similarly, we map
the copyright and license fields to their own sdf:-prefixed fields. However, if the license
should be a URL, we include it as a link with a relation-type of license [RFC4946] in
the resulting TM instead. Finally, the version field can be mapped to the model field
of the existing VersionInfo class [wot-td11, section 5.3.1.6]. Examples can be seen in
Listings 3.5 and 3.6.

As it is unclear which information should be used for the info block when converting
multiple TMs to SDF at once, we decided for our converter implementation that users
should be able to explicitly set the info block if they desire to do so.

Listing 3.5: Example for the Information Block of an SDF model. This example does not
use URIs for the copyright and license fields. Instead, a regular copyright
statement and an SPDX license identifier are being used.

1 {
2 "info": {
3 "copyright": "Copyright 2019 Example Corp. All rights reserved.",
4 "license": "BSD -3-Clause"
5 }
6 "sdfObject": {
7 "Example": {
8 "label": "Example Object"
9 }
10 }
11 }

31

3 Mappings between WoT TD and SDF

Listing 3.6: Mapped TM created from the SDF example in Listing 3.5.
1 {
2 "@context": {
3 "http ://www.w3.org/ns/td",
4 {
5 "sdf": "https :// example.com/sdf"
6 }
7 },
8 "version": {
9 "model": "2019 -04 -24"
10 },
11 "sdf:title": "Example file for OneDM Semantic Definition Format",
12 "sdf:copyright": "Copyright 2019 Example Corp. All rights reserved.",
13 "sdf:license": "BSD -3-Clause",
14 "title": "Example Object"
15 }

3.2.9.2 Common Qualities

SDF defines a number of common qualities which can be used in each of the seven
main SDF classes. Of these qualities, the description and label qualities are the
ones which can be mapped in the most direct way (with the only difference that the
equivalent of label is title in the WoT TD specification). There is no explicit field
for comments in WoT TMs, however, which is why SDF’s $comment has to be mapped
to a prefixed sdf:comment. Finally, the common qualities also include the sdfRef
vocabulary term, whose mapping we already described in section 3.2.6

3.2.9.3 Top-Level Affordances and sdfData

SDF models can contain affordances (sdfProperty, sdfAction, and sdfEvent) as
well as sdfData definitions at their top-level. As these definitions only have the purpose
of being referenced by other definitions within sdfObjects or sdfThings, we cannot
map them directly to a TM. Instead, we dereference all of these top-level definitions
and then convert the resolved results.

This has negative impacts when it comes to roundtripping, as it is not possible to
reconstruct the original SDF model this way. An alternative to the current approach
would be converting all top-level definitions to their own TM, which we could then
reference from the other resulting TMs. Using a special keyword, we could then identify
the TM as one containing top-level definitions and process it accordingly. Due to the
fact that we discussed this mapping approach too late in the process of writing this
thesis, we could not incorporate it into the actual mappings chosen for our converter.

32

3.3 Mappings between WoT TMs and WoT TDs

However, both future mappings and converter versions should consider using it instead
of the current approach for a more precise mapping with comprehensive roundtripping
support.

3.3 Mappings between WoT TMs and WoT TDs

In order to achieve a mapping between SDF and WoT Thing Descriptions, we now need
to define a mapping between TDs and TMs. As described above, we can then first
convert a TD to a TM and then to an SDF model and vice versa, achieving a complete
mapping between all three kinds of documents in the process, with WoT TMs serving as
an intermediary between TDs and SDF models. As TDs contain mandatory instance-
specific information which does not have an equivalent in SDF (most notably forms
at the affordance level as well as security definitions at the top-level), the conversion
process between SDF and WoT TD will always result in an additional mapping file and
will take at least one as an input, respectively.

For the conversion from TMs to TDs, we can rely on the pre-defined algorithm in the
TD specification [wot-td11, section 10.4]. However, for the Thing Model Collections
introduced above, we need to slightly alter the conversion process, converting each
contained TM to a TD in the process, resolving extensions and references. If a TM links
to a submodel, we also need to convert the linked TM and all of its submodels (et cetera)
to TDs. All the results become part of a Thing Description Collection, maintaining the
relationship between the original Thing Models after the TD conversion using JSON
pointers with the corresponding TDs in the collection as their target location. In order to
be able to recreate the original links, we add a link with relation-type type [wot-td11,
section 10.4] to the resulting TMs, pointing to the original URL (if available).

The other direction, converting TDs to TMs, is not as well-defined, yet. However, due
to the fact that TMs are very close to being supersets of TDs, we can turn every TD
that does not have an item or a collection link (which can be used for nesting in
TDs) into a TM by simply adding the string tm:ThingModel to the top-level JSON-LD
@type field. In the case of nested TDs (containing item links that point to another TD),
we also need to convert the linked TDs to TMs and either create a collection output,
linking them with JSON pointers, or export them to the file system or a different source,

33

3 Mappings between WoT TD and SDF

creating a file or web link in the process.14

One open question in this regard for future versions of the WoT TD specification is if
the link relation-type actually needs to be changed from item to tm:submodel as both
are quite similar in their semantic meaning. For now, we have followed the strategy
of converting the relation-type; we could imagine as an alternative, however, that the
instanceName field simply becomes an additional vocabulary term for links with the
item relation-type in Thing Models.

With a complete mapping between SDF and both WoT TMs and WoT TDs, we started
formulating the requirements for our converter, which can be found in the next chapter.

14 Note, however, that even with the original location linked in the resulting TD recreating the original
structure of TMs might not be possible in the case of external links if a TM is not available anymore as
a resource. This is a potential drawback of the linking approach that is not present in SDF when it
comes to nesting. However, in the case of imports using sdfRef and tm:ref both specifications face
the same problems.

34

4 Implementation Requirements

While the mappings outlined in the last chapter are generally enough for carrying out a
conversion between two data modelling formats manually, we want to be able to perform
conversions automatically and on scale, using a dedicated software—a converter—to
do so. In this chapter, we will outline the functional and non-functional requirements
for our converter, which we will translate into a concrete converter design in chapter 5.
These requirements do not only take our mappings into account, but also the previously
discussed foundations and the possible deployment scenarios.

4.1 Functional Requirements

Themost important requirement for our converter is to provide a comprehensivemapping
between SDF and WoT TD. That means that our converter should be able to translate
every field that is contained in an SDF model or a WoT definition into an equivalent
definition in the other format. This should also include definitions which are either not
defined in one of the two specifications or originate from vocabulary extensions. In the
case of SDF, these additional definitions should be included in so-called Mapping Files,
as defined in [I-D.-sdf-mapping].

An important criterion for evaluating both the comprehensiveness and the accuracy of a
mapping is the ability to roundtrip the conversion process, i.e., to convert a document
from either of the two specifications into the other one and receive the same document
when applying a conversion into the other direction. The roundtrip potential should
therefore be considered both during the development of the mappings themselves and
as additional test cases for the actual converter implementation, ensuring that as many
mappings as possible are reversible.

35

4 Implementation Requirements

Besides the conversions between SDF and WoT, the converter should also support the
conversion of WoT Thing Models into WoT Thing Descriptions, and vice versa. This
way, users are able to first create reusable WoT documents from SDF models, which
they can then instantiate on demand. Conversely, they can create generalizations in the
form of Thing Models from Thing Descriptions, although the resulting TMs will contain
instance specific information that might have to be removed manually by the user after
the conversion process.

Both specifications have mechanisms for referencing and (in the case of WoT TMs)
extending models, which should also be able to be resolved in order to create consoli-
dated documents before conversion, as documents conforming to the other specification
cannot be directly referenced. However, this might be at odds with the roundtripping
mentioned above, as resolved references cannot be converted back into a reference
without making it explicit, which definitions originate from another document.

Moreover, the converter should be able to validate both conversion inputs and outputs
on the basis of the pre-defined schemas (using either CDDL [RFC8610] or JSON Schema
[I-D.-jso-draft-7]) that are included in both specifications.

The second most important requirement is that the converter can be used in as many
deployment scenarios as possible. Similar to Kiesewalter’s converter, our implementation
should be usable both as a CLI tool and as a web application. The CLI tool should enable
users to both call the converter from a terminal and integrate it in scripts, while the
web application should offer a simple interface for converting between SDF and WoT.
However, the converter should also expose its conversion logic as a library for the
ecosystem/programming language of our choice, making it possible to reuse it in other
implementations of the same or a neighboring ecosystem, such as code generators.

Another aspect that increases the number of scenarios users can use the converter for is
to allow for multiple sources for input files. The library and the CLI tool should allow
for importing documents both from the local file system and from an external URL,
supporting at least the Hypertext Transfer Protocol (HTTP). Furthermore, the library
should also allow for converting models both in serialized form (i.e., a JSON text) and
as a deserialized data structure. The minimal requirement for the web application is to
accept inputs via HTML forms (using an HTTP POST request in the process), a slightly
more advanced optional requirement is the definition of a REST API, which exposes
the conversion functionality as explicit HTTP resources, enabling the selection of the
desired conversion via URI template variables [RFC6570].

36

4.2 Non-Functional Requirements

Finally, the converter as a whole should work in a wide variety of environments, sup-
porting as many operating systems (e.g., Linux, macOS, and Windows) and types of
devices as possible. This should include single-board computers like Raspberry Pis, but
not necessarily constrained devices, as JSON—the serialization format of both SDF and
WoT—is not very well suited for constrained environments.

4.2 Non-Functional Requirements

In general, our converter is not supposed to be explicitly designed for performance
critical scenarios, requiring a high number of conversions per second, but rather as a tool
operated semi-automatically by humans. Therefore, we do not require our converter to
operate at high speed, while the conversions should also not be performed noticeably
slowly.

A similar requirement can be formulated for safety and security: While the converter
should avoid security and safety issues wherever possible, we do not require it to
explicitly fulfill ISO or comparable standards. However, if both WoT and SDF become
more mature specifications and therefore more widely used, e.g., in industry scenarios,
it might be desirable for a converter to be certified by authorities like ISO in the future.
As more concrete security requirements, we can demand the support of HTTPS when
fetching referenced or extended documents, as well as when running our converter as a
web application. The converter should also avoid well-known security risks and support
(only) versions of the chosen programming languages with long-term support, ensuring
that its deployment does not pose a potential security risk.

Another important non-functional requirement concerns the converter’s usability. Both
the CLI tool and the web application should provide easy-to-use interfaces, offering
help messages and comprehensible error messages. The web application should also be
designed in a manner that is reasonably appealing, while also supporting smaller screen
sizes. The library itself should be well documented, making it easier to use for third-
party users, describing the functionality of all outwards facing functions documentation.
Optionally, the internal functions should also be documented to make it easier for outside
contributors to become familiar with the code base.

Finally, the converter should be easy to install and added to third party projects, e.g., by

37

4 Implementation Requirements

being included in a package repository associated with the programming language/e-
cosystem chosen.

38

5 Design

In this chapter, we describe how we designed the converter to fulfill the requirements
defined in chapter 4. This includes an implementation of the mappings defined in
chapter 3.

5.1 Structure

Because our converter as is supposed to be usable both as a library, a CLI tool and a web
application, we need to expose three different kinds of APIs.

First, we need a “library” module which exposes interfaces to the actual conversion logic
in order to be used by other applications or libraries written in the same or a compatible
language. The library API allows the conversion from one of the three possible formats
(SDF, WoT TM, and WoT TD) to one of the other formats. Submodules of the library
contain the underlying converter logic, as well as functions for validating inputs and
outputs.

The CLI tool and the web application use the library as any other application would,
building upon its public API. They also perform input and output operations, as well as
JSON serializing and deserializing. However, the CLI tool is supposed to be an additional
part of the library which is installed alongside it. Running the library as a program from
the command line calls the CLI tool as an executable.

The web application is a separate component or library, which exposes a graphical user
interface via a web page, running in the browser. In the backend, the web application
calls the library’s functions on user submission, transforming the given input with the
conversion logic, and displaying both the original input and the result. HTML forms
contain both the input and output, enabling subsequent editing and converting of input
models, as well as experimenting with roundtripping.

39

5 Design

After this high-level view on the structure of our converter, we take a closer look at
different aspects of our design in the following sections.

5.2 Components

In this section, we describe the components that make up our converter as a whole in
more detail.

5.2.1 Library

We divide our library module into an outwards facing API and internal submodules
which implement the actual conversion logic, provide utility functions, and contain
schemas for validation. Furthermore, we define another module that lives besides the
actual library contains unit and integration tests, asserting that the converter meets
both the requirements and conforms to the mappings defined in chapter 3

As we have three kinds of data formats, we need one type of function for each conversion
direction for our external API. That means that we need six functions in total, converting
from

• SDF to WoT TM,

• SDF to WoT TD,

• WoT TM to SDF,

• WoT TD to SDF,

• WoT TD to WoT TM and

• WoT TM to WoT TD.

Despite the fact that the CLI and the web application will provide flexible input methods
(i.e., JSON texts, which might originate from the file system or the internet in the case
of the CLI) these exposed library functions only need to accept and return deserialized
formats. This simplifies the implementation, leaving input and output operations, as
well as serialization and deserialization to the library users (including our CLI and the
web application).

40

5.2 Components

As we have seen in chapter 3, the different conversion directions have different input
and outputs, which also influences the parameters of our conversion functions. When
it comes to SDF, both SDF to WoT functions require an SDF model as a mandatory
argument. Furthermore, they accept an arbitrary number of SDF mapping files, which
will be used to augment the SDF model during the conversion process. Depending on
the complexity of the input model, the output is either a single TM or TD, or a collection
of TMs or TDs.

5.2.1.1 Internal Modules

In general, the internal structure of the library can be chosen freely by implementors as
they see fit, as it should not affect its external API. In order to achieve a separation of
concerns, however, it can be advised to divide the library into at least two modules:

1. a Converter module, containing the logic for mapping between the three formats,

2. a Validation module, which contains validation functions using the JSON Schema
or CDDL definitions for WoT TD s and TMs as well as SDF models and mapping
files, and

3. optionally, the CLI logic, which will only be exposed when calling the converter as
an executable.

The converter module itself can further be split into at least four submodules, as we
need only to cover the conversion between SDF and WoT TM as well as WoT TM and
WoT TD. As WoT TMs can be used as an input for two of these submodules, a fifth
submodule can be used to factor out functions usable for both TM to SDF and TM to TD
conversion. Furthermore, common utility functions as well as mappings of the JSON
schema definitions used in both specifications can optionally be factored into their own
submodules.

Based on these considerations, we created the internal module structure depicted in
Table 5.1, which should be adaptable for most implementation scenarios. While not a
part of the library API, we also included the CLI in this overview, as its internal logic

1 The SDF Framework schema is a more liberal version of the SDF Schema, which also allows for
extension points, e.g., augmented SDF models with one or more mapping files applied to them.

41

5 Design

Table 5.1: Internal module structure of our converter library.
Module Submodules

Converters SDF to TM
TM to SDF
TM to TD
TD to TM

WoT Common
JSON Schema Qualities

Utility

Validation Validation Functions
TD Schema
TM Schema

SDF Validation Schema
SDF Framework Schema1
SDF Mapping File Schema

(Command Line Interface) —

will be part of the library, even though it should only be accessible when users call the
converter from the command line.

5.2.1.2 Testing Module

Besides the library itself, we define a module for performing unit and integration tests.
This testing module ensures that the mappings defined in chapter 3 are implemented
correctly and that the implementations meets all (testable) requirements. Besides testing
the mappings defined in chapter 3, the module is supposed to also assert the correct
implementation of the Command Line Interface, which will be described in the next
section.

5.2.2 Command Line Interface

We designed our CLI tool to build upon and live alongside our library, making it possible
to install both, for example, with the same packagemanager or dependencymanagement
system. In general, the CLI exposes a set of sub-commands after being called with the

42

5.2 Components

command sdf-wot-converter. The sub-commands correspond directly with the six
conversion functions defined by our library API:

• sdf-to-tm

• sdf-to-td

• tm-to-sdf

• tm-to-td

• td-to-sdf

• td-to-tm

Using parameters and flags, we designed the sub-commands to accept the same set of
arguments as the conversion functions themselves. The inputs (which must be serialized
as JSON) can originate both from the file system by providing a corresponding path
or from a web server, using a URL with the schemes http:// or https://. Providing
output paths, however, is optional—leaving them out is supposed to cause the CLI to
write the results to the standard output. Otherwise, it serializes the results to JSON and
writes them to the provided file paths.

Our design offers a number of additional explicit parameters, which are displayed in
Table 5.2. On the one hand, they include general options, namely the indentation depth
for the formatting of the resulting JSON documents (which defaults to four spaces) and
an option for suppressing additional roundtripping definitions. On the other hand, we
define a number of format-specific options.

When converting from SDF, users can pass an arbitrary number of mapping files alongside
SDF models and an optional origin URL which points to the original document, when
converting a model to a WoT TD or a WoT TM.2 When using a TM as an input, users
can specify placeholder maps and/or JSON documents with additional metadata or
bindings information.

2 We added this parameter after receiving feedback on the initial version of our converter and the
conversion results from the OneDM playground. See chapter 7 for more details.

43

5
D
esign

Table 5.2: Overview of the available parameters for the sub-commands of our CLI.
Parameter Arguments Sub-Commands Mandatory Default

--input, -i File path(s) or URL(s)a all ✓ —
--output, -o File path all —
--suppress-roundtripping — all False
--indent Natural number all 4
--origin-url URL sdf-to-tm, sdf-to-td —
--mapping-files Zero or more file paths sdf-to-tm, sdf-to-td —
--title String sdf-to-tm, sdf-to-td —
--version String sdf-to-tm, sdf-to-td —
--copyright String sdf-to-tm, sdf-to-td —
--license String sdf-to-tm, sdf-to-td —
--meta-data File path or URL tm-to-sdf, tm-to-td —
--bindings File path or URL tm-to-sdf, tm-to-td —
--placeholder-map File path or URL tm-to-sdf, tm-to-td —
--mapping-file-output File path tm-to-sdf, td-to-sdf —
--remove-not-required-
affordances

— tm-to-td False

a Can be multiple paths/URLs when converting from WoT TM/TD – the imported TMs/TDs are then treated as Collections.

44

5.2 Components

5.2.3 Web Application

Following the design of Jana Kiesewalter’s approach for her sdf-yang-converter3, we
chose to provide two input fields as part of an HTML form in our web application.
Depending on the conversion direction, the web page displays the output in one of the
two fields, while also keeping the original input in the other. This makes it possible to
experiment with multiple inputs in a row, as well as with roundtripping.

However, as we do not have two but three possible input and output formats, we designed
our web application to have a dropdown menu to be able to select the two formats
for the actual conversion. Similarly to Kiesewalter’s web application, we included the
possibility to load at least one example for each format in our design. Furthermore, to
make editing the input—which must be formatted as JSON—easier, we chose to include
buttons for auto-formatting and clearing the contents of the input fields. The inclusion
of additional roundtripping fields as well as SDF mapping documents in the respective
outputs can be toggled via two checkboxes.

Finally, we also designed our web application to provide a single REST API resource,
which allows for sending HTTP POST requests with a conversion input encoded as
JSON, which is then converted and returned as a JSON-encoded payload. To do so, the
web application exposes the resource /convert/<command>, where the legal values
for the URI template variable command correspond with the six available conversion
functions.4

3 http://sdf-yang-converter.org/ (retrieved: June 9, 2022).
4 That is sdf-to-tm, sdf-to-td, tm-to-sdf, tm-to-td, td-to-sdf, and td-to-tm.

45

http://sdf-yang-converter.org/

6 Implementation

This chapter describes how we implemented our converter on the basis of our design
decisions made in the last chapter.

6.1 Technologies Used

For the implementation of our converter, we had a number of different programming
languages to choose from, each having different trade-offs that needed to be considered.
Due to the potential use of the converter in constrained environments, we first considered
a strongly typed systems programming language like C++ or Rust. As they are compiled
to machine code, they have a performance advantage over interpreted languages like
Python or JavaScript, but also enforce a stricter type system onto the implementation,
which might be counterproductive for fast development and the handling of JSON-
based and therefore dynamically typed data formats.1 Due to Python’s flexibility, its

1 A prior approach to realizing the converter relied on the Rust programming language, defining data
schemas and qualities in accordance with their specified data type. This led to the problem that the
[I-D.-jso-draft-7] inspired schemas in both formats allow for unsatisfiable definitions (like a numeric
constant in a string-based schema) which could not be easily covered in a strongly typed language
like Rust. For this reason, we chose Python as an alternative, which makes it easier to deal with
dynamic data structures. In hindsight, we could have solved this problem by switching from a strongly
typed data structure to one relying entirely on more or less dynamically typed values provided by
the serialization framework serde and its JSON implementation serde_json. At the time, however,
we felt that using Python would have advantages for increased development speed, while relying on
serde_json would run counter to the benefits we had hoped to gain from choosing Rust. On the
basis of our Python implementation, it should be fairly easy, though, to reimplement the current state
of our SDF WoT converter in Rust, which should bring a number of performance benefits and higher
type safety.
In any case, the problems we faced with regard to the JSON Schema based vocabulary do indicate

that future versions of both specifications should evaluate how flexible their type system should be.
A stricter type system would probably make it a lot easier to implement both WoT TD and SDF in
programming languages like C or Rust, which are the main candidates for the use in embedded and
constrained environments.

47

6 Implementation

library ecosystem, and also because of its high portability, providing support for all
major operating systems as well as a wide variety of devices, including, for example,
Raspberry PIs, we eventually chose Python as the implementation language, supporting
the versions 3.7 through 3.10.

Another advantage of Python (that might also be true for other programming languages)
is that its ecosystem already features libraries for all standards relevant for the processing
of both SDF and WoT TD, namely JSON pointers2 [RFC6901] and the JSON Merge
Patch algorithm3 [RFC7396]. There is also a library4 for validating JSON documents
based on a JSON Schema [I-D.-jso-draft-7], which is relevant for validating the inputs
and outputs of the conversion, as both specifications provide informative JSON schema
definitions corresponding to the normative contents. In the case of SDF, the JSON
Schema originates from a CDDL [RFC8610] schema, which is—in contrast to [I-D.-
jso-draft-7]—a standardized schema language that surpassed the draft status that still
applies to JSON Schema. At the time of writing of this thesis, the library support for
CDDL in the Python ecosystem was still in its early stages of development, which is why
we made the decision to rely on a single, JSON Schema based solution for validation.
Future versions of the converter will mostly likely be able to rely on a CDDL library
like zcbor5 for validation, making it possible to directly use the original schema format,
increasing the reliability of the validation process.

Python also features frameworks for building tools for the command line as well as
web applications. Due to prior experience and the fact that it comes included with the
Python standard library, we chose argparse6 for creating our command line tool, which
has the benefit of not adding another dependency to our library. As our requirements
for our web application were fairly minimal, considering the fact that we, for example,
did not need to persist any kind of state in a database, we decided to use Flask7 for
this part of the implementation, which is a mature framework with a low overhead,
featuring HTTP routing and a template engine, which makes it easy to insert conversion
results in the resulting HTML documents. Flask also allows for creating resources with

2 https://pypi.org/project/jsonpointer/ (retrieved: July 1, 2022).
3 https://pypi.org/project/json-merge-patch/ (retrieved: July 1, 2022).
4 https://pypi.org/project/jsonschema/ (retrieved: May 5, 2022).
5 https://pypi.org/project/zcbor/ (retrieved: May 5, 2022).
6 https://docs.python.org/3/library/argparse.html (retrieved: June 9, 2022).
7 https://pypi.org/project/Flask/ (retrieved: June 9, 2022).

48

https://pypi.org/project/jsonpointer/
https://pypi.org/project/json-merge-patch/
https://pypi.org/project/jsonschema/
https://pypi.org/project/zcbor/
https://docs.python.org/3/library/argparse.html
https://pypi.org/project/Flask/

6.2 Library Implementation

URI template variables, accepting and outputting JSON, which we could use to create a
simple REST API for calling one of the converter functions.

6.2 Library Implementation

In order to be able to publish our library to the official Python package repository PyPI8,
we applied the wheel packaging standard9 to our library using the setuptools10 and
wheel11 packages. Our package setup resulted in a setup.cfg file which contains
package metadata and defines the needed dependencies, so that they can be installed
together with our library using Python’s package manager pip.12

Our package structure follows our design outlined in the last chapter (see section 5.2.1):
The top-level __init__.py file exposes the conversion functions defined in a submodule
called converters13, which we divided in turn into single Python files implementing
specific aspects of the conversion process, also corresponding with our design (i.e., tm_
to_sdf.py, tm_to_td.py, sdf_to_tm, and td_to_td).

6.2.1 Internal Conversion Functions

In general, our converter follows a functional approach, modelling each step of the
conversion process as an individual function, which might in turn call other functions.
As Python is a multi-paradigm programming languages, which also supports object-
oriented programming, we could have also created one or multiple converter classes
for handling the conversion. This would have allowed us to perform the conversion
statefully, keeping track of, for example, retrieved submodels or additional fields (which

8 https://pypi.org/ (retrieved: May 19, 2022).
9 https://peps.python.org/pep-0427/ (retrieved: May 19 2022).
10 https://pypi.org/project/setuptools/ (retrieved: May 19, 2022).
11 https://pypi.org/project/wheel/ (retrieved: May 19, 2022).
12 Having pip installed, you can install the latest version of our converter by typing

pip install sdf-wot-converter in a terminal of your choice. The converter ver-
sion this thesis is referring to is 1.9.0, which is corresponding with the commit hash
acc1b52e4834b84a7193f5de8e26f72bd3cae0ce in the Git repository hosted under https://github.
com/JKRhb/sdf-wot-converter-py (retrieved: July 1, 2022).

13 The function names follow the pattern convert_<input-format>_to_<output-format>, for ex-
ample convert_wot_tm_to_sdf.

49

https://pypi.org/
https://peps.python.org/pep-0427/
https://pypi.org/project/setuptools/
https://pypi.org/project/wheel/
https://github.com/JKRhb/sdf-wot-converter-py/tree/acc1b52e4834b84a7193f5de8e26f72bd3cae0ce
https://github.com/JKRhb/sdf-wot-converter-py
https://github.com/JKRhb/sdf-wot-converter-py

6 Implementation

Listing 6.1: Code of our main conversion function map_field.
1 def map_field(
2 source_definition: Dict ,
3 target_definition: Dict ,
4 source_key: str ,
5 target_key: str ,
6 conversion_function=None ,
7 mapped_fields=None ,
8):
9 """ Maps a field from a source definition to a target definition , applying a
10 conversion function if given."""
11 source_value = source_definition.get(source_key)
12
13 if source_value is None:
14 return
15
16 if conversion_function is not None:
17 source_value = conversion_function(source_value)
18
19 if mapped_fields is not None:
20 mapped_fields.append(source_key)
21
22 target_definition[target_key] = source_value

need to go into a mapping file) within the instantiated class object. We decided against
an object-oriented approach in favor of a functional one, as it simplified our libraries
external and internal APIs, and improved the testability of our implementation due to
the omitted global state. However, this decision came at the disadvantage of carrying
over the state of the conversion in our functions’ parameters, which also lead to long
argument lists in some places.

In general, we use Python dictionaries, which are hash maps containing key-value-pairs,
for modelling input and output data. Dictionaries are very similar to JSON objects (with
one major difference being that the keys of dictionaries can not only be strings, but any
immutable datatype), which allowed us to perform direct serialization and deserialization
with Python’s json module, which is also part of the standard library. Dictionaries also
have integrated methods which return iterators, allowing to conveniently iterate over a
dictionary’s keys and values using for loops. This way, we can perform mapping actions
for all properties of an sdfObject, for example.

As a general mapping strategy, we first validate the inputs to the respective conversion
function with the corresponding JSON Schema definition. We then resolve all import-
s/references as well as composition and extension links, also validating all retrieved
documents in the process. Besides making sure that we only process valid inputs, we can
also make assumptions about the given structure of the dictionary (e.g., the presence of
mandatory fields), further outweighing possible disadvantages of not using an explicit

50

6.2 Library Implementation

data model for deserializing the input data.

We carry out most of our conversions using a helper function called map_field (see
Listing 6.1), which generalizes the conversion from a source_definition to a target_
definition. The function first checks if the specified source_key is present in the
source_definition. If not, we abort the conversion with a return statement, leaving
the function. If the key is present, we access the corresponding value.

As a next step, the make_field function can call a custom conversion_function (if
present), which can also be passed as an argument, to further transform the input. At
the moment, we only use this feature to negate boolean inputs14, future versions of the
converter, however, might make use of this argument for more complex conversions as
well.

Before writing the resulting value to the target_definition at the target_key, we
add the source_key to an optional list of mapped_fields, which can also be passed
to the function. This list keeps track of all field names that are ignored when mapping
additional fields (either directly to a TM or to an SDF mapping file). This is one simple
example of how we maintain the state of our conversion process through additional
function arguments, as mentioned above. We perform the mapping of additional fields
after we have converted all “well-known” fields, iterating over the current definition and
skipping all fields names which are present in the list of mapped_fields.

The overall process for all conversions is a recursive one: We start at the top-level of the
document which want to convert (e.g., a Thing Model). We then access all well-known
definitions at that level by value and call the respective conversion function, which adds
the key to the list of mapped fields. If the value of a definition is a JSON object (e.g., an
action) itself, then we repeat the process with the conversion functions defined for this
type of definition. After the pre-defined conversions have finished, we iterate over all
key-value pairs of the current definition and treat all of those whose key is not present in
the list of already mapped fields as additional definitions, mapping them to, for example,
to an SDF mapping file.

In the following subsections, we will discuss the details of the four concrete conversion
functions and their underlying implementation logic in more detail.

14 For the conversion of readOnly and writeOnly to writable and readable, to be precise.

51

6 Implementation

6.2.1.1 TM to SDF

The file tm_to_sdf.py contains all the code for the implementation of the WoT TM to
SDF conversion and exposes its logic using a function called convert_wot_tm_to_sdf,
accepting both single TMs and TM collections as inputs. Depending on the actual input,
the function converts single TMs directly to an SDF model, after resolving all references
and extensions as well as placeholders (if there are any defined within the TM). In
the case of TM collections, we first determine which TMs are supposed to be treated
as the top-level TMs, which in turn are going to become the top-level sdfThings and
sdfObjects. For this purpose, the library user can either specify the top-level TMs’ keys
in the collection or—by default—let the converter determine the top-level models.

For determining the top-level models, we implemented a function which iterates through
a TM collection and adds the keys of all TMs which are being referenced by at least one
other TM within the collection (using links with tm:submodel or item) to a set. All
TMs whose key does not end up in the set (and are therefore not being referenced by
any other model) are considered top-level TMs.

All vocabulary terms with a defined mapping to SDF (see chapter 3) are mapped directly
to the resulting SDF model. We insert any additional vocabulary terms, as determined
with the mapped_fields parameter mentioned above, into a mapping document. To be
able to do so, we keep track of the current SDF path as we iterate through the structure of
(potentially) nested TMs: When we enter the map_properties function, for example,
and iterate through all properties present, we append a sdfProperty/<propertyKey>
string to the path of the parent sdfThing or sdfObject, where <propertyKey> is
the property’s key in its containing JSON object. The resulting paths become a JSON
pointers and serve as the keys for those definitions with additional properties in the
resulting mapping document. If the resulting mapping document contains at least
one entry, then we return a tuple of both the SDF model and the mapping document.
Otherwise, the function only returns the SDF model.

Note that during all steps of the conversion process, validation of both inputs and outputs
using the JSON Schema takes place: We validate both single TMs and all entries of
TM collections, as well as every TM retrieved for resolving imports or extensions. After
the conversion, we validate the resulting SDF model in order to ensure that we only
return a valid result. We currently do not validate SDF mapping documents, as the
Internet-Draft [I-D.-sdf-mapping] that specifies them does not provide a JSON Schema

52

6.2 Library Implementation

definition yet. However, once such a Schema becomes available, the addition of an
additional validation step will be relatively simple.

6.2.1.2 SDF to TM

For the conversion from SDF to WoT TM (in the file sdf_to_tm.py), we follow the
same general strategy as outlined above and first validate all input documents using
the validation functions defined for SDF. We then apply all given mapping files to the
SDF model, creating a “consolidated” model, which will serve as the sole input for the
rest of the conversion process. As this augmented SDF model might contain additional
properties, we validate it with the SDF Framework Schema, for which we also defined
its own validation function.

In contrast to the conversion from WoT TM, we do not resolve all sdfRef references
before the conversion, as SDF defines no additional extension mechanism as it is the case
for WoT TMs. Therefore, we can resolve sdfRef imports as we iterate through the SDF
model, reducing the complexity of the respective resolve_sdf_ref function. Similarly
to our implementation of the resolution of WoT references, we need to keep track of
references we have already encountered, in order to avoid infinite loops when following
subsequent sdfRefs. We do so by defining a list which is passed continuously to every
recursive call of our resolve_sdf_ref function. If a reference is already present in
this list, we raise an exception, aborting the conversion process.

In general, our conversion logic follows our mapping defined in chapter 3. One of the
most important distinctions we need to make here is the one between sdfObject and
sdfThing definitions. While both are mapped to TMs, we need to replicate the (poten-
tially) nested structure of an sdfThing by also converting every child sdfObject and
sdfThing to a TM and reestablishing the hierarchical relationship via a tm:submodel
link. We implemented this aspect by using the current definition path within the SDF
model (e.g., sdfThing/foo/sdfObject/bar) as a key in the resulting Thing Model
Collection.

This way, we can make sure that there are no conflicts in the resulting Thing Model
Collection, in case any two sdfObjects/sdfThings have the same key within the SDF
model. If the resulting Thing Model Collection only contains one entry, we return the
single TM instead of the whole collection.

53

6 Implementation

6.2.1.3 TM to TD

When converting from WoT TM to WoT TD, we have to distinguish once again between
single TMs and TM Collections.

When it comes to single TMs, we first perform an input validation using the TM JSON
Schema definition and then follow the algorithm detailed in the WoT TD specifica-
tion, first resolving extensions and imports, and then applying additional metadata
and binding information. Since the format of this additional information is not well-
defined yet15, we decided to simply apply the inputs for these two parameters with the
JSON Merge-Path algorithm to the input TM using the json_merge_patch package.
Therefore, both arguments also need to follow the general structure of the TM at the
moment to be applied correctly. We then remove the value tm:ThingModel from the
TM’s @type field, and replace all placeholder entries if a placeholder map is present
as a function argument. Finally, we adjust the version object of the TM (if defined),
copying the value of its model field to the instance field, as the latter is mandatory in
TD instances. The resulting TD is then validated using the TD JSON Schema definition
after making sure that all required affordances are actually present in the resulting TD.
Using the optional parameter remove_not_required_affordances, users can let the
conversion function remove all affordances which are not required from the resulting
TD.

If a single TM should contain any tm:submodel links, we resolve them, creating a TM
collection from the results. As detailed in chapter 3, this is a necessary step due to the
fact that we cannot reference a TM from a TD. As required by the WoT TD specification,
we replace the submodel links’ relation-type with item during the conversion process.

When it comes to external submodels, we had to realize during the implementation
that this process is a bit more complicated and poses challenges for ensuring that no
name clashes are possible. Therefore, we weren’t able to fully implement a resolution
algorithm, which iterates over all key-value pairs, resolve the submodels of every TM
in the collection and add the results to the collection. If the TMs which are subject to
the conversion should resemble a nested structure of more than two levels, we would
repeat this process through recursive function calls. However, adding this feature to the

15 We started a discussion (https://github.com/w3c/wot-thing-description/issues/1215, retrieved: June
28, 2022) on either explicitly defining or recommending such a format, but it has not become part of
the specification yet.

54

https://github.com/w3c/wot-thing-description/issues/1215

6.2 Library Implementation

converter implementation should not be an unbearable challenge to add to the next
minor version of the converter, as we will discuss in section 7.1.3.

6.2.1.4 TD to TM

As described in chapter 3, the process of converting a single TD to a TM is rather trivial,
as we only need to add a string with the value of tm:ThingModel to the TD’s JSON-LD
@context to receive a TM. If the single TD should not contain any item links, we only
perform input and output validation besides this step,

However, if the input is a TD collection or the single TD should contain item links, we
perform a potentially recursive procedure similar to the one mentioned in the previous
subsection, collecting all subordinate TDs in the TD collection. For every TD in the
collection, we then perform the conversion to a TM mentioned above, changing the
relation-type of every item link to tm:submodel and performing both input and output
validation. When it comes to this feature, we faced a similar problem as described in
the previous section and could not finish the recursive resolution of external references
before submitting this thesis. See section 7.1.3 for more details.

6.2.2 Testing

We defined our tests in a separate tests module, structured internally in accordance
with the converter submodule of our library module. As our goal was to assert that
the conversion logic follows the mappings we defined in chapter 3, we mostly wrote
black-box tests, ensuring that the implementation produces results as we specified.
Additionally, we defined tests for the CLI which verified that the converter can be used
as intended from the command line.

For performing the tests, we used the pytest16 package, which is especially useful for
asserting that the contents of two dictionaries are equal, making it possible to compare
a conversion result with the expected output. We performed the actual testing mostly
on the basis of the mappings and the examples given in chapter 3, making sure that the
mappings we are properly translated into the converter’s actual logic.

16 https://pypi.org/project/pytest/ (retrieved: May 19, 2022).

55

https://pypi.org/project/pytest/

6 Implementation

During the development of our converter, we used a Continuous Integration (CI) pipeline
which ran the tests we defined on every incremental change of our implementation,
ensuring that our main development branch was always in a usable state. Using a built-
in feature of pytest, we also constantly determined the test coverage of our library,
making sure that the tests we defined completely covered the implementation code we
had written. This was enforced by making a code coverage of 100 % a requirement for
our CI pipeline to pass.

6.3 CLI Tool

As mentioned above, we implemented the Command Line Interface using the Python
module argparse, which is part of the Python standard library and offers a convenient
way to define and parse command line arguments. The library maps inputs that cor-
respond with the pre-defined arguments to a dictionary, which in turn can be passed
to other functions. This way, we created a CLI tool offering the API described in the
previous chapter, as well as documentation which can be accessed by invoking the CLI
tool with the –help or -h parameter. For each command and parameter, we defined a
description, which the help page displays when called by a user.

Just as third-party libraries and applications, the CLI tool accesses the internal logic
of the converter through the library API and the top-level functions defined for each
of the six conversion modes. Depending on the sub-command passed by the user, the
implementation calls the corresponding conversion function after reading the inputs from
the file system or via HTTP requests. For example, if a user passes the sub-command
sdf-to-tm, the converter calls the function convert_sdf_to_wot_tm, passing the
parsed arguments (see Table 5.2 in the previous chapter) to it.

If no output path for any of the resulting documents should be provided by the user,
we write a formatted string-representation to the standard output using the pprint
module, which is part of the standard library. Otherwise, we write them to the file
system at the specified location(s).

56

6.4 Web Application

6.4 Web Application

We implemented the web application using the Python framework Flask in conjunction
with the Jinja217 template engine, which allows us to integrate Python data structures
and functions into HTML documents. A screenshot of the web interface can be seen in
Figure 6.1. A continuously running version of the web application for demonstration
purposes is available under https://sdf-wot-converter.herokuapp.com/ (retrieved: July
1, 2022).18

Due to its limited scope, we were able to create the application with a single page,
which accepts input data from one of two text area HTML elements, which are also
used for rendering the output data by inserting the conversion results into the text area
which did not contain the input data. Using two dropdown menus on both sides of the
converter, users are able to select which data model format should be used for the two
text areas, while an additional settings section on the page allows for specifying options.
At the moment, users are able to indicate whether a mapping file should be emitted
during the conversion to SDF and whether additional fields for enabling roundtripping
should be part of the conversion result.

Furthermore, users can insert examples for the current document types and let the
converter format and clear the content of the input fields. We implemented this client-
side logic using three simple JavaScript functions, which are triggered when a user
clicks on one of the buttons on either side.

Using the (relatively) modern CSS layout features Flexbox and CSS Grid, we were able
to achieve a responsive design, which makes the web version of the converter also usable
on smaller screen sizes.

17 https://pypi.org/project/Jinja2/ (retrieved: June 16, 2022).
18 Similarly to the library and CLI tool implementation, the web application’s source code is
available in a Git repository https://github.com/JKRhb/sdf-wot-converter-py-demo (retrieved:
July 1, 2022). The commit hash corresponding with the version presented in this thesis is
9573a07872de1b927c8d10dd43730ce538ff06d2.

57

https://sdf-wot-converter.herokuapp.com/
https://pypi.org/project/Jinja2/
https://github.com/JKRhb/sdf-wot-converter-py-demo
https://github.com/JKRhb/sdf-wot-converter-py-demo/tree/9573a07872de1b927c8d10dd43730ce538ff06d2

6
Im
plem

entation

Figure 6.1: Screenshot of our Converter’s Web Interface.

58

7 Evaluation

With the finished mappings and implementation, we can now make a judgement on
whether the requirements defined in chapter 4 are fulfilled. In order to so, we will
evaluate the converter both qualitatively, based on these very requirements (section 7.1),
and quantitatively (section 7.2). Finally, in section 7.3 we will evaluate how well the two
specifications are aligned could be improved in the future to enable a better mapping
between them and which improvements we have already contributed in the context of
this thesis.

7.1 Requirements Evaluation

Due to the limited scope of this Bachelor’s thesis, we haven’t been able to perform
a comprehensive survey for collecting feedback from both WoT and SDF experts.1

Therefore, we will focus on criteria derived from our requirements in chapter 4. Future
work building upon our thesis, however, should consider taking into account the feedback
given from users of both WoT TD and SDF more thoroughly.

In the remainder of this section, we will discuss the requirements defined in chapter 4
and their fulfillment by our implementation.

1 Although we asked for feedback through various channels, such as direct email messages and com-
ments in GitHub issues, we unfortunately received very little response to the finished converter
implementation.
However, during the earlier stages of the implementation and writing process, we have been able

to receive input from both the SDF and the WoT community, which we incorporated both into the
mappings themselves and into the implementation. One example for such feedback include the
mapping strategy of converting each sdfObject and sdfThing to a TM. In earlier versions of our
thesis and our converter, we followed the approach of “squashing” all affordances, creating only a
single TM as an output. Therefore, we can say that we were able to establish a feedback process,
which, however, was not as formalized as we would have liked in order to be usable for this chapter.

59

7 Evaluation

7.1.1 Comprehensive Mapping

In general, we can conclude that our implementation is able to convert most ele-
ments of a WoT or SDF document to the other format. Following our mappings de-
scribed in chapter 3, we can process all elements contained in a TD/TM and in an
sdfObject/sdfThing, respectively. The fact that the latest version of SDF also allows
for defining affordances at the sdfThing level helped us very much with the map-
ping between the two specifications and can be considered an important step for their
alignment.

However, we still noticed limitations both in the specifications and our implementation,
which required us to add workarounds such as the Thing Model/Description Collections.
These enabled us to map a complete SDF model to a single JSON object, modelling
hierarchical relationships via JSON pointers with same-document references. However,
we also encountered some problems with the resolution of complex TD/TM Collections
with external references when converting between TDs and TMs, which we discuss a bit
more in section 7.1.3.

While TM/TD Collections also made it possible to implement complex conversions
between TDs and SDF, using TM Collections as an intermediary, they are not a part of
the WoT TD specification, yet, making this aspect of our mappings a potential extension
point.2

The current use of SDF mapping files can also be considered a workaround, as there is
no standardized way of describing instance-specific information like security metadata
or protocol bindings at the moment. While there is ongoing work on adding new
features like the sdfRelation quality to SDF [I-D.-sdf-relations], which will probably
be usable for mapping WoT links to SDF, there are still a number of blank spots for
which the addition of equivalents to SDF could be considered. These blank spots include
the semantic @type annotations provided by JSON-LD, which also allows for defining
context entries which are not mappable to SDF’s namespaces at the moment, including,
e.g., @language for setting a default language for the current document or single URLs
entries for importing external context definitions.

2 We already discussed our approach with the WoT TD taskforce (https://github.com/w3c/wot-thing-
description/issues/1407, retrieved: June 27, 2022). While we received positive feedback and the
taskforce acknowledged the need for a document type like TM/TD Collections, the conclusion was to
postpone this feature to version 2.0 of the TD specification.

60

https://github.com/w3c/wot-thing-description/issues/1407
https://github.com/w3c/wot-thing-description/issues/1407

7.1 Requirements Evaluation

As we can see, there is still potential for alignment in both specifications, which is also
important for improving the roundtripping potential of conversion results.

7.1.2 Roundtripping

With the help of mapping files and TM/TD Collections, we have been able to achieve a
high degree of roundtripping potential, which we ensured in our converter implementa-
tion by providing a number of test cases in which we are able to reproduce the original
input. However, we also encountered a number of cases where it is not possible to
reproduce an input in its entirety. These appear mostly in the context of both specifica-
tions’ reference and extension mechanisms (namely sdfRef, tm:ref, and tm:extends)
when referring to external models, which have to be dereferenced before being able to
convert them to the other format, as we cannot, for example, refer to an SDF model
from a WoT TM. As some definitions in an SDF model, especially top-level affordances
and sdfData, only have the purpose of being referenced from elsewhere in a model,
they can also not be converted a roundtrippable manner.

Due to the limitations discussed in the previous subsection, we also need to include
the original @context in a mapping file when converting from WoT to SDF if we want
to be able to reproduce the original format, potentially leading to duplicate entries
that also appear in the namespaces field. The need for including the @context in a
mapping file also results from the use of the JSON Merge Patch algorithm which does
not allow for merging two JSON arrays, which is required in order to be able to only
include the additional @context entries in the mapping file. Future and more refined
ecosystem-specific mappings might need to take such cases into account and require a
more sophisticated approach to creating augmented SDF models.

In the other direction, there are a number of special SDF qualities without an equivalent
in WoT, which we decided to add with an sdf: prefix, such as the info block fields, the
uniqueItems or the $comment qualities. For being able to properly add these additional
fields to a WoT document, an extension of the WoT vocabulary should be considered.
However, SDF should also define its own RDF-compatible vocabulary which could be
integrated into WoT documents. This vocabulary could also contain auxiliary fields we
defined to be able to match an original definition to its spot in the original SDF model,
namely sdf:objectKey and sdf:thingKey.

61

7 Evaluation

Future versions of a mapping between WoT TD and SDF should further investigate how
much of these additional definitions could be integrated into the core vocabulary and
which should be treated as extensions.

7.1.3 Conversion between TDs and TMs

One very important requirement we have been able to mostly fulfill concerns the con-
version between TDs and TMs. As we already discussed in chapter 3, TMs can serve
as an intermediary between TDs and SDF models, due to their similarity to TDs while
having less constraints when it comes to mandatory fields. During our implementation,
however, we had to experience that the conversion of TM and TD collectionswith external
references to submodels turned out to be more complicated than expected, as we need
to resolve every referenced TM or TD before the conversion, adding each resolved TM
or TD to the collection.

These complications caused this part of the functional requirements to be only partially
fulfilled. However, it also touches the question of how to map TDs to TMs in general,
where the WoT TD specification does not make concrete statements regarding the
conversion process. This might also lead to possible inconsistencies when converting a
TD with a subthing, modelled via an item link, to a TM—a discussion which will be
continued in the WoT working group for TD 2.03.

7.1.4 Deployment Capabilities

Due to the fact that we chose Python as an implementation language, we are able to
support all major operating systems, making it possible to use the converter both on a
regular personal computer and on Single-board computers like Raspberry PIs. As we
will see in section 7.2, the use of Python also seems as if it was not a major performance
drawback, although future implementations should still consider using a language
like Rust for an even better performance and support for platforms where no Python
interpreter is available.

Since we have been able to implement our converter as a library, a CLI tool, and a web
application, we have in fact been able to cover a lot of possible deployment scenarios,

3 https://github.com/w3c/wot-thing-description/issues/1508 (retrieved: July 1, 2022).

62

https://github.com/w3c/wot-thing-description/issues/1508

7.2 Quantitative Criteria

enabling other users to re-use converter in their projects, e.g., code generators or SDF-
based mediators between different ecosystems. A simple web-based example for such a
mediator can be seen on the demo page4 by Ericsson mentioned in chapter 2, which
allows the conversion of models defined in a variety of different description languages.

7.1.5 Other Requirements

Using Python’s built-in modules, we are able to access WoT and SDF documents both from
the file system and via HTTP and HTTPS when using the CLI. The latter enables us to use
transport security for the retrieval, mitigating potential security and privacy concerns.
The web version actually also provides a simple REST-API, which was an optional
requirement defined in chapter 4. Finally, we are able to conduct input and output
validation, with one slight drawback as there was no JSON Schema definition available
for SDF mapping files at the time of writing. However, this is a feature that should be
possible to add in one of the next minor versions of our converter implementation.

In the next section, we will turn to one of our non-functional requirements—efficiency
and performance—in more detail.

7.2 Quantitative Criteria

For the quantitative evaluation of our converter, we used both metrics computed from
static analysis and a performance benchmark test with models from the OneDM play-
ground (see section 2.1.2).

7.2.1 Code Metrics

As a first metric for evaluating our converter, we calculated the cyclomatic complexity
[McC76] using the Python package radon5. The results of this analysis can be seen in
Listing B.1.

4 http://wishi.nomadiclab.com/sdf-converter/ (retrieved: July 1, 2022).
5 https://pypi.org/project/radon/ (retrieved: June 27, 2022).

63

http://wishi.nomadiclab.com/sdf-converter/
https://pypi.org/project/radon/

7 Evaluation

Unsurprisingly, we achieve a low complexity value for most of the functions mapping
single fields from one format to the other, leading to a total average complexity of about
2.292. This reflects the high similarity of the two specifications, making it possible to
map many fields one-to-one from format to the other. However, it also sheds a positive
light on our implementation, where have been able to factor out the conversion logic
into re-usable functions, reducing the complexity of each individual function. However,
this is also an aspect which we need to cautious about when interpreting the average
complexity, as our decision to use one function which simply calls the generalized map_
field function for many fields causes a potential distortion of the results.

Taking a closer look at the analysis, we can see that especially those functions which
load external models (e.g., _load_model_or_collection with a complexity value of
5) or resolve references and extensions (like resolve_sdf_ref or _resolve_tm_ref)
are the ones introducing a higher degree of complexity to the implementation. This is
caused by the fact that functions like these need to differentiate between different types
of inputs (e.g., file paths and URLs) and—in the case of references and extensions—also
need to take nested references into account, requiring these kinds of functions to call
themselves recursively if a referenced definition should contain a reference itself. Other
functions introducing complexity are those which iterate over field values (e.g., map_
properties in tm_to_sdf_py with a complexity value of 3) and those which need to
differentiate between different cases, like convert_wot_tm_to_sdf, which has to be
able to deal with both single TMs and TM collections. However, the complexity value
of 9 of this particular function shows that there might be some room for refactoring in
future versions of the converter, reducing the complexity of individual functions even
more.

All in all, we can conclude from this analysis that we have been able to keep the overall
complexity of our implementation fairly low, which is certainly also related to the
similarity of both specifications. In the next section, we will see if this low complexity
value also corresponds with an acceptable performance when actually running the
converter from the command line.

7.2.2 Performance Comparison

In order to evaluate the performance of our converter, we set up a special Continuous
Integration (CI) workflow in our GitHub repository, which automatically generates a

64

7.2 Quantitative Criteria

new performance report on every incremental change to the main development branch.
As a benchmark, we use the models contained in the OneDM playground repository6

and measure the time it takes to convert them from SDF to WoT Thing Models. As a
reference for the performance, we use Jana Kiesewalter’s SDF YANG converter, which
we compile and install in the container environment prior to each workflow run in the
virtualized CI environment. To perform the performance test, we call both converters
from the command line and convert every SDF model to a WoT TM and a YANG model,
respectively. Before and after both conversion steps, we create a timestamp, which we
use to calculate the expired time during the conversion.

Due to the fact that we used the interpreted language Python for our implementation,
we expected to observe a much worse performance of our converter in comparison to
Kiesewalter’s, which is written in the compiled language C++. However, as Table B.1
shows, our converter actually performs twice as fast for almost every SDF model, con-
verting most models in about 0.18 to 0.23 seconds, while Kiesewalter’s converter needs
between 0.47 and 0.53 seconds for most of the conversions. This performance difference
could arise from the fact that Kiesewalter’s implementation performs more operations
with the file system during a conversion process, e.g., importing the CDDL schema used
for validation from a file instead of using an already deserialized (“hard-coded”) version
as we do.

While these are very good results for our implementation, especially considering our
pessimistic expectations, we must interpret these results with caution: The set of models
in the OneDM playground is not representative for the whole feature set of SDF, since all
playground models only contain a single sdfObject. Furthermore, for example, they do
not use sdfRef for external references. This omits a lot of potential complexity in SDF
models, which prevents us from making a reliable judgement on how both converters
would operate on scale. Future evaluations should therefore either try to diversify the
set of input models and/or generate inputs procedurally. Furthermore, we cover only
one direction of both the conversion processes with this evaluation process, which is
also another aspect that should be improved. For now and considering the limited scope
of this Bachelor’s thesis, however, we can be satisfied with the results regarding our
converter’s performance.

6 https://github.com/one-data-model/playground (retrieved: June 29, 2022).

65

https://github.com/one-data-model/playground

7 Evaluation

7.3 Possible Specification Improvements

Over the course of working on this thesis, we have been able to get an in-depth impression
of both SDF and WoT TD, enabling us to make a judgement on possible gaps and
incompatibilities of the two specifications. In this context, we have also been able
to make contributions to both of their standardization processes. Therefore, we will
evaluate how well aligned WoT TD and SDF are by now compared to the beginning of
our writing process.

Initially, we saw of a number of hindrances for a comprehensive mapping between the
two specifications: SDF did not have a mechanism for including additional or instance-
specific fields in a model. Furthermore, the nesting approaches of both specifications
were incompatible, as sdfThing definitions did not have a real WoT equivalent while
affordances in TMs/TDs with submodels/subthings could not be included directly in an
sdfThing. In the discussions with the SDF working group, we were able to introduce
affordances as a feature for sdfThings to SDF. This greatly simplifies the mapping
between hierarchies of TMs/TDs and SDF models.

Another aspect we have been dealing with is the addition of mapping files [I-D.-sdf-
mapping] to SDF. Although this SDF extension is still in an early stage of development,
we have been able to successfully use it for capturing information from TMs and TDs that
is not yet supported by the core SDF vocabulary. Furthermore, mapping files enabled us
to map SDF models with additional augmentation via mapping files to WoT TD, closing
the gap between the two kinds of documents, as TDs have a number of mandatory
instance-specific fields which cannot be expressed in an SDF model. In this regard,
mapping files allow SDF to take a large step towards also being able to describe device
instances. However, in the future SDF could also consider allowing the description of
instances with a separate kind of document, which could be derived from SDF models
augmented with mapping files.

In the case of WoT, we experimented with a new approach for modelling hierarchy in
a single WoT document, which we call Thing Model/Description Collections. These
allowed us not only to convert complex SDF models to WoT, but also made it possible to
resolve submodels/subthings of TMs/TDs and convert all documents in the hierarchy to
another format at the same time. This was especially necessary for converting nested SDF
models to WoT TD, for which we used Thing Models as an intermediary. At the moment,
we are modelling TM/TD collections as simple maps of key-value-pairs, where each

66

7.3 Possible Specification Improvements

Listing 7.1: Example for a valid but unsatisfiable schema in [I-D.-jso-draft-7]
1 {
2 "type": "string",
3 "minimum": 5
4 }

value is a TM or TD. Submodels or subthings are referred to with same-document JSON
pointers. While this simple approach works for now, in the future it would probably be
better if such a collection would also be a valid JSON-LD document with its own top-level
@context and also formally specified. As mentioned before, we already discussed these
ideas with the WoT TD taskforce, and they will hopefully be considered for TD version
2.0.

A problem we noticed in both specification was the fact that their JSON Schema inspired
type systems (or rather: the representation in the schema documents both specifications
provide) are very loose and allow for defining valid data schemas which are unsatisfiable.
An example for such a schema can be seen in Listing 7.1. Here, the schema specifies a
“string” data type while also defining a minimum value of 5 at the same time, which
in turn implies a numeric data type. Since there is no string that has a numeric value
at the same time, this schema is unsatisfiable. As we eventually chose to use Python,
which is dynamically typed, for our converter implementation, we were able to handle
this flexible type system quite well. However, dealing with possible implementations in
other languages, we noticed that it can become an issue for strongly typed languages
such as Rust or C, which are a common choice for IoT devices in general and constrained
devices in particular. Future versions of both specifications should therefore revisit how
flexible their type systems should be and make them stricter, if possible.

67

8 Conclusion

In this thesis, we dealt with the conversion between Semantic Definition Format (SDF)
[I-D.-asdf-sdf] and Web of Things (WoT) Thing Description (TD) [wot-td11]—two
specifications which aim at improving the interoperability in the Internet of Things (IoT)
in terms of data models and device interactions, respectively. On the basis of a detailed
mapping between the data models of both specifications and a number of requirements
for our implementation, we developed a converter written in Python which can be used
as library and a Command Line Interface (CLI). Building upon our library, we also
created a web application, which not only allows for easy access to the converter’s logic
via a Graphical User Interface (GUI), but also via a simple REST-API.

Corresponding with our mappings, our converter supports both WoT Thing Descriptions
and Thing Models, the latter being a new addition that allows for describing not only
instances, but also classes of devices, enabling the re-use of definitions via import and
extension features. For our mappings, we discovered that Thing Models can act as
intermediary for the conversion between SDF and Thing Descriptions, allowing us to
only define two types of mappings (TM and SDF on the one hand and TM and TD
on the other) in order to cover all three data formats. Besides SDF models, we used
the newly defined concept of SDF mapping files [I-D.-sdf-mapping], allowing us to
consider instance- and ecosystem-specific information during the conversion process.
This aspect closes an important gap between the two specifications, making it possible
to convert from SDF to WoT Thing Descriptions, provided that a mapping file is present
that contains the necessary mandatory protocol bindings and security definitions. In
WoT, we identified the need for being able to include multiple TMs or TDs in a single
document in order to be able to work with nested data structures, as SDF allows for
describing a hierarchy of Things in a single model, while the WoT TD specification
does not, as the preferred way for creating hierarchy is by linking between documents.
By introducing an experimental concept called TM/TD collections, we have been able
to recreate a nested structure using JSON pointers [RFC6901] with same-document

69

8 Conclusion

references. These new concepts also enabled us to support roundtripping—i.e., the
reproduction of original inputs from a conversion result—in most cases, with references
to external documents (which we also resolve before the conversion) being the greatest
exception in this regard.

While we have been able to close a number of gaps between the two specifications and
were able to make a few contributions along this way, there is still room for improvement.
In particular, there are parts of the WoT vocabulary which we currently need to map
to a mapping file that could also be converted to actual SDF vocabulary. The most
prominent example for this at the moment is probably the addition of SDF relations
[I-D.-sdf-relations], which could be used for mapping generic WoT links to SDF. Other
additions could involve security definitions or more concrete protocol-specific vocabulary.
Furthermore, we noticed that the concept of SDF namespaces could be refined in order
to make the relationship to JSON-LD [json-ld] and Resource Description Framework
features used in WoT TD clearer. Therefore, the proposed mappings in this thesis are still
only a starting point for a comprehensive alignment of the two specifications and should
also be codified in a specification or standard as soon as both WoT TD is published as
version 1.1 and SDF reaches RFC status.

With our converter implementation, we were able to fulfill the functional requirements
we set ourselves based on the feature sets of existing converters, the potential deploy-
ment scenarios, and the mappings themselves. Despite the fact that with Python we
chose an interpreted, dynamically typed language for our converter implementation,
our evaluation suggested that we did not arrive at a significantly worse performance
compared to a compiled language and achieved an even higher performance than a
converter between SDF and YANG written in C++. However, these results should
not be over-interpreted, as the approach we chose for our evaluation has a number of
drawbacks, limiting its explanatory power. Still, in conjunction with the (limited) set of
code-metrics we collected, the evaluation indicated that our implementation is a viable
solution for converting between SDF and WoT TDs and TMs. For future versions of our
converter, however, we still consider choosing a compiled, statically typed language like
Rust for the implementation instead, potentially improving its performance and making
it more robust, while also making it possible to use the converter in environments where
a Python interpreter is not available.

Overall, we are satisfied with the results, especially considering that our converter is
already available as an installable package, providing a high degree of usability and

70

flexibility via the CLI and the web application we built with it.

71

A Mapping Examples

A.1 SDF Data Qualities and WoT Data Schemas

Listing A.1: SDF model for illustrating the conversion of dataqualities.
1 {
2 "sdfObject": {
3 "Test": {
4 "label": "SdfTestObject",
5 "description": "An sdfObject used for testing",
6 "$comment": "This sdfObject is for testing only!",
7 "sdfProperty": {
8 "foo": {
9 "label": "This is a label.",
10 "$comment": "This is a comment!",
11 "type": "integer",
12 "readable": true ,
13 "observable": False ,
14 "const": 5,
15 "default": 5,
16 "minimum": 0,
17 "maximum": 9002,
18 "exclusiveMinimum": 0,
19 "exclusiveMaximum": 9000,
20 "multipleOf": 2,
21 },
22 "bar": {
23 "type": "number",
24 "writable": true ,
25 "observable": true ,
26 "const": 5,
27 "unit": "C",
28 "default": 5,
29 "minimum": 0.0,
30 "maximum": 9002.0,
31 "exclusiveMinimum": 0.0,
32 "exclusiveMaximum": 9000.0,
33 "multipleOf": 2.0,
34 },
35 "baz": {
36 "type": "string",

73

A Mapping Examples

37 "observable": False ,
38 "minLength": 3,
39 "maxLength": 5,
40 "enum": ["hi", "hey"],
41 "pattern": "email",
42 "format": "uri -reference",
43 "contentFormat": "audio/mpeg",
44 "sdfType": "byte -string",
45 },
46 "foobar": {
47 "type": "array",
48 "observable": False ,
49 "minItems": 2,
50 "maxItems": 5,
51 "uniqueItems": true ,
52 "items": {"type": "string"},
53 },
54 "barfoo": {
55 "type": "object",
56 "observable": False ,
57 "properties": {"foo": {"type": "string "}},
58 "required": ["foo"],
59 "nullable": true ,
60 },
61 },
62 }
63 }
64 }

Listing A.2: Mapped TM created from the SDF example in Listing A.1.
1 {
2 "@context": [
3 "https :// www.w3.org /2022/ wot/td/v1.1",
4 {"sdf": "https :// example.com/sdf"},
5],
6 "@type": "tm:ThingModel",
7 "title": "SdfTestObject",
8 "description": "An sdfObject used for testing",
9 "sdf:$comment": "This sdfObject is for testing only!",
10 "properties": {
11 "foo": {
12 "title": "This is a label.",
13 "sdf:$comment": "This is a comment!",
14 "writeOnly": False ,
15 "observable": False ,
16 "type": "integer",
17 "const": 5,
18 "default": 5,
19 "minimum": 0,
20 "maximum": 9002,
21 "exclusiveMinimum": 0,
22 "exclusiveMaximum": 9000,
23 "multipleOf": 2,

74

A.2 References and Required Elements

24 },
25 "bar": {
26 "readOnly": False ,
27 "observable": True ,
28 "type": "number",
29 "const": 5,
30 "unit": "C",
31 "default": 5,
32 "minimum": 0.0,
33 "maximum": 9002.0,
34 "exclusiveMinimum": 0.0,
35 "exclusiveMaximum": 9000.0,
36 "multipleOf": 2.0,
37 },
38 "baz": {
39 "type": "string",
40 "observable": False ,
41 "minLength": 3,
42 "maxLength": 5,
43 "enum": ["hi", "hey"],
44 "pattern": "email",
45 "format": "uri -reference",
46 "contentMediaType": "audio/mpeg",
47 "sdf:sdfType": "byte -string",
48 },
49 "foobar": {
50 "type": "array",
51 "observable": False ,
52 "minItems": 2,
53 "maxItems": 5,
54 "items": {"type": "string"},
55 "sdf:uniqueItems": True ,
56 },
57 "barfoo": {
58 "type": "object",
59 "observable": False ,
60 "properties": {"foo": {"type": "string "}},
61 "required": ["foo"],
62 "sdf:nullable": True ,
63 },
64 },
65 "sdf:objectKey": "Test",
66 }

A.2 References and Required Elements

Listing A.3: SDF example for the mapping sdfRef and sdfRequired.
1 {
2 "sdfObject": {

75

A Mapping Examples

3 "ExampleThing": {
4 "label": "Common Qualities Example",
5 "description": "Example for the mapping of common qualities from SDF to WoT

",
6 "$comment": "This is a comment!",
7 "sdfRequired": [
8 "#/ sdfObject/ExampleThing/sdfProperty/ExampleProperty"
9],
10 "sdfProperty": {
11 "ExampleProperty": {
12 "sdfRef": "#/ sdfProperty/YetAnotherExampleProperty"
13 },
14 "AnotherExampleProperty": {
15 "sdfRef": "#/ sdfObject/ExampleThing/sdfProperty/ExampleProperty"
16 }
17 }
18 }
19 },
20 "sdfProperty": {
21 "YetAnotherExampleProperty": {
22 "type": "string"
23 }
24 }
25 }

Listing A.4: Mapped TM created from the SDF example in Listing A.3.
1 {
2 "@context": {
3 "http ://www.w3.org/ns/td",
4 {
5 "sdf": "https :// example.com/sdf"
6 }
7 },
8 "label": "Common Qualities Example",
9 "description": "Example for the mapping of common qualities from SDF to WoT",
10 "sdf:$comment": "This is a comment!",
11 "tm:required": [
12 "#/ properties/ExampleProperty"
13],
14 "properties": {
15 "ExampleProperty": {
16 "type": "string"
17 },
18 "AnotherExampleProperty": {
19 "tm:ref": "#/ properties/ExampleProperty"
20 }
21 }
22 }

76

B Evaluation Results

B.1 Code Metrics

Listing B.1: Cyclomatic Complexity [McC76] values for all elements of our library im-
plementation.

1 sdf_wot_converter__init__.py
2 F 14:0 main - A (1)
3 sdf_wot_converter\cli__init__.py
4 F 54:0 _load_model_or_collection - A (5)
5 F 344:0 _get_origin_url - A (5)
6 F 87:0 save_or_print_model - A (4)
7 F 294:0 _get_sdf_infoblock - A (4)
8 F 388:0 _handle_from_tm - A (4)
9 F 477:0 use_converter_cli - A (4)
10 F 69:0 _load_sdf_mapping_files - A (3)
11 F 355:0 _handle_from_sdf - A (3)
12 F 440:0 _handle_from_td - A (3)
13 F 47:0 _load_model - A (2)
14 F 102:0 _add_input_argument - A (2)
15 F 158:0 _add_sdf_arguments - A (2)
16 F 183:0 _add_tm_arguments - A (2)
17 F 237:0 _add_td_arguments - A (2)
18 F 470:0 _load_optional_json_file - A (2)
19 F 36:0 _load_model_from_path - A (1)
20 F 41:0 _load_model_from_url - A (1)
21 F 81:0 save_model - A (1)
22 F 121:0 _add_output_argument - A (1)
23 F 131:0 _add_mapping_file_input_argument - A (1)
24 F 141:0 _add_mapping_file_output_argument - A (1)
25 F 149:0 _add_origin_url - A (1)
26 F 268:0 _add_sdf_infoblock_arguments - A (1)
27 F 317:0 parse_arguments - A (1)
28 F 489:0 main - A (1)
29 C 19:0 CommandException - A (1)
30 sdf_wot_converter\converters\jsonschema.py
31 F 5:0 map_common_json_schema_fields - A (1)
32 F 32:0 map_pattern - A (1)
33 F 38:0 map_format - A (1)
34 F 44:0 map_required - A (1)
35 F 50:0 map_maximum - A (1)

77

B Evaluation Results

36 F 56:0 map_minimum - A (1)
37 F 62:0 map_max_items - A (1)
38 F 68:0 map_min_items - A (1)
39 F 74:0 map_max_length - A (1)
40 F 80:0 map_min_length - A (1)
41 F 86:0 map_multiple_of - A (1)
42 F 92:0 map_default - A (1)
43 F 98:0 map_const - A (1)
44 F 104:0 map_unit - A (1)
45 F 110:0 map_jsonschema_type - A (1)
46 sdf_wot_converter\converters\sdf_to_tm.py
47 F 49:0 resolve_sdf_ref - B (6)
48 F 158:0 map_license - A (4)
49 F 261:0 map_sdf_choice - A (4)
50 F 331:0 _map_exclusive_min_max - A (4)
51 F 791:0 map_sdf_ref - A (4)
52 F 821:0 map_sdf_objects - A (4)
53 F 924:0 map_sdf_things - A (4)
54 F 92:0 map_namespace - A (3)
55 F 124:0 create_link - A (3)
56 F 170:0 map_version - A (3)
57 F 223:0 copy_sdf_ref - A (3)
58 F 401:0 map_properties - A (3)
59 F 505:0 map_action_qualities - A (3)
60 F 614:0 map_sdf_data - A (3)
61 F 640:0 map_sdf_action - A (3)
62 F 672:0 map_sdf_property - A (3)
63 F 753:0 map_sdf_event - A (3)
64 F 780:0 map_sdf_required - A (3)
65 F 801:0 add_origin_link - A (3)
66 F 903:0 map_additional_fields - A (3)
67 F 1043:0 _fix_thing_model_json_ld_types - A (3)
68 F 1055:0 convert_sdf_to_wot_tm - A (3)
69 F 43:0 resolve_namespace - A (2)
70 F 106:0 map_default_namespace - A (2)
71 F 181:0 map_infoblock - A (2)
72 F 197:0 map_copyright - A (2)
73 F 204:0 map_title - A (2)
74 F 231:0 map_comment - A (2)
75 F 286:0 map_data_qualities - A (2)
76 F 424:0 map_items - A (2)
77 F 446:0 map_sdf_type - A (2)
78 F 461:0 map_unique_items - A (2)
79 F 476:0 map_nullable - A (2)
80 F 699:0 map_event_qualities - A (2)
81 F 913:0 add_link_to_parent - A (2)
82 F 1027:0 _apply_mapping_file - A (2)
83 F 1036:0 consolidate_sdf_model - A (2)
84 F 1050:0 _validate_thing_models - A (2)
85 F 145:0 add_link - A (1)
86 F 211:0 map_common_qualities - A (1)
87 F 249:0 map_description - A (1)
88 F 255:0 map_label - A (1)

78

B.1 Code Metrics

89 F 355:0 _map_exclusive_maximum - A (1)
90 F 367:0 _map_exclusive_minimum - A (1)
91 F 379:0 map_writable - A (1)
92 F 390:0 map_readable - A (1)
93 F 441:0 map_observable - A (1)
94 F 491:0 map_content_format - A (1)
95 F 501:0 map_enum - A (1)
96 F 552:0 map_property_qualities - A (1)
97 F 579:0 map_sdf_data_qualities - A (1)
98 F 667:0 get_json_pointer - A (1)
99 F 741:0 collect_sdf_required - A (1)
100 F 749:0 collect_mapping - A (1)
101 F 813:0 create_basic_thing_model - A (1)
102 C 25:0 SdfRefLoopError - A (1)
103 C 31:0 InvalidSdfRefError - A (1)
104 C 37:0 SdfRefUrlRetrievalError - A (1)
105 sdf_wot_converter\converters\td_to_tm.py
106 F 13:0 _replace_type - A (2)
107 F 26:0 convert_td_collection_to_tm_collection - A (2)
108 F 37:0 convert_td_to_tm - A (2)
109 sdf_wot_converter\converters\tm_to_sdf.py
110 F 855:0 convert_wot_tm_to_sdf - B (9)
111 F 507:0 map_context_to_namespaces - B (7)
112 F 832:0 map_infoblock_fields - B (6)
113 F 937:0 _get_submodel_keys - B (6)
114 F 366:0 map_enum - A (5)
115 F 668:0 determine_thing_model_key - A (5)
116 F 946:0 detect_top_level_models - A (5)
117 F 242:0 map_data_schema_fields - A (4)
118 F 490:0 map_version - A (4)
119 F 32:0 map_properties - A (3)
120 F 90:0 map_dataschema_properties - A (3)
121 F 115:0 map_actions - A (3)
122 F 152:0 map_action_fields - A (3)
123 F 182:0 map_events - A (3)
124 F 430:0 map_schema_definitions - A (3)
125 F 467:0 map_links - A (3)
126 F 596:0 map_tm_required - A (3)
127 F 696:0 map_additional_fields - A (3)
128 F 782:0 map_thing_model - A (3)
129 F 824:0 get_license_link - A (3)
130 F 956:0 convert_wot_tm_collection_to_sdf - A (3)
131 F 66:0 map_items - A (2)
132 F 217:0 map_event_fields - A (2)
133 F 531:0 filter_at_type - A (2)
134 F 548:0 map_default_namespace - A (2)
135 F 565:0 convert_pointer - A (2)
136 F 580:0 map_tm_ref - A (2)
137 F 710:0 map_thing_model_to_sdf_thing - A (2)
138 F 300:0 _map_exclusive_maximum - A (1)
139 F 311:0 _map_exclusive_minimum - A (1)
140 F 322:0 map_nullable - A (1)
141 F 332:0 map_sdf_type - A (1)

79

B Evaluation Results

142 F 342:0 map_unique_items - A (1)
143 F 354:0 map_content_format - A (1)
144 F 380:0 map_read_only - A (1)
145 F 391:0 map_write_only - A (1)
146 F 404:0 map_observable - A (1)
147 F 409:0 map_interaction_affordance_fields - A (1)
148 F 416:0 map_title - A (1)
149 F 422:0 map_description - A (1)
150 F 553:0 map_sdf_comment - A (1)
151 F 613:0 map_thing_model_to_sdf_object - A (1)
152 F 688:0 map_additional_field - A (1)
153 sdf_wot_converter\converters\tm_to_td.py
154 F 38:0 _assert_tm_required - B (10)
155 F 28:0 _replace_version - A (4)
156 F 78:0 _resolve_submodels - A (4)
157 F 104:0 convert_tm_to_td - A (4)
158 F 18:0 replace_type - A (2)
159 F 64:0 _replace_meta_data - A (2)
160 F 71:0 _replace_bindings - A (2)
161 F 90:0 convert_tm_collection_to_td_collection - A (2)
162 sdf_wot_converter\converters\utility.py
163 F 31:0 map_field - A (4)
164 F 4:0 initialize_object_field - A (2)
165 F 11:0 initialize_list_field - A (2)
166 F 18:0 ensure_value_is_list - A (2)
167 F 25:0 negate - A (1)
168 F 55:0 map_common_field - A (1)
169 sdf_wot_converter\converters\wot_common.py
170 F 152:0 _resolve_tm_ref - C (11)
171 F 62:0 resolve_extension - B (8)
172 F 30:0 retrieve_thing_model - A (4)
173 F 133:0 replace_placeholders - A (4)
174 F 216:0 resolve_sub_things - A (4)
175 F 235:0 _get_submodel_key_from_link - A (4)
176 F 108:0 _format_placeholder_value - A (3)
177 F 97:0 _stringify_boolean - A (2)
178 F 206:0 is_thing_collection - A (2)
179 F 18:0 _retrieve_thing_model_from_url - A (1)
180 F 24:0 _retrieve_thing_model_from_file_path - A (1)
181 F 44:0 _perform_extension - A (1)
182 F 104:0 _has_placeholders - A (1)
183 F 118:0 _format_placeholder_key - A (1)
184 F 124:0 _replace_placeholder - A (1)
185 C 12:0 PlaceholderException - A (1)
186 sdf_wot_converter\converters__init__.py
187 F 11:0 convert_wot_td_to_wot_tm - A (1)
188 F 15:0 convert_wot_td_to_sdf - A (1)
189 F 26:0 convert_sdf_to_wot_tm - A (1)
190 F 42:0 convert_sdf_to_wot_td - A (1)
191 F 72:0 convert_wot_tm_to_sdf - A (1)
192 F 88:0 convert_wot_tm_to_wot_td - A (1)
193 sdf_wot_converter\validation__init__.py
194 F 18:0 validate_sdf_model - A (2)

80

B.2 Performance Comparison

195 F 25:0 validate_thing_model - A (1)
196 F 29:0 validate_thing_description - A (1)
197

198 185 blocks (classes , functions , methods) analyzed.
199 Average complexity: A (2.291891891891892)

B.2 Performance Comparison

Table B.1: Performance comparison between our converter and Jana Kiesewalter’s SDF-
YANG-Converter, based on the sdfObjects in the OneDM playground. The
values in the second and third row are the number of seconds the conversion
from SDF to the respective format took. Cases where the conversion process
was unsuccessful (e.g., due to a validation error) are labelled as “failed”.

Conversion Time (s)

File Name SDF→ WoT (s) SDF→ YANG

sdfobject-accelerometer.sdf.json .196189118 .539649950
sdfobject-acidity.sdf.json .193596280 .489524831
sdfobject-activity.sdf.json .195034402 .489960837
sdfobject-actuation.sdf.json .194102388 .538188129

sdfobject-addressable_text_display.sdf.json .192091459 .484375857
sdfobject-airflow.sdf.json .192804769 .483684946
sdfobject-airquality.sdf.json .192656067 .486825791
sdfobject-alarm.sdf.json .194620495 .488625517
sdfobject-altimeter.sdf.json .190831141 .532621649
sdfobject-altitude.sdf.json .193734382 .500958194

sdfobject-analog_input.sdf.json .225133532 .490543643
sdfobject-analog_output.sdf.json .194888698 .487133094

sdfobject-audio.sdf.json .190214731 .484532657
sdfobject-audio_clip.sdf.json .192186660 .484405455
sdfobject-autofocus.sdf.json .221767884 .482190923

sdfobject-automaticdocumentfeeder.sdf.json .190075829 .487002692
sdfobject-barometer.sdf.json .197395934 .493460985

Continued on next page

81

B Evaluation Results

Table B.1 – continued from previous page

Conversion Time (s)

File Name SDF→ WoT SDF→ YANG

sdfobject-batterymaterial.sdf.json .195668110 .488771017
sdfobject-bitmap.sdf.json .196217718 .492060065

sdfobject-blood_pressure.sdf.json .195382205 .486291982
sdfobject-bmi.sdf.json .191513650 .485512971

sdfobject-body_fat.sdf.json .194718994 .485599870
sdfobject-body_ffm.sdf.json .217881627 .538050322

sdfobject-body_location_temperature.sdf.json .192006856 .480871702
sdfobject-body_slm.sdf.json .194337189 .485710571
sdfobject-body_water.sdf.json .190358432 .485482568
sdfobject-brewing.sdf.json .191251445 .484645256
sdfobject-button.sdf.json .212789754 .481383909
sdfobject-buzzer.sdf.json .192153258 .484502853
sdfobject-cadence.sdf.json .187943097 .483549540

sdfobject-calorificvalue.sdf.json .187110385 .481470111
sdfobject-cgm_calibrate.sdf.json .189734423 .485416167

sdfobject-cgm_samplinginterval.sdf.json .191813253 .484074537
sdfobject-cgm_sensor.sdf.json .187862487 .486280958
sdfobject-cgm_status.sdf.json .189820816 .484720835
sdfobject-cgm_threshold.sdf.json .191898245 .485002340
sdfobject-circuitbreaker.sdf.json .190645327 .482687206
sdfobject-clock.sdf.json .190002218 .483946824
sdfobject-colour.sdf.json .194151778 .539046912

sdfobject-colour_autowhitebalance.sdf.json .188725400 .528593963
sdfobject-colour_chroma.sdf.json .210481712 .532276715

sdfobject-colour_colourtemperature.sdf.json .189526012 .529785280
sdfobject-colour_csc.sdf.json .211731930 .481659491
sdfobject-colour_hs.sdf.json .213426654 .532317124
sdfobject-colour_rgb.sdf.json .192389182 .483442689

sdfobject-colour_saturation.sdf.json .190105048 .481838266
sdfobject-concentration.sdf.json .197510356 .491790110

Continued on next page

82

B.2 Performance Comparison

Table B.1 – continued from previous page

Conversion Time (s)

File Name SDF→ WoT SDF→ YANG

sdfobject-conductivity.sdf.json .193874802 .492116114
sdfobject-consumable.sdf.json .212445972 .482465975

sdfobject-conversionfactor.sdf.json .211687860 .481375059
sdfobject-current.sdf.json .193641300 .488519162

sdfobject-cyclingpower.sdf.json .189696642 .480265643
sdfobject-delaydefrost.sdf.json .190135849 .532018691
sdfobject-deodorization.sdf.json .211771862 .529829860
sdfobject-depth.sdf.json .216537731 .518842401

sdfobject-digital_input.sdf.json .194166107 .485138831
sdfobject-digital_output.sdf.json .190604263 .481651980
sdfobject-dimmer.sdf.json .189318544 .532719220
sdfobject-direction.sdf.json .217092246 .485944443
sdfobject-distance.sdf.json .191038169 .484809526
sdfobject-door.sdf.json .188672634 .481981985

sdfobject-ecomode.sdf.json .188063825 .484101116
sdfobject-energy.sdf.json .193531605 .484267318

sdfobject-energy_battery.sdf.json .189054840 .482902599
sdfobject-energy_consumption.sdf.json .190658063 .479454849

sdfobject-energy_drlc.sdf.json .190439460 .485001229
sdfobject-energy_generation.sdf.json .188735035 .478815691
sdfobject-energy_overload.sdf.json .188312976 .479546887
sdfobject-foaming.sdf.json .189965395 .482755122
sdfobject-frequency.sdf.json .218011404 .487105469

sdfobject-gas_consumption.sdf.json .191380610 .482072015
sdfobject-generic_sensor.sdf.json .193957438 .541075465

sdfobject-genericdefaulttransitiontime.sdf.json .191341409 .484746744
sdfobject-genericlevel.sdf.json .197583478 .497340883
sdfobject-genericonoff.sdf.json .216978492 .541755972
sdfobject-glucose.sdf.json .214773667 .534501992

sdfobject-glucose_carb.sdf.json .190637002 .481461382

Continued on next page

83

B Evaluation Results

Table B.1 – continued from previous page

Conversion Time (s)

File Name SDF→ WoT SDF→ YANG

sdfobject-glucose_exercise.sdf.json .191555839 .544375182
sdfobject-glucose_hba1c.sdf.json .191506616 .480449568
sdfobject-glucose_health.sdf.json .191293773 .530445345
sdfobject-glucose_meal.sdf.json .189399344 .477980830

sdfobject-glucose_medication.sdf.json .190137556 .481663687
sdfobject-glucose_samplelocation.sdf.json .189766450 .533866598

sdfobject-glucose_tester.sdf.json .188806435 .482552600
sdfobject-grinder.sdf.json .223518775 .497720036
sdfobject-gyrometer.sdf.json .193818013 .491398338
sdfobject-heartrate.sdf.json .191533478 .488552894
sdfobject-heatingzone.sdf.json .189857251 .481109078
sdfobject-height.sdf.json .191335474 .483931022
sdfobject-humidity.sdf.json .188552130 .482572237

sdfobject-hvac_capacity.sdf.json .190405994 .478615071
sdfobject-icemaker.sdf.json .188266664 .485595871
sdfobject-illuminance.sdf.json .192352122 .485922375
sdfobject-impactsensor.sdf.json .188995374 .480678401
sdfobject-inverter.sdf.json .190862900 .484573556

sdfobject-ipso-humidity.sdf.json .194807056 .485618271
sdfobject-ipso-temperature.sdf.json .203247975 .555082253
sdfobject-keycardswitch.sdf.json .189690784 .477698259
sdfobject-keypadchar.sdf.json .190619697 .480887603
sdfobject-level.sdf.json .204674196 Failed

sdfobject-light_brightness.sdf.json .211102487 .482437540
sdfobject-light_control.sdf.json .216417133 .540647128
sdfobject-light_dimming.sdf.json .213111683 .533059312
sdfobject-light_ramptime.sdf.json .217522250 .484196859
sdfobject-liquid_level.sdf.json .191829555 .482248929
sdfobject-load.sdf.json .219818786 .545301900

sdfobject-load_control.sdf.json .194957103 .536385963

Continued on next page

84

B.2 Performance Comparison

Table B.1 – continued from previous page

Conversion Time (s)

File Name SDF→ WoT SDF→ YANG

sdfobject-location.sdf.json .219459381 .548410648
sdfobject-lock_code.sdf.json .190694438 .480450501
sdfobject-lock_status.sdf.json .192033458 .493564103
sdfobject-loudness.sdf.json .195602913 .539542211

sdfobject-magnetometer.sdf.json .216736539 .488312917
sdfobject-mediasource.sdf.json .191523679 .485907452
sdfobject-mode.sdf.json .192139988 .479938865

sdfobject-movement_linear.sdf.json .192350791 .481763992
sdfobject-multi-state_selector.sdf.json .190988871 .482688905
sdfobject-multiple_axis_joystick.sdf.json .192485894 .484495531
sdfobject-muscleoxygensaturation.sdf.json .193902214 .482008095

sdfobject-nightmode.sdf.json .188488235 .480082267
sdfobject-on_off_switch.sdf.json .190172460 .485583847

sdfobject-onoff.sdf.json .195652439 Failed
sdfobject-opaquedata.sdf.json .210832459 .535945278
sdfobject-openlevel.sdf.json .211801374 .484333329

sdfobject-operational_state.sdf.json .191181248 .484163532
sdfobject-orfid_station.sdf.json .188607917 .484979843
sdfobject-orfid_tag.sdf.json .187102595 .481892198
sdfobject-percentage.sdf.json .193629192 .489883517
sdfobject-positioner.sdf.json .192025768 .487869186
sdfobject-power.sdf.json .196293732 .486718269

sdfobject-power_control.sdf.json .193713093 .482832012
sdfobject-power_factor.sdf.json .195703523 .536069807

sdfobject-power_measurement.sdf.json .201448608 .546054656
sdfobject-presence.sdf.json .194656408 .537102923
sdfobject-pressure.sdf.json .193635792 .536002806
sdfobject-printer_3d.sdf.json .212633675 .532195855
sdfobject-ptz.sdf.json .192110257 .534308066

sdfobject-pulsatilecharacteristic.sdf.json .210637522 .530560312

Continued on next page

85

B Evaluation Results

Table B.1 – continued from previous page

Conversion Time (s)

File Name SDF→ WoT SDF→ YANG

sdfobject-pulsatileoccurrence.sdf.json .211646337 .531322824
sdfobject-pulserate.sdf.json .211366833 .528618584
sdfobject-push_button.sdf.json .211730038 .483904943

sdfobject-pvconnectionterminal.sdf.json .191660150 .485740469
sdfobject-rate.sdf.json .218687537 .487775498

sdfobject-selectablelevels.sdf.json .189017912 .482763726
sdfobject-sensor.sdf.json .189406818 .486743584

sdfobject-sensor_acceleration.sdf.json .189674122 .482627425
sdfobject-sensor_activity_count.sdf.json .192125056 .484012628

sdfobject-sensor_atmosphericpressure.sdf.json .192136046 .479880159
sdfobject-sensor_carbondioxide.sdf.json .190765527 .530415582
sdfobject-sensor_carbonmonoxide.sdf.json .192641653 .481178478

sdfobject-sensor_contact.sdf.json .189928115 .528643357
sdfobject-sensor_geolocation.sdf.json .189286106 .532879417
sdfobject-sensor_glassbreak.sdf.json .192674454 .482268394
sdfobject-sensor_heart_zone.sdf.json .188671597 .480833373
sdfobject-sensor_illuminance.sdf.json .232028217 .482200993

sdfobject-sensor_magneticfielddirection.sdf.json .210760012 .484818630
sdfobject-sensor_motion.sdf.json .192385550 .524372796
sdfobject-sensor_presence.sdf.json .190345321 .480699387
sdfobject-sensor_props.sdf.json .190643192 .483072173

sdfobject-sensor_radiation_uv.sdf.json .190730692 .479148615
sdfobject-sensor_sleep.sdf.json .188060354 .492349809
sdfobject-sensor_smoke.sdf.json .190193784 .482119059
sdfobject-sensor_threeaxis.sdf.json .190651191 .481551850
sdfobject-sensor_touch.sdf.json .187995852 .482433264
sdfobject-sensor_water.sdf.json .191960211 .483423978
sdfobject-set_point.sdf.json .192884124 .488388551

sdfobject-signalstrength.sdf.json .189972881 .481322347
sdfobject-sleep.sdf.json .193555833 .501381340

Continued on next page

86

B.2 Performance Comparison

Table B.1 – continued from previous page

Conversion Time (s)

File Name SDF→ WoT SDF→ YANG

sdfobject-speech_tts.sdf.json .190247285 .483205974
sdfobject-speed.sdf.json .188690362 .483540884
sdfobject-spo2.sdf.json .192798127 .487000641

sdfobject-stopwatch.sdf.json .190547794 .485436618
sdfobject-switch_binary.sdf.json .188742868 .483134584
sdfobject-switch_fault.sdf.json .211293598 .532730812

sdfobject-switch_restricted.sdf.json .189181774 .482355872
sdfobject-temperature.sdf.json .190496793 .488568663
sdfobject-time.sdf.json .190311991 .483284286

sdfobject-time_period.sdf.json .190795997 .485288016
sdfobject-time_stamp.sdf.json .189623380 .482725978
sdfobject-timer.sdf.json .192732126 .486973040
sdfobject-torque.sdf.json .190507893 .482597276

sdfobject-up_down_control.sdf.json .195922225 .483935250
sdfobject-userid.sdf.json .216420300 .512708328

sdfobject-vehicle_connector.sdf.json .192646004 .479828681
sdfobject-voltage.sdf.json .193980426 .485966183
sdfobject-waterinfo.sdf.json .192836307 .532770961
sdfobject-weight.sdf.json .212310932 .483480741

87

Bibliography

Technical Specifications

[CURIE] S. McCarron and M. Birbeck, “CURIE Syntax 1.0”, W3C, W3C
Working Group Note, Dec. 2010. [Online]. Available: https:
//www.w3.org/TR/2010/NOTE-curie-20101216/.

[I-D.-asdf-sdf] M. Koster and C. Bormann, “Semantic Definition Format (SDF)
for Data and Interactions of Things”, IETF, Internet-Draft
draft-ietf-asdf-sdf-12, Jun. 2022, Work in Progress. [Online].
Available: https://datatracker.ietf.org/doc/html/draft-ietf-
asdf-sdf-12.

[I-D.-jso-draft-2019-09] A. Wright, H. Andrews, and B. Hutton, “JSON Schema Val-
idation: A Vocabulary for Structural Validation of JSON”,
IETF, Internet-Draft draft-handrews-json-schema-validation-
02, Sep. 2019, Work in Progress. [Online]. Available: https://
datatracker.ietf.org/doc/html/draft-handrews-json-schema-
validation-02.

[I-D.-jso-draft-7] A. Wright, H. Andrews, and G. Luff, “JSON Schema Val-
idation: A Vocabulary for Structural Validation of JSON”,
IETF, Internet-Draft draft-handrews-json-schema-validation-
01, Mar. 2018, Work in Progress. [Online]. Available: https://
datatracker.ietf.org/doc/html/draft-handrews-json-schema-
validation-01.

89

https://www.w3.org/TR/2010/NOTE-curie-20101216/
https://www.w3.org/TR/2010/NOTE-curie-20101216/
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-12
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-12
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-validation-02
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-validation-02
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-validation-02
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-validation-01
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-validation-01
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-validation-01

Bibliography

[I-D.-sdf-mapping] C. Bormann and J. Romann, “Semantic Definition Format
(SDF): Mapping files”, IETF, Internet-Draft draft-bormann-
asdf-sdf-mapping-00, Nov. 2021, Work in Progress. [Online].
Available: https ://datatracker. ietf.org/doc/html/draft -
bormann-asdf-sdf-mapping-00.

[I-D.-sdf-relations] P. Laari, “Extended relation information for Semantic Defi-
nition Format (SDF)”, IETF, Internet-Draft draft-laari-asdf-
relations-00, Jun. 2022, Work in Progress. [Online]. Avail-
able: https://datatracker.ietf.org/doc/html/draft-laari-asdf-
relations-00.

[I-D.-yang-sdf] J. Kiesewalter and C. Bormann, “Mapping between YANG and
SDF”, IETF, Internet-Draft draft-kiesewalter-asdf-yang-sdf-
01, Nov. 2021, Work in Progress. [Online]. Available: https:
//datatracker.ietf.org/doc/html/draft- kiesewalter- asdf-
yang-sdf-01.

[json-ld] D. Longley, P.-A. Champin, and G. Kellogg, “Json-ld 1.1”,
W3C, W3C Recommendation, Jul. 2020. [Online]. Available:
https://www.w3.org/TR/json-ld11/.

[rdf] R. Cyganiak, D. Wood, and M. Lanthaler, “RDF 1.1 Con-
cepts and Abstract Syntax”, W3C, W3C Recommendation, Feb.
2014. [Online]. Available: https://www.w3.org/TR/rdf11-
concepts/.

[RFC2288] M. Nottingham, “Web Linking”, IETF, RFC 8288, Oct. 2017.
doi: 10.17487/RFC8288.

[RFC4946] J. M. Snell, “Atom License Extension”, IETF, RFC 4946, Jul.
2007. doi: 10.17487/RFC4946.

[RFC6570] R. T. Fielding, M. Nottingham, D. Orchard, J. Gregorio, and
M. Hadley, “URI Template”, IETF, RFC 6570, Mar. 2012. doi:
10.17487/RFC6570.

[RFC6749] D. Hardt, “The OAuth 2.0 Authorization Framework”, IETF,
RFC 6749, Oct. 2012. doi: 10.17487/RFC6749.

90

https://datatracker.ietf.org/doc/html/draft-bormann-asdf-sdf-mapping-00
https://datatracker.ietf.org/doc/html/draft-bormann-asdf-sdf-mapping-00
https://datatracker.ietf.org/doc/html/draft-laari-asdf-relations-00
https://datatracker.ietf.org/doc/html/draft-laari-asdf-relations-00
https://datatracker.ietf.org/doc/html/draft-kiesewalter-asdf-yang-sdf-01
https://datatracker.ietf.org/doc/html/draft-kiesewalter-asdf-yang-sdf-01
https://datatracker.ietf.org/doc/html/draft-kiesewalter-asdf-yang-sdf-01
https://www.w3.org/TR/json-ld11/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://doi.org/10.17487/RFC8288
https://doi.org/10.17487/RFC4946
https://doi.org/10.17487/RFC6570
https://doi.org/10.17487/RFC6749

Technical Specifications

[RFC6901] P. C. Bryan, K. Zyp, and M. Nottingham, “JavaScript Object
Notation (JSON) Pointer”, IETF, RFC 6901, Apr. 2013. doi:
10.17487/RFC6901.

[RFC7228] C. Bormann, M. Ersue, and A. Keränen, “Terminology for
Constrained-Node Networks”, IETF, RFC 7228, May 2014.
doi: 10.17487/RFC7228.

[RFC7396] P. E. Hoffman and J. M. Snell, “JSON Merge Patch”, IETF,
RFC 7396, Oct. 2014. doi: 10.17487/RFC7396.

[RFC7617] J. Reschke, “The ’Basic’ HTTP Authentication Scheme”, IETF,
RFC 7617, Sep. 2015. doi: 10.17487/RFC7617.

[RFC7641] K. Hartke, “Observing Resources in the Constrained Appli-
cation Protocol (CoAP)”, IETF, RFC 7641, Sep. 2015. doi:
10.17487/RFC7641.

[RFC7950] M. Bjorklund, “The YANG 1.1 DataModeling Language”, IETF,
RFC 7950, Aug. 2016. doi: 10.17487/RFC7950.

[RFC8259] T. Bray, “The JavaScript Object Notation (JSON) Data Inter-
change Format”, IETF, RFC 8259, Dec. 2017. doi: 10.17487/
RFC8259.

[RFC8610] H. Birkholz, C. Vigano, and C. Bormann, “Concise Data Defi-
nition Language (CDDL): A Notational Convention to Express
Concise Binary Object Representation (CBOR) and JSON Data
Structures”, IETF, RFC 8610, Jun. 2019. doi: 10.17487/
RFC8610.

[wot-architecture] M. Kovatsch, R. Matsukura, M. Lagally, T. Kawaguchi, K.
Toumura, and K. Kajimoto, “Web of Things (WoT) Archi-
tecture”, W3C, W3C Recommendation, Apr. 2020. [Online].
Available: https://www.w3.org/TR/wot-architecture/.

[wot-td] S. Käbisch, T. Kamiya, M. McCool, V. Charpenay, and M.
Kovatsch, “Web of Things (WoT) Thing Description”, W3C,
W3C Recommendation, Apr. 2020. [Online]. Available: https:
//www.w3.org/TR/2020/REC -wot - thing- description-
20200409/.

91

https://doi.org/10.17487/RFC6901
https://doi.org/10.17487/RFC7228
https://doi.org/10.17487/RFC7396
https://doi.org/10.17487/RFC7617
https://doi.org/10.17487/RFC7641
https://doi.org/10.17487/RFC7950
https://doi.org/10.17487/RFC8259
https://doi.org/10.17487/RFC8259
https://doi.org/10.17487/RFC8610
https://doi.org/10.17487/RFC8610
https://www.w3.org/TR/wot-architecture/
https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/
https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/
https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/

Bibliography

[wot-td11] S. Käbisch, T. Kamiya, M. McCool, and V. Charpenay, “Web of
Things (WoT) Thing Description”, W3C, W3C Working Draft,
Jun. 2022. [Online]. Available: https://www.w3.org/TR/
2021/WD-wot-thing-description11-20210607/.

Additional References

[Kie21] J. Kiesewalter, “Jana Kiesewalter: Design and Implementation of an SD-
F/YANG Converter in the Context of Standardization”, unpublished, M.S.
thesis, University of Bremen, 2021.

[Kra21] R. Kravtsov, “Thing Model for the Web of Things”, unpublished, M.S. thesis,
University of Passau, 2021.

[McC76] T. McCabe, “A complexity measure”, IEEE Transactions on Software Engineer-
ing, vol. SE-2, no. 4, pp. 308–320, 1976. doi: 10.1109/TSE.1976.233837.

92

https://www.w3.org/TR/2021/WD-wot-thing-description11-20210607/
https://www.w3.org/TR/2021/WD-wot-thing-description11-20210607/
https://doi.org/10.1109/TSE.1976.233837

E R K L Ä R U N G

Ich versichere, den Bachelor-Report oder den von mir zu verantwortenden Teil einer

Gruppenarbeit*) ohne fremde Hilfe angefertigt zu haben. Ich habe keine anderen als

die angegebenen Quellen und Hilfsmittel benutzt. Alle Stellen, die wörtlich oder

sinngemäß aus Veröffentlichungen entnommen sind, sind als solche kenntlich

gemacht.

*) Bei einer Gruppenarbeit muss die individuelle Leistung deutlich abgrenzbar und

bewertbar sein und den Anforderungen entsprechen.

Bremen, den _______________

 (Unterschrift)

	Abstract
	Zusammenfassung
	List of Acronyms
	List of Tables
	List of Figures
	List of Listings
	Introduction
	Foundations
	Standards and Specifications
	Web of Things
	Semantic Definition Format

	Related Work

	Mappings between WoT TD and SDF
	General Considerations
	Mapping between SDF Models and WoT TMs
	Atomic Units and Nesting
	Context Extensions and Namespaces
	Data Schemas and Data Qualities
	schemaDefinitions and sdfData
	Interaction Affordances
	References
	Mapping of Additional Properties
	WoT-specific Mappings
	SDF-specific Mappings

	Mappings between WoT TMs and WoT TDs

	Implementation Requirements
	Functional Requirements
	Non-Functional Requirements

	Design
	Structure
	Components
	Library
	Command Line Interface
	Web Application

	Implementation
	Technologies Used
	Library Implementation
	Internal Conversion Functions
	Testing

	CLI Tool
	Web Application

	Evaluation
	Requirements Evaluation
	Comprehensive Mapping
	Roundtripping
	Conversion between TDs and TMs
	Deployment Capabilities
	Other Requirements

	Quantitative Criteria
	Code Metrics
	Performance Comparison

	Possible Specification Improvements

	Conclusion
	Mapping Examples
	SDF Data Qualities and WoT Data Schemas
	References and Required Elements

	Evaluation Results
	Code Metrics
	Performance Comparison

	Bibliography
	Technical Specifications
	Additional References

